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Abstract. In previous work we added justifications to Constraint Han-
dling Rules (CHR) to enable logical retraction of constraints for dynamic
algorithms. We presented a straightforward source-to-source transforma-
tion to implement this conservative extension. In this companion pa-
per, we improve the performance of the transformation. We discuss its
worst-case time complexity in general. Then we perform experiments.
We benchmark the dynamic problem of maintaining shortest paths un-
der addition and retraction of paths. The results validate our complexity
considerations.

1 Introduction

Justifications have their origin in truth maintenance systems (TMS) [McA90] for
automated reasoning. Derived information (a formula) is explicitly stored and
associated with the information it originates from by means of justifications.
With the help of justifications, conclusions can be withdrawn (undone) by re-
tracting their premises. By this logical retraction, inconsistencies can be repaired
by retracting one of the reasons for the inconsistency.

In the formalism and programming language Constraint Handling Rules
(CHR) [Frü09,Frü15], conjunctions of atomic formulae (constraints) are rewrit-
ten by rule applications. When algorithms are written in CHR, constraints rep-
resent both data and operations. CHR is already incremental by nature, i.e.
constraints can be added at runtime. Logical retraction then adds decremental-
ity. To accomplish logical retraction in CHR, we have to be aware that CHR
constraints can also be deleted by rule applications. These constraints may have
to be restored when a premise constraint is retracted. With logical retraction, any
algorithm written in CHR becomes fully dynamic1. Operations can be undone
and data can be removed at any point in the computation without compromising
the correctness of the result.

In [Fru17], we formally defined a correct conservative extension of CHR with
justifications (CHRJ ). We gave a straightforward source-to-source transforma-
tion that adds justifications for user-defined constraints. A scheme of two rules
sufficed to allow for logical retraction (deletion, removal) of constraints during

1 Dynamic algorithms for dynamic problems should not be confused with dynamic
programming.
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computation. Without the need to recompute from scratch, these rules retract
not only the constraint but also undo all consequences of the rule applications
that involved the constraint.

The runtime performance of the previous translation scheme is not optimal,
however. In this paper, we present an improved source-to-source transformation
for logical retraction of constraints with justifications in CHR (CHRJ ). This
transformation only imposes a constant factor overhead as long as justifications
are not used for retraction. We will argue that the worst-case time complexity
for any number of retractions is in general proportional to the number of rule
applications, i.e. derivation length. The complexity of an algorithm expressed in
CHR is usually a polynomial in the derivation length. Therefore retraction indeed
has typically less complexity than recomputation from scratch at the expense of
storing removed constraints. The added space complexity is again bounded by
the derivation length. In our experiments, we will consider the dynamic problem
of maintaining shortest paths under addition and retraction of paths.

Minimum Example. Given a multiset of numbers represented as conjunction
min(n1),min(n2),...,min(nk). The constraint (predicate) min(ni) means that
the number ni is a candidate for the minimum value. The following CHR rule
filters the candidates.

min(N) \ min(M) <=> N=<M | true.

The rule consists of a left-hand side, on which a pair of constraints has to be
matched, a guard check N=<M that has to be satisfied, and an empty right-hand
side denoted by true. In effect, the rule takes two min candidates and removes
the one with the larger value (constraints after the \ symbol are deleted). Note
that the min constraints behave both as operations (removing other constraints)
and as data (being removed).

CHR rules are applied exhaustively. Here the rule keeps on going until only
one, thus the smallest value, remains as single min constraint, denoting the cur-
rent minimum. If another min constraint is added during the computation, it
will eventually react with a previous min constraint, and the correct current
minimum will be computed in the end. Thus the algorithm as implemented in
CHR is incremental. It is not decremental, though: We cannot logically retract
a min candidate. While removing a candidate that is larger than the minimum
would be trivial, the retraction of the minimum itself requires to remember all
deleted candidates and to find their minimum. As we will see, with the help of
justifications, this logical retraction will be possible automatically.

Related Work. The work of Armin Wolf on Adaptive CHR [WGG00] introduced
justifications into CHR. Different to our work, this technically involved approach
requires to store detailed information about the rule instances that have been
applied in a derivation in order to undo them. Adaptive CHR had a low-level
implementation in Java [Wol01], while we give an implementation in CHR itself
by source-to-source transformations.
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The more recent work of Gregory Duck [Duc12] introduces SMCHR, a tight
integration of CHR with a Boolean Satisfiability (SAT) solver for quantifier-free
formulae including disjunction and negation as logical connectives. It is men-
tioned that for clause generation, SMCHR supports justifications for constraints.

Overview of the Paper. In the next section we recall abstract syntax and refined
operational semantics for CHR. In Section 3, we describe CHR with justifica-
tions for logical retraction of constraints and its previous implementation by a
straightforward source-to-source transformation. In Section 4, our current work
is to optimize this implementation and to discuss its worst-case run-time com-
plexity. In Section 5, we report on the results of experiments with our new im-
plementation for the dynamic problem of maintaining shortest paths in a graph
under addition (insertion) and deletion (retraction) of paths. The paper ends
with conclusions and directions for future work.

2 Preliminaries

We recall abstract syntax and refined operational semantics of CHR [Frü09] in
this section.

2.1 Abstract Syntax of CHR

Constraints are relations, distinguished predicates of first-order predicate logic.
We differentiate between two kinds of constraints: built-in (pre-defined) con-
straints and user-defined (CHR) constraints which are defined by the rules in a
CHR program.

Definition 1. A CHR program is a finite set of rules. A (generalized) simpaga-
tion rule is of the form

r : H1\H2 ⇔ C|B
where r : is an optional name (a unique identifier) of a rule. In the rule head (left-
hand side), H1 and H2 are conjunctions of user-defined constraints, the optional
guard C is a conjunction of built-in constraints, and the body (right-hand side)
B is a goal. A goal is a conjunction of built-in and user-defined constraints. A
state is a goal. Conjunctions are understood as multisets of their conjuncts.

In the rule, H1 are called the kept constraints, while H2 are called the removed
constraints. At least one of H1 and H2 must be non-empty. If H1 is empty, the
rule corresponds to a simplification rule, also written

s : H2 ⇔ C|B.

If H2 is empty, the rule corresponds to a propagation rule, also written

p : H1 ⇒ C|B.

In this work, we restrict given CHR programs to rules without built-in con-
straints in the body except true and false.
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2.2 Operational Semantics of CHR

We follow the exposition in [SF06] in this subsection. Given a query, the rules
of the program are applied to exhaustion. A rule is applicable, if its head con-
straints are matched by constraints in the current goal one-by-one and if, under
this matching, the guard check of the rule holds. More formally, the guard is log-
ically implied by the built-in constraints in the goal. Any of the applicable rules
can be applied, and the application cannot be undone, it is committed-choice
(in contrast to Prolog). When a simplification rule is applied, the matched con-
straints in the current goal are replaced by the body of the rule, when a propa-
gation rule is applied, the body of the rule is added to the goal without removing
any constraints. When a simpagation rule is applied, only the head constraints
right to the backslash symbol are removed, the head constraints before are kept.

As in Prolog, almost all CHR implementations execute queries from left to
right and apply rules top-down in the textual order of the program. This behavior
has been formalized in the so-called refined semantics that was also proven to
be a concretization of the standard operational semantics [DSdlBH04]. In this
refined semantics of actual implementations, a CHR constraint in a query can be
understood as a procedure that goes efficiently through the rules of the program
in the order they are written, and when it matches a head constraint of a rule, it
will look for the other, partner constraints of the head in the constraint store and
check the guard until an applicable rule is found. We consider such a constraint
to be active. If the active constraint has not been removed after trying all rules,
it will be delayed and put into the constraint store as data. Constraints from the
store will be reconsidered (woken) if newly added built-in constraints constrain
variables of the constraint, because then rules may become applicable since their
guards are now implied.

Hash Indexing in CHR. To achieve optimal time complexity, (near) constant-
time addition, finding and removal of CHR constraints is required. Most current
CHR libraries in Prolog are based on the KU Leuven CHR system. It supports
indexes for terms via attributed variables, and in SWI Prolog also hash tables
for ground terms and arrays for dense integers. The HAL CHR system and few
other implementations also feature balanced trees, which are usually somewhat
slower than hash tables. The hash table based indexes in SWI Prolog work at
the argument level. In other words, for efficient constraint lookups, these argu-
ments have to be ground during computation. Thus, for optimal performance,
the SWI Prolog CHR system depends on mode and type information specified
in constraint declarations.

3 CHR with Justifications (CHRJ )

We present a conservative extension of CHR by justifications following [Fru17].
If justifications are not used, programs behave as without them. Justifications
annotate atomic CHR constraints. A straightforward source-to-source transfor-
mation extends the rules with justifications.
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3.1 CHR with Justifications for Logical Retraction

We start with adding justifications to CHR constraints and states.

Definition 2 (CHR Constraints and Initial States with Justifications).
A justification f is a unique identifier. Given an atomic CHR constraint G, a CHR
constraint with justifications is of the form GF , where F is a set of justifications.

An initial state with justifications is of the form
∧n

i=1 G
{fi}
i where the fi are

distinct justifications.

We now define a source-to-source translation from rules to rules with justi-
fications. Let kill (retract) and rem (remember removed) be to unary reserved
CHR constraint symbols. This means they are only allowed to occur in rules as
specified in the following.

Definition 3 (Translation to Rules with Justifications). Given a gener-
alized simpagation rule

r :

l∧
i=1

Ki \
m∧
j=1

Rj ⇔ C |
n∧

k=1

Bk

Its translation to a simpagation rule with justifications is of the form

rf :

l∧
i=1

KFi
i \

m∧
j=1

R
Fj

j ⇔ C |
m∧
j=1

rem(R
Fj

j )F ∧
n∧

k=1

BF
k where F =

l⋃
i=1

Fi∪
m⋃
j=1

Fj .

The translation ensures that the head and the body of a rule mention exactly
the same justifications. The reserved CHR constraint rem/1 (remember removed)
stores the constraints removed by the rule together with their justifications.

Shorthand Notation. By abuse of notation, let AJ , BJ , CJ . . . be conjunctions
or corresponding states whose atomic CHR constraints are annotated with jus-
tifications according to the above definition of the rule scheme. Similarly, let

rem(R)J denote the conjunction
∧m

j=1 rem(R
Fj

j )F .
We showed previously that rule applications correspond to each other in

standard CHR and in CHRJ .

Lemma 1 (Equivalence of Program Rules). [Fru17] There is a computa-
tion step S 7→r T with simpagation rule

r : H1\H2 ⇔ C|B

if and only if there is a computation step with justifications SJ 7→rf TJ ∧
rem(H2)J with the corresponding simpagation rule with justifications

rf : HJ1 \HJ2 ⇔ C|rem(H2)J ∧BJ .

Since computations are sequences of connected computation steps, this lemma
implies that computations in standard CHR program and in CHRJ correspond
to each other. Thus CHR with justifications is a conservative extension of CHR.
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Logical Retraction Using Justifications. We use justifications to retract a CHR
constraint from a computation without the need to recompute from scratch.
This means that all its consequences due to rule applications it was involved
in are undone. CHR constraints added by those rules are removed and CHR
constraints removed by the rules are re-added (inserted). To specify and imple-
ment this behavior, we give a scheme of two rules, one for retraction and one for
re-adding of constraints. The reserved CHR constraint kill(f) (retract) undoes
all consequences of the constraint with justification f .

Definition 4 (Rules for CHR Logical Retraction). For each n-ary CHR
constraint symbol c (except the reserved kill and rem), we add a rule to kill
constraints and a rule to revive removed constraints of the form:

kill : kill(f) \ GF ⇔ f ∈ F | true

revive : kill(f) \ rem(GFc)F ⇔ f ∈ F | GFc ,

where G = c(X1, . . . , Xn), where X1, . . . , Xn are different variables.

Note that a constraint may be revived and subsequently killed. This is the case
when both Fc and F contain the justification f .

We proved previously correctness of logical retraction: the result of a com-
putation with retraction is the same as if the constraint would never have been
introduced in the computation. We showed that given a computation starting
from an initial state with a kill(f) constraint that ends in a state where the kill
and revive rules have been applied to exhaustion, then there is a corresponding
computation without constraints that contain the justification f .

Theorem 1 (Correctness of Logical Retraction). [Fru17] Given a compu-
tation

AJ ∧G{f} ∧ kill(f) 7→∗ BJ ∧ rem(R)J ∧ kill(f) 67→kill,revive,

where f does not occur in AJ . Then there is a computation without G{f} and
kill(f)

AJ 7→∗ BJ ∧ rem(R)J .

3.2 Previous Implementation

We recall the implementation of [Fru17] for CHR with justifications (CHRJ ).

Constraints with Justifications. CHR constraints annotated by a set of justifi-
cations are realized by a binary infix operator ##, where the second argument is
a list of justifications:

C{F1,F2,...} is realized as C ## [F1,F2,...].

For convenience, we add rules that add a new justification to a given con-
straint C. For each constraint symbol c with arity n there is a rule of the form

addjust @ c(X1,X2,...Xn) <=> c(X1,X2,...Xn) ## [ F].

where the arguments of X1,X2,...Xn are different variables.
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Rules with Justifications. A CHR simpagation rule with justifications is realized
as follows:

rf :

l∧
i=1

KFi
i \

m∧
j=1

R
Fj

j ⇔ C |
m∧
j=1

rem(R
Fj

j )F ∧
n∧

k=1

BF
k where F =

l⋃
i=1

Fi∪
m⋃
j=1

Fj

rf @ K1 ## FK1,... \ R1 ## FR1,... <=> C |

union([FK1,...FR1,...],Fs), rem(R1##FR1) ## Fs,...B1 ## Fs,...

where the auxiliary predicate union/2 computes the ordered duplicate-free union
of a list of lists2.

Rules kill, remove and revive. Justifications are realized as flags that are initially
unbound logical variables. This eases the generation of new unique justifications
and their use in killing. Concretely, the reserved constraint kill(f) is realized as
built-in equality F=r, i.e. the justification variable gets bound. If kill(f) occurred
in the head of a kill or revive rule, it is moved to the guard as equality test F==r.

revive : kill(f) \ rem(CFc)F ⇔ f ∈ F | CFc

kill : kill(f) \ CF ⇔ f ∈ F | true

revive @ rem(C##FC) ## Fs <=> member(F,Fs),F==r | C ## FC.

remove @ C ## Fs <=> notfunctor(C,rem),member(F,Fs),F==r | true.

The check notfunctor(C,rem) ensures that C is not a rem constraint. The check
for set membership in the guards is expressed using the standard nondetermin-
istic Prolog built-in predicate member/2.

Logical Retraction with killc/1. We extend the translation to allow for retrac-
tion of derived constraints. The constraint killc(C) logically retracts constraint
C. The two rules killc and killr try to find the constraint C - also when it
has been removed and is now present in a rem constraint. The associated jus-
tifications point to all initial constraints that where involved in producing the
constraint C. For retracting the constraint, it is sufficient to remove one of its
producers. This introduces a choice implemented by the member predicate.

killr @ killc(C), rem(C ## FC) ## _Fs <=> member(F,FC),F=r.

killc @ killc(C), C ## Fs <=> member(F,Fs),F=r.

Note that in the first rule, we bind a justification F from FC, because FC contains
the justifications of the producers of constraint C, while Fs also contains those
that removed it by a rule application.

2 More precisely, a simplification rule is generated if there are no kept constraints and
a propagation rule is generated if there are no removed constraints.
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Dynamic Minimum Example. Translating the minimum rule to one with justi-
fications results in:

min(A)##B \ min(C)##D <=> A<C | union([B,D],E), rem(min(C)##D)##E.

The following shows an example query and the resulting answer in SWI-Prolog:

?- min(1)##[A], min(0)##[B], min(2)##[C].

rem(min(1)##[A])##[A,B], rem(min(2)##[C])##[B,C], min(0)##[B].

The constraint min(0) remained. This means that 0 is the minimum. The con-
straints min(1) and min(2) have been removed and are now remembered. Both
have been removed by the constraint with justification B, i.e. min(0).

We now logically retract with killc the constraint min(1) at the end of the
query. The killr rule applies and removes rem(min(1)##[A])##[A,B]. (In the
rule body, the justification A is bound to r - to no effect, since there are no other
constraints with this justification.)

?- min(1)##[A], min(0)##[B], min(2)##[C], killc(min(1)).

rem(min(2)##[C])##[B,C], min(0)##[B].

What happens if we retract the current minimum min(0)? The constraint
min(0) is removed by binding justification B. The two rem constraints for min(1)
and min(2) involve B as well, so these two constraints are re-introduced and
react with each other. Note that min(2) is now removed by min(1) (before it
was min(0)). The result is the updated minimum, which is 1.

?- min(1)##[A], min(0)##[B], min(2)##[C], killc(min(0)).

rem(min(2)##[C])##[A,C], min(1)##[B].

4 Optimizing the Implementation

We would like to avoid any overhead complexity-wise when computing with
justifications as long as we do not use them for retraction. We are ready to
accept a constant factor penalty. While the insertion of rem constraints takes
constant time, the computation of the union of justifications is linear in the sizes
of its input justification sets. The idea is to delay this computation until it is
needed due to a retraction. We actually never compute the union of justifications,
but will use the union constraints as data to find the necessary justifications.
We describe the modifications for this new implementations and then discuss
the complexity of this approach.

4.1 New Improved Implementation

To retract a constraint with justification F, the constraint killd(F) (kill down)
finds its initial justifications. The arguments of the delayed union constraints are
unbound variables now (except for the singleton sets of the justifications from
the initial constraints in the query). The constraint killd has to find the union
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constraint with its justification in the output and follow all its input justifications
(which are represented by a list). It proceeds recursively with the help of killl
(kill list) until it reaches an initial justification. On the way, we can stop if we
see a justification again that we have already seen.

already_seen @ killd(F) \ killd(F) <=> true.

go_to_initial @ union(FL,F) \ killd(F) <=> killl(FL).

killl @ killl([]) <=> true.

killl @ killl([F|FL]) <=> killd(F), killl(FL).

Then the auxiliary constraint killone (kill one) chooses one of these justifi-
cations in turn and removes it.

choice @ killone, killd([F]) <=> (F=r,waitrem ; killone).

done @ killone <=> false.

The rule choice uses Prolog’s disjunction in the body. In the first disjunct, the
binding of justification F to the constant r marks it as to be killed and wakes
up all constraints in which this justification occurs. In this way, constraints
are retracted and revived, respectively. The auxiliary constraint waitrem delays
re-addition of previously removed constraints via the rule revive until all con-
straints have been retracted by the remove rule. This improves the performance.
The recursion on killone in the second disjunct ensures that all justifications
are eventually tried. Note that as a consequence, in rule done we must fail (not
succeed), since we then have exhausted trying all justifications.

Now we also have to kill all output justifications of unions that have this
killed justification as input justification, i.e. we go upwards.

go_upwards @ union(FL,F) <=> member(F1,FL),F1==[r] | F=[r].

Note that we will only pass a subset of the union constraints that killd visited,
those that involve the chosen initial justification. We will also pass additional
other union constraints as consequence of this.

Finally, for retraction, we remove constraints with killed justifications and we
revive remembered constraints with killed justifications. We translate program
constraints C with justifications F of the form c(X1,..Xn)##F into c(X1,..Xn,F)

to support argument-wise indexing if necessary.

remove @ c(X1,..Xn,[r]) <=> true.

revive @ waitrem \ rem(c(X1,..Xn,FC),[r]) <=> c(X1,..Xn,FC).

waitrem <=> true.

Here we put waitrem to work to trigger the re-addition of constraints in the
revive rule. Having done so, waitrem is removed at the very end.
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4.2 Worst-Case Time Complexity

We now discuss the complexity of our optimized implementation in terms of
the input size and derivation length following the principles of [Frü02]. Let k
be the largest number of head constraints in a given program. Note that k is a
constant. Let c be the number of CHR constraints in the initial state (query). Let
n be the derivation length of a computation, i.e. the number of rule applications
(transitions).

The complexity of the original computation is at least n, because there are n
rule applications that take at least constant time each. If the computation does
not fail, each initial constraint is processed, which adds c to the lower bound
of the complexity, which thus is n + c. Typically, n is larger than c, so we may
assume just n.

All rule tries (application attempts) and rule applications take constant time,
mostly because of the index on the justification. There is no overhead in run-
time complexity until a constraint is killed: the union constraint and the rem

constraints are just added to the constraint store. Since the number of rem con-
straints is bounded by k, complexity does not increase, if constraints can be
added (inserted) in constant time. Based on these observations, we can also see
that the space complexity is bounded by O(n).

The union constraints have at most k input justifications that already have
been introduced. The result is the output justification, represented by a new
fresh logical variable. The union constraints form a directed acyclic graph (dag)
with bounded width k, where the nodes are the justification set variables and
where there is an directed edge (arc) from each input to the output justification
for each union in a derivation. Since the output justification is always new, the
corresponding graph is acyclic. It is typically not a tree, since a union may have
input justifications from arbitrary previous unions.

There are at most n unions in a computation of length n. Thus there are at
most n new justification nodes and c initial justifications. Therefore we have at
most n+c different nodes. The number of edges is at most k for each union and is
therefore of order O(n). The constraint killd has to go along at most kn edges,
pass at most n + c different nodes and stop at most at c initial justifications.

The constraint killone will chose the next initial justification in constant
time. There may be up to c choices. Once we have chosen this initial justification
to use for killing and retraction, we use the rule go upwards to find all effected
justifications with the help of the union constraint. We may have up to n non-
initial justifications to revive and remove (kill) constraints in turn. Typically,
the number will be much smaller, because n refers to all union constraints in
the derivation. For each justification, there can only be a bounded number of
remembered (k) and added constraints, because the number of head and body
constraints in rules is bounded in a given program.

The killing of a justification and the retraction of constraints is accomplished
by binding the justification variable. This will wake up all constraints in which
the variable occurs. These are the union constraints and the all program con-
straints that have this justification. Thus the rule go upwards and remove are
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immediately applicable, while the revive rule applications have to wait for the
constraint waitrem.

In summary, the overall worst-case complexity of retracting a constraint with
one choice of an initial justification is of order O(n) (assuming n > c). The
complexity trying each of the up to c found initial constraints is then O(nc).
Note that the complexity of removing all constraints or all initial c justifications
in a computation is also bounded by O(n), since the number of remembered and
added constraints is also of order O(n).

The additional cost of processing the revived re-added constraints is of course
dependent on the given program and has to be added to the above complexity
results. In the worst case, it amounts to a complete recomputation from scratch
(cf. minimum example). It may be constant in the best case. If all rules of the
program can be tried and applied in constant time, the derivation length n that
was needed for c initial constraints may provide a O(n) worst case complexity for
computations with the revived constraints, thus leaving the overall worst-case
complexity at O(n).

5 Experiments

Experiments were run with SWI Prolog 6.2.1. in standard configuration on an
Apple Mac Mini with OS X 10.9.5 2,5 GHz Intel Core i5 and 4 GB RAM. For
compilation of the CHR files debugging was switched off and full optimization en-
abled. We explicitly specified the arguments for indexing of program constraints
in a declaration. This lead to a constant-factor improvement of the runtime over
automatic indexing provided by the CHR compiler.

We also introduced passive declarations in the rules that handle the justi-
fications for retraction where feasible. These annotate head constraints in rules.
Such a constraint is then treated as data only that has to be searched for in
the constraint store. No active code is generated for that constraint, i.e. it does
not behave as an operation anymore that looks for its matching partner con-
straints. This optimizations avoids useless rule tries. Note that some of these
passive constraints are also automatically inferred by the compiler.

The programs used can be found in the appendix of the full online version
of this paper.

5.1 Dynamic All-Pair Shortest Paths

We want to find the shortest distance between all pairs of nodes in a complete
directed graph whose edges are annotated with non-negative distances. Initially,
for each edge, there is a corresponding path with the distance of the edge. For
every other pair of nodes, the unknown distances are initialized with ∞. Then
the following rule suffices to solve the problem:

shorten @ path(I,K,D1), path(K,J,D2) \ path(I,J,D3) <=>

D4 is D1+D2, D3>D4 | path(I,J,D4).
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A currently shortest path between nodes I and J is replaced by the sum of the
distances between paths I to K and K to J if this new distance is shorter. Note
that the graph is complete. If the rule is not applicable anymore, all paths must
be shortest. From the shorten rule we generated the following rules augmented
with justifications

add_justification @ path(A,B,C) <=> path(A,B,C,[D]).

shorten @ path(A,B,C,D), path(B,E,F,G) \ path(A,E,H,I) <=>

J is C+F,H>J |

union([D,G,I],K), rem(path(A,E,H,I),K), path(A,E,J,K).

Example. The answer output has been slightly edited to improve readability.

?-path(a,b,1),path(b,a,2),path(a,c,3),path(c,a,0),path(b,c,1),path(c,b,4).

rem(path(c,b,4,[A]),B), rem(path(a,c,3,[C]),D), rem(path(b,a,2,[E]),F),

union([[G],[H],[A]],B), union([[H],[I],[C]],D), union([[I],[G],[E]],F),

path(c,b,1,B), path(a,c,2,D), path(b,a,1,F), path(b,c,1,[I]),

path(c,a,0,[G]), path(a,b,1,[H])

Initial justifications are in square brackets as single elements of lists. Thus the
last three paths in the answer were not shortened, while the other three paths
were shortened once, as can be seen by the deleted original path/3 constraints
for them. From the first arguments of the delaying union/2 constraints we can
also read off the constraints that lead to a shorter path.

For our experiments, the shorten rule was then instrumented to count rule
tries (in the guard) and applications (in the body) with the help of Prolog’s global
variables. We explicitly added indexing information for the compiler because it
slightly improved the performance on our examples. This means there is an hash
index on the first and second argument of the path/4 constraint and it can also
be accessed without index.

Random Graph Generation and Shortest Paths. We generated complete graphs
from a given number of nodes represented by integers. For every pair of different
nodes, a path is generated with a random distance between 1 and the number
of nodes. This is accomplished by the rule:

gengraph(N), node(A), node(B) ==> random(1,N,D), path(A,B,D).

In Figure 1 the number of nodes of the random directed graph is given,
leading to a quadratic number of paths. Column Apply reports the number of
applications of the shorten rule, while column Try shows how often this rule
has been tried. Finally, Time reports the execution time in seconds. The time
is roughly proportional to the number of rules tries indicating that indexing
reduces the time for finding the three matching head constraints indeed to a
constant.
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Previous Implementation
Nodes Apply Try Time
12 125 2817 0.208
12 113 2332 0.171
12 142 2567 0.206
14 210 4929 0.494
14 250 5564 0.590
14 223 4274 0.467
16 338 9105 1.218
16 379 8607 1.299
16 362 8425 1.234
18 501 11256 2.154
18 502 12799 2.390
18 416 9915 1.693
21 801 21171 5.965
21 783 22265 5.970
21 778 19831 5.502
24 1318 38188 14.809
24 1295 40549 16.172
24 1162 31898 12.270

New Implementation
Nodes Apply Try Time
12 157 2958 0.106
12 129 2770 0.093
12 99 2362 0.083
14 246 5215 0.225
14 248 4693 0.189
14 270 5449 0.234
16 366 7667 0.402
16 333 7643 0.391
16 356 7613 0.391
18 499 11899 0.759
18 476 10567 0.674
18 404 9980 0.628
21 837 19134 1.499
21 858 23550 1.928
21 830 21094 1.676
24 1228 36507 3.553
24 1165 32543 3.422
24 1316 42426 4.039

Fig. 1. Shortest Paths for Random Complete Directed Graphs

Complexity. Let v be the number of nodes in the graph. There can be at most
v2 shortest path, one between each pair of nodes, so c = v2. With indexes
on the nodes in a path, the rule shorten can be applied in constant time,
given one of the path constraints. The worst-case derivation length depends on
the scheduling of paths for rule application. The optimal complexity is O(v3)
when the scheduling of the Floyd-Warshall algorithm is used. It assumes an
order on nodes and processes paths by their smallest nodes. We do not specify
the scheduling and therefore expect a higher polynomial complexity in v. To
reach the optimal complexity was not the scope of this work, since here we are
interested in increasing the performance of logical retraction in comparison with
the previous implementation.

Back to our experiments reported in Figure 1: for a complete graph with
v nodes and v2 paths, the average execution time is of order O(v4) as was
confirmed by computing the interpolating polynomial with WolframAlpha. This
also holds for the number of rule tries and applications. So the derivation length
n is quadratic in the number of paths c, i.e. O(c2). The previous implementation
has a similar complexity, but a higher constant factor.

Logical Retraction of Paths. In Figure 2 we can see that the times for retracting
all shortest paths in a complete random directed graph vary. The columns Apply
and Try refer to accumulated recomputations of shortest paths after retraction
of paths. Down reports the number of rule applications for going to the initial
justifications through union constraints, while Up counts the propagation of the
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New Implementation
Nodes Apply Try Down Up Remove Revive Time
12 30 481 369 167 196 167 0.032
12 37 581 208 147 180 147 0.030
12 17 541 78 97 119 97 0.026
14 42 832 1990 242 281 242 0.075
14 54 894 1592 278 317 278 0.076
14 77 1245 1939 318 350 318 0.095
16 111 1901 5490 491 539 491 0.203
16 55 1413 3481 383 428 383 0.141
16 135 2513 1496 447 508 447 0.193
18 132 3158 7735 595 663 595 0.341
18 96 1869 4810 514 581 514 0.215
18 199 4598 8323 657 732 657 0.465
21 180 4963 51274 962 1033 962 1.170
21 207 4671 203119 917 966 917 2.980
21 188 4559 75441 908 985 908 1.381

Fig. 2. Removing All Shortest Paths from Random Graphs

killed justification to the roots. The counts for Down and thus the time needed
vary, the variation seems to increase the larger the graph is. This number depends
on the number of updates to particular intermediate shortest paths, i.e on the
depth of the justification dag.

Remove and Revive show the number of actual removals of constraints and
re-addition of previously removed path constraints. These last two numbers are
similar, with slightly more removals than revivals. (Note that re-added con-
straints may be removed afterwards.) The numbers for Up and Revive are iden-
tical, because the shorten rule always removes a single path constraint.

Overall, the complexity is once again quartic, O(v4). This corresponds once
again to the derivation length and thus is in line with our complexity considera-
tions in the previous section. It also means that the overhead of the recomputa-
tions is neglectable complexity-wise. Indeed, comparing the two figures, we can
see that it typically takes less time to remove each shortest paths one by one and
recompute all effected paths each time than to compute all the shortest paths
initially. Moreover, the numbers of path recomputations are about a fourth of
the number of initial path computations.

Note that recomputing from scratch would result in O(v2) recomputations
(one for each retracted path) of complexity O(v4) each and thus in a polyno-
mial of higher degree. The previous implementation also has a worse polynomial
complexity for retracting constraints. For a graph of size 14, the previous imple-
mentation is already about an order of magnitude slower.
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6 Conclusions

We presented an improved source-to-source transformation for logical retraction
of constraints with justifications in CHR (CHRJ ). This transformation only
imposes a constant factor overhead as long as justifications are not used for
retraction. We argued that the worst-case time complexity for any number of
retractions is in general proportional to the number of rule applications, i.e.
derivation length. The complexity of an algorithm expressed in CHR is usually a
polynomial in the derivation length. Therefore retraction indeed has typically less
complexity than recomputation from scratch at the expense of storing removed
constraints. The added space complexity is again bounded by the derivation
length. In our experiments, we benchmarked the dynamic problem of maintaining
shortest paths under addition and retraction of paths. The results verify our
complexity considerations. For future work, we would like to further improve
the implementation and benchmark it, taking care of proper indexing. At the
same time, we would like to investigate how logical as well as classical algorithms
like union-find behave when they become dynamic in CHRJ .
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