
Confluence Analysis of Cognitive Models
with Constraint Handling Rules

Daniel Gall, Ulm University

1 Introduction
This paper gives a brief summary of how logic programming (in the form of Constraint Handling
Rules) can be used to formalize and analyze cognitive models. This mainly is a summary of the
author’s PhD topic.
Computational cognitive modeling Computational

cognitive
modeling

is an interdisciplinary field at the interface of psychology
and computer science trying to explore the “essence of cognition (including motivation, emotion,
perception, etc.) and various cognitive functionalities through developing detailed, process-
based understanding by specifying corresponding computational models (in a broad sense) of
representations, mechanisms, and processes.” [Sun08]
Currently, State of the

art
computational cognitive modeling architectures as well as the implementations of

cognitive models are typically ad-hoc constructs. There are many variants of architectures to
support modeling for a certain domain. The architectures lack a formalization from the computer
science point of view. This impedes analysis of the underlying languages and the programmed
models. It makes it hard to compare different implementation variants of the languages. It
makes it hard to verify properties of the models.
Constraint Handling Rules (CHR) Program

Analysis with
CHR

is a declarative programming language originating from
Constraint Logic Programming. Its strong relation to logic, supports analysis of CHR programs.
Hence, there are many theoretical results of program analysis for CHR.
Furthermore, CHR as lingua

franca
due to its elegance and analysis tools, many other rule-based formalisms and

programming languages such as Production Rule Systems, Logical Algorithms, Business Rules,
Term Rewriting Systems or Functional Programming have been embedded in CHR. CHR then
serves as a common formalism to analyze and compare those languages and formalisms.
In this work, Objectivewe present how cognitive models can be formalized and analyzed with the help of

logic programming in form of CHR. We concentrate on confluence analysis of cognitive models
in the popular cognitive architecture Adaptive Control of Thought – Rational [And+04].

2 Adaptive Control of Thought – Rational (ACT-R)
ACT-R is in its core a modular production rule system. The architecture is illustrated in Figure 1
It divides psychological knowledge into declarative and procedural knowledge.

Declarative knowledge Declarative
knowledge

is represented as a network of so-called chunks that represent informa-
tion units. Chunks are the central data structure of ACT-R. The network of chunks is a labeled
graph where the nodes are the chunks. The chunks are typed and the types define the available
connections to other chunks.

1



goal module

goal buffer

imaginal module

imaginal buffer

declarative module

declarative buffer

procedural module

visual module

visual buffer

manual module

manual buffer

environment

Figure 1: Modular architecture of ACT-R [And+04]

Procedural knowledge Procedural
knowledge

is represented as if-then rules that match the current state of the working
memory. The working memory consists the chunks in the buffers (c.f. Figure 1) and each buffer
can hold at most one chunk at a time. The procedural module can request the modules to put
a new chunk into their buffers.
The production rule system Symbolic and

sub-symbolic
layers

of ACT-R that implements a symbolic theory of cognition is
enhanced by a sub-symbolic layer that adds features from connectionist models (e.g. neural
networks) to model learning behavior, decision making and adaptation to different situations.
For instance, the rules are enriched with a utility value that represents a rule priority and is
adapted during the execution of the model. This allows the model to adapt the conflict resolution
mechanism depending on prior experiences. A similar mechanism is the activation of chunks that
allows for modeling latencies of recalls or even forgetting of facts.
ACT-R Problemshas a well-defined psychological theory and there are many domain-specific models

using the architecture.However, there are some problems with the architecture: There is no
formal operational semantics [GF15a; AGW14]. Therefore, there are no theoretical or practical
results for computational analysis like termination, confluence or complexity.

3 Confluence Analysis of Cognitive Models
Confluence is the property that for a given start state, a program yields the same result indepen-
dent of the rules chosen during the computation. This means that for all states that may lead to
different successor states, there are computation paths that yield the same result (see Figure 2).

S

S′S1 S2

∗ ∗

∗ ∗

Figure 2: Confluence diagram for a state S. In arbitrary many steps the states S1 and S2 can
be reached. Those states join to the common state S′.

In ACT-R models, the conflict resolution mechanism chosen by the modeler eliminates any
non-determinism in the choice of rules. However, the results depend on the chosen conflict
resolution mechanism and its parameters as well as for instance data the model is presented
during its execution.

2



On the other hand, the architecture of ACT-R typically leads to many rules with overlaps,
i.e. where the conflict resolution mechanism becomes active at runtime. To gain control over
the conflict resolution it is important to identify all possible rule conflicts and if they lead to
different results.
Typically, cognitive models are not confluent by design. However, there are many rules in

those models that should not interfere with each other. For instance, in many models artificial
states are encoded in chunks that take care of a sequential execution of certain steps. To ensure
model quality it is important to identify the rules that conflict with each other and to ensure that
certain rules lead to deterministic (intermediate) states. Thereby, the modeler gains a higher
level of control of the program flow and can ensure that the rule conflicts are desired, for instance
because they are part of the learning process of the model.

4 Solution with Constraint Handling Rules
CHR Use CHR

analysis
has a decidable confluence test that we want to use to implement a confluence test for

ACT-R. The confluence test of CHR is a constructive approach that returns all sources of non-
confluence in form of states that lead to differing final states.
The idea of our approach General

approach
is illustrated in Figure 3. The main idea is to first develop an

abstract formal semantics of ACT-R [GF15b; GF15a]. Then, a source-to-source transformation
of ACT-R models to CHR programs can be developed [GF14; GF16]. The transformation has
been shown to be sound and complete w.r.t. the formal semantics. Then the confluence test of
CHR can be used.

ACT-R
model

STS trans-
formation

CHR
program

formal
semantics

analysis ecosystem

specifies
analyze

Figure 3: Overview of our approach

The formal semantics Formalizationis an abstract formalization of ACT-R that captures as many ACT-R
implementations as possible. It abstracts from many details and technical artifacts from the
various implementations [GF15b]. For instance, the semantics is independent of the conflict
resolution mechanism by design, as we are interested in all possible rule overlaps that could
appear at runtime as stated above. We have shown that including features from actual ACT-R
implementations leads to a semantics that is an instance of our abstract formalization, i.e. every
transition that is possible in the implementation is possible in the abstract semantics.
We have shown that our abstract formulation is an instance of the semantics proposed in

[AGW14] independently from our work. We have proposed some improvements of this semantics
in [GF15a].

3



Due Relation of
transformation
and semantics

to the strong relation of CHR to logic and the power of logic programming, the source-
to-source transformation is closely related to the formulation of the semantics which supported
the soundness and completeness results. The source-to-source transformation to CHR immedi-
ately provides an implementation of the abstract formulation of ACT-R. The transformed CHR
program matches the behavior of the cognitive model. The confluence analysis results of CHR
can be used on that translation and transferred to the original model.
However, the confluence Invariant-

based
confluence

test of CHR cannot be used directly for the transformed models
[GF17], as it also considers states as sources of non-confluence that can never appear in an
ACT-R model. For instance, if a buffer holds two chunks at a time, this is not allowed in ACT-
R, but nevertheless included in the confluence test. Therefore, an invariant has been defined
that specifies the valid state space of ACT-R models. Then the results on invariant-based or
observable confluence for CHR can be used [DSS07; Rai10]. In general, invariant-based confluence
is undecidable depending on the invariant. It has been shown that in the case of the ACT-R
invariant, the confluence test remains decidable.

5 Lessons Learned
Due Generalization

of the
approach

to the role of CHR as a lingua franca of declarative programming, the approach can be
generalized to many other formalisms and languages. Since there are numerous analysis tools
for CHR, the overhead of developing a source-to-source transformation and proving soundness
and completeness quickly pays. The many available embeddings of other rule-based approaches
show that CHR is suitable for a use as an analytical platform. In [RF11] the approach has been
executed successfully for Graph Transformation Systems.
As CHR imple-

mentation
a result of its close relation to first-order logic, CHR has proven as a useful language to

implement a formally specified operational semantics of a production rule system and arguably
many other declarative languages and formalisms. The ACT-R implementation of CHR is close
to the formal semantics and can be seen as a direct implementation of it.
This Abstractionimplementation is a model of the procedural core of ACT-R that still abstracts from the

actual implementations. For instance, the requests to modules are simply represented by built-in
constraints that get a certain input and yield the result the corresponding ACT-R module would
yield. This corresponds to the modularity of the ACT-R cognitive theory.
However, Modularity of

confluence test
for this reason module requests appear to be an obstruction to confluence, as in

general one has to assume that two identical requests may yield the different results. The more
knowledge of the particular modules is available, the better gets the confluence test. However,
even without such knowledge, the confluence test will identify such rules as possible sources of
non-confluence and the modeler can consider the problem in the implementation. For instance,
the test may unveil side conditions such as that the request to the declarative memory has to
be deterministic (i.e. there is only one matching chunk for the request in every case) in order to
maintain confluence.

6 Conclusion
Logic programming and its strengths in formal semantics and program analysis can enable pro-
gram analysis in the field of cognitive modeling. The modularity of logic programs enables an
isolated view on the procedural core of computational cognitive models. Implementations can
still be expressed as instances of those abstract formalizations. The analysis methods of CHR
can be used to analyze such models. Although this paper concentrates on confluence analysis,
the results on operational equivalence of CHR are directly available by using the formulated

4



invariant on ACT-R translations.
For the future, we want to specifically implement the refined semantics of ACT-R that is used

in implementations using our formalizations on the basis of our work in [GF15a; GF18]. There we
already have shown that the refinements can be seen as a further refinement of our formulation of
the abstract semantics. The basic ideas of how the implementational details can be implemented
in CHR are shown in [GF14; Gal13]. Furthermore, we are interested in how concepts of ACT-R
and other cognitive architectures can be integrated in a clean way to CHR without inheriting the
technical artifacts of the original implementations. This could yield a sound, formal, declarative
and clean framework for implementing cognitive models.

References
[AGW14] Rebecca Albrecht, Michael Gießwein, and BerndWestphal. “Towards formally founded

ACT-R simulation and analysis”. In: Proceedings of the 12th Biannual conference
of the German cognitive science society (Gesellschaft für Kognitionswissenschaft).
Vol. 15 (Suppl. 1). Cognitive Processing. Springer, 2014, pp. 27–28.

[And+04] John R. Anderson, Daniel Bothell, Michael D. Byrne, Scott Douglass, Christian
Lebiere, and Yulin Qin. “An Integrated Theory of the Mind”. In: Psychological
Review 111.4 (2004), pp. 1036–1060. issn: 0033-295X.

[DSS07] Gregory J Duck, Peter J Stuckey, and Martin Sulzmann. “Observable confluence for
constraint handling rules”. In: Logic Programming. Springer, 2007, pp. 224–239.

[Gal13] Daniel Gall. “A Rule-Based Implementation of ACT-R Using Constraint Handling
Rules”. In: Master Thesis, Ulm University (2013).

[GF14] Daniel Gall and Thom Frühwirth. “Exchanging Conflict Resolution in an Adapt-
able Implementation of ACT-R”. In: Theory and Practice of Logic Programming 14
(Special Issue 4-5 2014), pp. 525–538. issn: 1475-3081.

[GF15a] Daniel Gall and Thom Frühwirth. “A refined operational semantics for ACT-R: in-
vestigating the relations between different ACT-R formalizations”. In: Proceedings
of the 17th International Symposium on Principles and Practice of Declarative Pro-
gramming, Siena, Italy, July 14-16, 2015. Ed. by Moreno Falaschi and Elvira Albert.
ACM, 2015, pp. 114–124. isbn: 978-1-4503-3516-4.

[GF15b] Daniel Gall and Thom W. Frühwirth. “A Formal Semantics for the Cognitive Ar-
chitecture ACT-R”. In: Logic-Based Program Synthesis and Transformation - 24th
International Symposium, LOPSTR 2014, Canterbury, UK, September 9-11, 2014.
Revised Selected Papers. Ed. by Maurizio Proietti and Hirohisa Seki. Vol. 8981. Lec-
ture Notes in Computer Science. Springer, 2015, pp. 74–91. isbn: 978-3-319-17821-9.

[GF16] Daniel Gall and Thom Frühwirth. “Translation of Cognitive Models from ACT-R
to Constraint Handling Rules”. In: Rule Technologies. Research, Tools, and Appli-
cations: 10th International Symposium, RuleML 2016, Stony Brook, NY, USA, July
6-9, 2016. Proceedings. Ed. by Jose Julio Alferes, Leopoldo Bertossi, Guido Gover-
natori, Paul Fodor, and Dumitru Roman. Springer International Publishing, 2016,
pp. 223–237. isbn: 978-3-319-42019-6.

[GF17] Daniel Gall and Thom Frühwirth. “A Decidable Confluence Test for Cognitive Mod-
els in ACT-R”. In: Rules and Reasoning. Ed. by Stefania Costantini, Enrico Fran-
coni, William Van Woensel, Roman Kontchakov, Fariba Sadri, and Dumitru Roman.
Cham: Springer International Publishing, 2017, pp. 119–134. isbn: 978-3-319-61252-
2.

5



[GF18] D. Gall and T. Frühwirth. “An Operational Semantics for the Cognitive Architecture
ACT-R and its Translation to Constraint Handling Rules”. In: ArXiv e-prints, ac-
cepted for publication in the ACM Transactions on Computational Logic (05/2018).
arXiv: 1702.01606 [cs.LO].

[Rai10] Frank Raiser. “Graph Transformation Systems in Constraint Handling Rules: Im-
proved Methods for Program Analysis”. PhD thesis. Germany: Ulm University, 2010.

[RF11] Frank Raiser and Thom Frühwirth. “Analysing Graph Transformation Systems
Through Constraint Handling Rules”. In: Theory Practice of Logic Programming
11.1 (01/2011), pp. 65–109. issn: 1471-0684.

[Sun08] Ron Sun. “Introduction to Computational Cognitive Modeling”. In: The Cambridge
Handbook of Computational Psychology. Ed. by Ron Sun. New York: Cambridge
University Press, 2008, pp. 3–19.

6

http://arxiv.org/abs/1702.01606

	Introduction
	Adaptive Control of Thought – Rational (ACT-R)
	Confluence Analysis of Cognitive Models
	Solution with Constraint Handling Rules
	Lessons Learned
	Conclusion

