
A Confluence Checker for Constraint Handling
Rules with Persistent Constraints

Frank Richter, Daniel Gall, and Thom Frühwirth

Institute of Software Engineering and Programming Languages,
Ulm University, Germany

Abstract. In the abstract operational semantics of Constraint Handling
Rules (CHR), propagation rules, i.e. rules that only add information,
can be applied again and again. This trivial non-termination is typically
avoided by a propagation history. A more declarative approach are per-
sistent constraints. Constraints that are introduced by propagation rules
are made persistent and cannot be removed. Now a propagation rule is
only applied, if its derived constraints are not already persistent.
The operational semantics with persistent constraints ω! differs substan-
tially from other operational semantics, hence the standard confluence
test cannot be applied. In this paper, a confluence test for ω! is presented.
Since ω! breaks monotonicity of CHR, a weaker property is established
that is shown to suffice for a decidable confluence criterion for terminat-
ing ω! programs. The confluence test is implemented using a source to
source transformation.

Keywords: Constraint Handling Rules, constraint programming, per-
sistent constraints, confluence, propagation rules, source to source trans-
formation

1 Introduction

Constraint Handling Rules (CHR) [3] is a declarative, multiset- and rule-based
programming language. There exist several operational semantics.

The simplest and most basic operational semantics for CHR is the very ab-
stract semantics. Its behavior is close to the logical reading of the rules. This
leads to the problem of trivial non-termination with rules that do not remove
any constraints and so are applicable any number of times. This class of rules
is known as propagation rules. The way most operational semantics avoid this
trivial non-termination problem is by adding a token store. This token store
is used to ensure that a propagation rule is only applied once with the same
constellation of constraints.

Such a token store can cause states with the same logical reading to exhibit
a different operational behavior. It also hinders effective concurrent execution of
CHR programs, since it needs to be distributed adequately [1].

The operational semantics with persistent constraints, denoted as ω!, adds a
second constraint store for so called persistent constraints. Those are constraints

2

that represent any number of these constraints and cannot be removed. This
allows it to stay close to the abstract semantics and avoid trivial non-termination
without a token store, but the transition rules lose the monotonicity property,
which is used in several proofs. CHR in general offers powerful program analyses
and is suitable for concurrent execution [1]. Since ω! avoids a token store, its
concurrent execution is not compromised. For a program to be easily used in
a concurrent execution the property of confluence is in general important. It
implies that the order in which the rules are executed does not influence the
result.

The contribution to this topic presented in our work is:

– The introduction of a modified state equivalence definition for ω! to correct a
flaw in the original definition. Additionally, a criterion for state equivalence
according to the new definition is introduced. (Section 3)

– A confluence test for programs that terminate in ω!. (Section 4)
– An implementation of ω! as source to source transformation. This transfor-

mation is based on the transformation presented in [2] and is realized in SWI
Prolog. (Section 5.1)

– A tool that can check terminating programs for confluence in ω!. The checker
has an extension that offers support for more built-ins. This tool is a mod-
ification and extension of the confluence checker for the abstract semantics
of CHR [6]. (Section 5)

The paper starts with a short introduction to CHR and the introduction of
ω! in the preliminaries section. This is followed by a section with the extended
state equivalence definition. The following section uses this definition to present
a confluence test for ω!. The next section builds on this by introducing a tool
that can check programs for confluence in ω! with the help of a source to source
implementation for ω!

2 Preliminaries

CHR is a rule based programming language, that needs a host language to
provide support for built-in predicates. It consists of three different kind of rules.
CHR has different operational semantics. This section starts by presenting the
syntax of CHR. The very abstract semantics are introduced. Finally, the idea
for the persistent semantics together with their definition is presented as they
are originally introduced by [1].

2.1 Syntax

A CHR Program consists of a finite set of rules of the form r @ Hk\Hr ⇔ C|B.
A rule has an optional name r. There are built-in and CHR constraints of
the form c(t1, ..., tn), where c is a constant symbol, n is the arity and t1...tn
are first-order terms. Reasoning on built-in constraints can be done through

3

a satisfaction-complete and decidable constraint theory CT , while CHR con-
straints are simply user defined constraints [2]. Each type of rule has a head
that may not be empty and consists of CHR constraints, a guard C that may be
empty and consists of built-in constraints and a body B that may not be empty.
The body can consist of built-in constraints as well as CHR constraints. Hk is
the kept head and Hr the removed head. In simplification rules the kept head
is empty, while in propagation rules the removed head is empty and ⇒ is used
instead of ⇐. If neither head is empty it is a simpagation rule [3, p. 54].

2.2 Very Abstract Semantics ωva

The very abstract operational semantics of CHR is given by a nondeterministic
state transition system [3, p. 55].

Definition 1 (State). A state is a conjunction of built-in and CHR constraints.
An initial state (initial goal) is an arbitrary state and a final state is one where
no more transitions are possible [3, p. 56].

For the transitions, rules are used in head normal form (HNF). This means
that each argument of a head constraint is a unique variable. A rule can be
represented in HNF by replacing each of its head arguments ti with a new
variable Vi and adding the equation Vi = ti to the guard of the rule. The built-in
= /2 for syntactic equivalence must be provided by CT . A transition represents
a rule application according to the following transition relation of ωva:

Apply
(Hk ∧Hr ∧ C) 7→r (Hk ∧ C ∧B ∧G)

if there is an instance with new local variables x of a rule named r in P .
r @ Hk\Hr ⇔ G|B and CT |= ∀(C → ∃xG)

The upper-case letters Hk, Hr, G,B and C represent conjunctions of constraints
that can be empty. If Hk and Hr are present in the constraint store and G
holds, the rule is applicable and the CHR constraints Hk are kept while the
CHR constraints Hr are removed. The resulting state additionally consists of
the guard G and the body B [3, p. 56].

This transition system is nondeterministic, because if several rules are ap-
plicable one is chosen nondeterministically and this choice cannot be undone [3,
p. 56].

Since a rule is always applicable if the head constraints are present and
the guard is satisfied an applicable propagation rule stays applicable after any
number of applications. This causes the aforementioned trivial non-termination.

2.3 Operational Semantics with Persistent Constraints ω!

The operational semantics for ω! is based on three basic ideas:

1. Propagation rules in ωva cause trivial non-termination, since given the corre-
sponding head constraints are present in the constraint store the body can be
generated any number of times. To avoid this kind of trivial non-termination
a second constraint store is introduced in which those body constraints are

4

added. Constraints in this store are a finite representation of a very large,
though unspecified number of identical constraints, so called persistent con-
straints. To differentiate between persistent and non-persistent constraints,
non-persistent constraints are called linear constraints [1].

2. If the removed head of a rule in ωva consists entirely of constraints that
can be generated any number of time, the body of such a rule can also be
generated any number of times given the constraints of the kept head are
also present. To account for those indirect consequences of propagation rules,
a rule’s body is introduced as persistent constraints, if its removed head is
completely matched with persistent constraints [1].

3. Several occurrences of a persistent constraint are considered idempotent,
since a persistent constraint represents an arbitrary number of identical con-
straints. For the execution model transitions are only supposed to happen if
the post-transition state is not equivalent to the pre-transition state. This
irreflexible transition system avoids trivial non-termination [1].

Definition 2 gives the definition for ω! states [1].

Definition 2. (ω!-State).
A ω!-state is a tuple of the form 〈L,P,B,V〉, where L and P are multisets of

CHR constraints called the linear (CHR) store and the persistent (CHR) store,
respectively. B is a conjunction of built-in constraints and V is a set of variables.
The first state in a program execution is called initial state and can be any valid
ω! state.

Definition 3 defines the notion of local and strictly local variables, which is
needed in definition 4 [1].

Definition 3. (Local and strictly local variables).
Let σ = 〈L,P,B,V〉 be an ω! state. Then the variables occurring in B or

in L or in P but not in V are called the local variables of σ. While the variables
occurring in B but not in L, P and V are called the strictly local variables of σ.

Definition 4 presents the definition of state equivalence and is based on the
definition of state equivalence for ωva given in [8] which has been extended by
condition 5 to handle idempotence of persistent constraints [1].

Definition 4 (State Equivalence). Equivalence between ω! states is the small-
est equivalence relation ≡! over ω! states that satisfies the following conditions
[1]:

1. (Equality as Substitution)
Let X be a variable, t be a term and

.
= the syntactical equality relation.

〈L,P, X .
= t ∧ B,V〉 ≡! 〈L[X/t],P[X/t], X

.
= t ∧ B,V〉

2. (Transformation of the Constraint Store)
If CT |= ∃s.B ↔ ∃s′.B′ where s, s′ are the strictly local variables of B,B′
respectively, then:

〈L,P,B,V〉 ≡! 〈L,P,B′,V〉

5

3. (Omission of Non-Occurring Global Variables)
If X is a variable that does not occur in L,P or B then:

〈L,P,B, {X} ∪ V〉 ≡! 〈L,P,B,V〉

4. (Equivalence of Failed States)

〈L,P,⊥,V〉 ≡! 〈L′,P′,⊥,V〉

5. (Contraction of Persistent Constraints)

〈L, P] P] P,B,V〉 ≡! 〈L, P] P,B,V〉

Based on the state equivalence definition a rewrite system is defined over
equivalence classes of states with [G] := {G′ | G ≡! G

′}. The fact that body
constraints can be introduced as either persistent or linear constraints leads to
two distinct transition rules. The post-transition state τ needs to be different
from the pre-transition state σ. This means the transition relation is irreflexive.
This definition is only valid for so called range restricted programs. Those are
programs where no rule introduces free variables in the guard or body that are
not also present in the head of the rule [1][2].

Definition 5. (ω!-Transitions)
For a range restricted CHR program P , the state transition system (Σ!/ ≡!

, 7→!) is defined as follows.
ApplyLinear:

r @ (H l
1]H

p
1) \ (H l

2]H
p
2)⇔ G | Bc, Bb H l

2 6= ∅ [σ] 6= [τ]

σ = [〈H l
1]H l

2] L, H
p
1]H

p
2] P, G ∧B,V〉]

7→r
! [〈H l

1]Bc] L, Hp
1]H

p
2] P, G ∧B ∧Bb,V〉] = τ

ApplyPersistent:

r @ (H l
1]H

p
1) \ Hp

2 ⇔ G | Bc, Bb [σ] 6= [τ]

σ = [〈H l
1] L, H

p
1]H

p
2] P, G ∧B,V〉]

7→r
! [〈H l

1] L, H
p
1]H

p
2]Bc] P, G ∧B ∧Bb,V〉] = τ

where Bc are the CHR constraints and Bb are the built-in constraints of the body
of a rule.

In cases where r is clear from the context or not important 7→! is used instead
of 7→r

! . With 7→∗! the reflexive-transitive closure of 7→! is denoted [2].

Example 1. (Transitive Hull)[1]
Consider the following CHR program for computing the transitive hull of a

graph represented by edge constraints e/2:

t @ e(X,Y), e(Y, Z) ⇒ e(X,Z)

Called with e(1, 2), e(2, 1) only four transitions are applied where e(1, 1), e(1, 2), e(2, 2)
and e(2, 1) are added to the persistent store. No further transitions are possible
since all resulting states would be equivalent.

For ω! this program terminates for all possible inputs [1].

6

3 Extended State Equivalence Definition for ω!

In definition 4 state equivalence for ω! is presented like it is introduced in [1].
In this definition the occurrence of linear constraints that are also present as
persistent constraints has influence on state equivalence.

Example 2. Consider the following program:

a⇔ c. a⇔ d.

b⇒ c. b⇒ d.

In ωva this program does not terminate if called with a, b due to trivial non-
termination. The constraint a can fire one of the two simplification rules which
then lead to two different states. These states can fire propagation rules in a way
that the resulting states are equivalent.

In ω! the resulting final states of an execution with the initial state 〈{a, b}, ∅,>, ∅〉
is 〈{b, c}, {c, d},>, ∅〉 or 〈{b, d}, {c, d},>, ∅〉. Those two states are not equivalent,
even so no rule can be constructed where the head and guard can only be matched
by only one of the two states.

Our work introduces definition 6 as extension to definition 4. It adds one
condition, which is based on the idea that if any number of a constraint is present
adding more does not make a difference. This captures the nature of persistent
constraints more accurately than the original definition. This behavior is not
represented in the state equivalence definition of ω! so far.

Definition 6. Definition 4 is extended by the following axiom:

(Contraction of Linear and Persistent Constraints)

6. 〈P] L, P] P,B,V〉 ≡! 〈L, P] P,B,V〉

Definition 6 gives an axiomatic definition for ≡!. It is difficult to show that
something is not equal with an axiomatic definition. Definition 7 presents the ./
relation [7] that is needed for Theorem 1 which gives a decidable criterion for
≡!. It is based on the criterion in [7] but takes definition 6 into account.

Definition 7 (./). The relation ./ over multisets of constraints is defined as

G ./ G′ if and only if (∀c ∈ G.∃c′ ∈ G′.c = c′) ∧ (∀c′ ∈ G′.∃c ∈ G.c = c′)

Theorem 1 (Criterion for ≡!). Let σ = 〈L,P,B,V〉, σ′ = 〈L′,P′,B′,V〉 be ω!

states with local variables ȳ, ȳ′ that have been renamed apart. σ ≡! σ
′ iff

CT |= ∀(B 7→ ∃ȳ′.((((L4L′)] P) ./ P) ∧ (P ./ P′) ∧ B′))∧
∀(B′ 7→ ∃ȳ.((((L4L′)] P) ./ P) ∧ (P ./ P′) ∧ B))

where 4 is the symmetric difference.

Proof. ’⇐’: Let σ and σ′ be two ω! states with σ = 〈L,P,B,V〉, σ′ = 〈L′,P′,B′,V〉
with local variables ȳ, ȳ′ that have been renamed apart and

7

CT |= ∀(B 7→ ∃ȳ′.((((L4L′)] P) ./ P) ∧ (P ./ P′) ∧ B′))∧
∀(B′ 7→ ∃ȳ.((((L4L′)] P) ./ P) ∧ (P ./ P′) ∧ B))

If CT |= ¬∃(((L4L′)] P) ./ P) ∧ (P ./ P′), then CT |= B = B′ = ⊥ so that
definition 4 condition 4 proves σ ≡! σ

′.
If a matching for (((L4L′)] P) ./ P) ∧ (P ./ P′) does exist it follows from

∀(B 7→ ∃ȳ′.((((L4L′)] P) ./ P) ∧ (P ./ P′) ∧ B′)∧ by definition 4 condition 2
that: σ = 〈L,P, (((L4L′)] P) ./ P) ∧ (P ./ P′) ∧ B ∧ B′,V〉
Definition 4 condition 1 and definition 6 lead to:

σ = 〈(L ∩ L′),P, (((L4L′)] P) ./ P) ∧ (P ./ P′) ∧ B ∧ B′,V〉

Definition 4 condition 1 and 5 lead to:

σ = 〈(L ∩ L′),P′′, (((L4L′)] P) ./ P) ∧ (P ./ P′) ∧ B ∧ B′,V〉

where P ′′ equals P ′ modulo multiplicities. Definition 4 condition 5 and definition
6 now lead to: σ = 〈L′,P′, (((L4L′)] P) ./ P) ∧ (P ./ P′) ∧ B ∧ B′,V〉
From ∀(B′ 7→ ∃ȳ.((((L4L′)] P) ./ P) ∧ (P ./ P′) ∧ B) follows by definition 4
that: σ = 〈L′,P′,B′,V〉 = σ′

’⇒’: To prove the forward direction the compliance of the conditions 1 to
5 from definition 4 and the condition form definition 6 need to be shown. For
condition 1 to 4 of definition 4, compliance is analogous to [7][p.39f] and for con-
dition 5 of definition 4 compliance is analogous to [7][p.47] hence only Definiton
6 is considered: Let σ = 〈P] L, P] P,B,V〉, σ′ = 〈L, P] P,B,V〉 ∈ Σ! with
local variables ȳ, ȳ′. As (((P] L)4L)] P) ./ (P] P)) = ((P] P) ./ (P] P)),
the following is a tautology:

CT |= ∀(B 7→ ∃ȳ′.(((((P] L)4L)] P) ./ (P] P)) ∧ ((P] P) ./ (P] P)) ∧ B)∧
∀(B 7→ ∃ȳ.((((P] L)4L)] P) ./ (P] P)) ∧ ((P] P) ./ (P] P)) ∧ B))

Definition 8 introduces the merge operator � for merging ω! states [7]. It is a
technical definition needed for Lemma 3.

Definition 8 (Merge Operator �). Let σ1 = 〈L1,P1,B1,V1〉 and
σ2 = 〈L2,P2,B2,V2〉 such that local variables of one state are disjunct from all
variables in the other state. Then for a set V of variables

σ1 �V σ2 ::= 〈L1] L2,P1] P2,B1 ∧ B2, (V1 ∪ V2)\V〉

This definition is further lifted to equivalence classes. In that case, the merge
operation assumes that two representants with accordingly disjunct variables are
selected: [σ1] �V [σ2] ::= [σ1 �V σ2]

For V = ∅, σ1 � σ2 and [σ1] � [σ2] is written, respectively.

Lemma 1 states that equivalence is maintained by the merge operator. The
proof is similar to [7][p.50f].

8

Lemma 1 (�V maintains Equivalence). Let σ1 ≡! σ2, then (σ1 �V τ) ≡!

(σ2 �V τ) for all V.

Proof. W.l.o.g. let σi = 〈Li,Pi,Bi,V′〉 for i = 1, 2 and let τ = 〈L,P,B,V′′〉 such
that the variables are disjunct according to Definition 8. Let ȳ1, ȳ2 be the local
variables of σ1 and σ2 respectively. According to Theorem 1:

CT |= ∀(B1 → ∃ȳ2.((((L14L2)] P1) ./ P1) ∧ (P1 ./ P2) ∧ B2)∧
∀(B2 → ∃ȳ1.((((L14L2)] P1) ./ P1) ∧ (P1 ./ P2) ∧ B1))

Let x̄ = (V ′ ∩ V), then

CT |= ∀(B1 → ∃ȳ2∃x̄.((((L14L2)] P1) ./ P1) ∧ (P1 ./ P2) ∧ B2)∧
∀(B2 → ∃ȳ1∃x̄.((((L14L2)] P1) ./ P1) ∧ (P1 ./ P2) ∧ B1))

As (L4L) is always empty and (P ./ P) is a tautology, (((L14L2)] P1) ./ P1)
can be extended to ((((L1] L)4(L2L))] (P1] P)) ./ (P1] P)) and (P1 ./ P2)
to ((P1] P) ./ (P2] P)). Similarly, B→ B is a tautology, and therefore we have
for z̄ being the local variables of τ combined with V ′′\V :

CT |= ∀(B1 ∧ B→ ∃ȳ2∃x̄∃z̄.(((((L1] L)4(L2L))] (P1] P)) ./
(P1] P)) ∧ ((P1] P) ./ (P2] P)) ∧ B2)∧

∀(B2 → ∃ȳ1∃x̄∃z̄.(((((L1] L)4(L2L))] (P1] P)) ./ (P1] P)) ∧
((P1] P) ./ (P2] P)) ∧ B1))

As the local variables of σ1 �V τ are x̄ ∪ ȳ1 ∪ z̄, and analogously for σ2 �V τ ,
it can be concluded by Theorem 1

σ1 �V τ = 〈L1] L,P1] P,B1 ∧ B, (V′ ∪ V′′)\V〉 ≡!

〈L2] L,P2] P,B2 ∧ B, (V′ ∪ V′′)\V〉 = σ2 �V τ

4 Confluence Test

This section describes a confluence test for ω!. The confluence test works in a
similar way as it is described in [3] for ωva. It is shown that the test works
and how the persistent constraint store influences it. This is not trivial, since ω!

breaks with monotonicity which is used in the proof for ωva.
Definition 9 defines joinability of two states. This is needed for the definition

of confluence itself [3, p. 102]. Definition 10 and 11 are general CHR definitions
and not explicitly only for ω!.

Definition 9 (Joinability). Two states σ1 and σ2 are joinable if there exists
a state σ′ such that [σ1] 7→∗! [σ′] and [σ2] 7→∗! [σ′].

Definition 10 defines confluence formally, but is not useful for actual conflu-
ence tests since in general there exists an infinite number of states [3, p. 102].

9

Definition 10 (Confluence). A CHR program is confluent if for all states
S, S1, S2 if S 7→∗ S1, S 7→∗ S2 then S1 and S2 are joinable.

Definition 11 defines local confluence which is later used in the confluence
test for terminating programs [3, p. 104].

Definition 11 (Local Confluence). A CHR program is locally confluent if for
all states S, S1, S2: If S 7→ S1, S 7→ S2 then S1 and S2 are joinable.

Definition 11 is useful because according to Newman’s Lemma for arbitary
reduction systems local confulence and confluence coincide for terminating pro-
grams [3, p. 104].

Lemma 2 (Newman’s Lemma). A terminating reduction system is confluent
iff it is locally confluent.

Since the transition rules of ω! are only applied if the resulting state is not
equivalent to the original state ω! does not have the monotonicity property that
is needed in the confluence criterion for ωva. Lemma 3 is a weaker property
that can be sufficient in many cases where proofs for other semantics use the
monotonicity property. This lemma is needed for the proofs further on.

Lemma 3. If [σ] 7→∗! [τ] then [σ] �V [σ′] 7→∗! [τ] �V [σ′]

Proof. by induction:
In the following rseq is a sequence of rules.
Basis: Let rseq consist of 0 rules.
[σ] 7→rseq

! [τ]
[σ] �V [σ′] 7→∗! [τ] �V [σ′] is correct since σ and τ are equivalent.

Induction hypothesis: if rseq consists of n rules and [σ] 7→rseq
! [τ] then [σ] �V

[σ′] 7→∗! [τ] �V [σ′] is true.

Inductive step: Let rseq consist of n + 1 rules, r′seq be the sequence of the first
n rules of rseq and rn+1 be the last rule of rseq. This means according to the
induction hypothesis

[σ] 7→r′seq
! [τ], [σ] �V [σ′] 7→∗! [τ] �V [σ′] and [τ] 7→rn+1

! [τ ′]
Now [τ] �V [σ′] 7→∗! [τ ′] �V [σ′] needs to be shown.
If rn+1 is applicable to [τ] �V [σ′] [7][p.51] proves [τ] �V [σ′] 7→rn+1

! [τ ′] �V [σ′].
In the case that rn+1 is not applicable to [τ] �V [σ′] then that means that
[τ] �V [σ′] ≡! [τ ′] �V [σ′] since the head and guard of rn+1 are satisfied by [τ]
and so the only way to prevent rule application in ω! is if the resulting state is
equivalent.

With lemma 2 there is still an infinite number of states to be tested in general.
Definition 12 gives the definition for critical pairs which is used to reduce the
number of states that need to be tested to a finite number of states [3, p. 103][7].

10

Definition 12 (Critical Ancestor State, Critical Pair). For any two (not
necessarily different) rules of a CHR program with renamed apart variables that
are of the form

r1 @ H1\H2 ⇔ G | Bc, Bb

r2 @ H ′1\H ′2 ⇔ G′ | B′c, B′b

let O1 ⊆ H1, O2 ⊆ H2, O
′
1 ⊆ H ′1, O

′
2 ⊆ H ′2 such that for B ::= ((O1] O2) =

(O′1]O′2))∧G∧G′ it holds that CT |= ∃.Band(O2]O′2) 6= ∅, then all states of
the form

σ = 〈L;P ;B;V〉
where L] P = K]K ′] R] R′] O1] O2, V is the set of all variables occur-
ring in heads and guards of both rules and K ::= H1\O1,K

′ ::= H ′1\O′1, R ::=
H2\O2, R

′ ::= H ′2\O′2 are called critical ancestor states. The rules r1 and r2 are
called overlapping rules. The pair of states (σ1, σ2) with

σ1 ::==

{
〈((K]K ′]R′]O1)\P);P]Bc;B ∧Bb;V〉 ifH2 ⊆ P
〈((K]K ′]R′]O1)\P)]Bc;P ;B ∧Bb;V〉 else

σ2 ::==

{
〈((K]K ′]R]O′1)\P);P]B′c;B ∧B′b;V〉 ifH ′2 ⊆ P
〈((K]K ′]R]O′1)\P)]B′c;P ;B ∧B′b;V〉 else

is called a critical pair of the critical ancestor state σ

Since ω! states have two constraint stores each overlap leads to up to 2x

critical ancestor states.
With the definition of critical pairs the actual confluence test is presented in

theorem 2.

Theorem 2. A terminating ω! program is confluent iff all its critical pairs are
joinable.

Proof. Because of Newman’s Lemma 2 it is sufficient to prove local confluence.
To show the if direction, let σ be an ω! state where at least two transitions

are possible.
σ 7→! σ1 and S 7→! σ2

If the two rules apply to different parts of the state σ then σ1 and σ2 must be
joinable due to lemma 3.

Else the two rules overlap. There must exist critical pair (σ′1, σ
′
2) with the

same overlap and a state σrest so that σ′1 � σrest ≡! σ1 and σ′2 � σrest ≡! σ2, as
a consequence of lemma 3 this means that if (σ′1, σ

′
2) is joinable then σ1 and σ2

are also joinable.
The only if direction can be shown by contradiction. Let P be a program that

is locally confluent in ω! and has a critical pair that is not joinable. The critical
ancestor state of this critical pair can be constructed as initial state. So there
exists a state that leads to the nonjoinable critical pair, but since P is locally
confluent, the states must be joinable. This results in a contradiction.

11

Theorem 2 gives a decidable test for confluence in ω!. The number of test
cases is exponentially increased in comparison to the confluence test for ωva

Example 3. Consider the following program for transitive closure [3][p.190]:

dp @ p(X,Y) \ p(X,Y)⇔ true.

p1 @ e(X,Y)⇒ p(X,Y).

p2 @ p(X,Y), p(Y, Z)⇒ p(X,Z).

This program is written for semantics that rely on a deterministic order in which
rules are executed. The rule dp removes duplicates of p/2 constraints. This needs
to happen before p2 is executed otherwise this program would not be guaranteed
to terminate. In ω! however it terminates for all possible inputs.

This program has several critical pairs that result from the overlap of dp and
p2. Here are two of the 12 critical ancestor states:

σ1 = 〈{p(X,X), p(X,X)}, ∅, ∅, {X}〉
σ2 = 〈{p(X,X), p(X,X), p(X,X)}, ∅, ∅, {X}〉

Each critical ancestor state leads to two equivalent critical pairs, so only two
critical pairs need to be tested. For better readability states are represented by
their logical reading and persistent constraints are marked with the index p.
Critical pair resulting from 〈{p(X,X), p(X,X)}, ∅, ∅, {X}〉:

σ1 7→dp
! p(X,X) 7→p2

! p(X,X), pp(X,X)

σ1 7→p2
! p(X,X), p(X,X), pp(X,X) 7→dp

! p(X,X), pp(X,X)

Critical pair resulting from 〈{p(X,X), p(X,X), p(X,X)}, ∅, ∅, {X}〉:

σ2 7→dp
! p(X,X), p(X,X) 7→p2

! p(X,X), p(X,X), pp(X,X) 7→dp
! p(X,X), pp(X,X)

σ2 7→p2
! p(X,X), p(X,X), p(X,X), pp(X,X) 7→dp

! p(X,X), p(X,X), pp(X,X)

7→dp
! p(X,X), pp(X,X)

Both critical pairs are joinable. The rest of the critical ancestor states are analog
and also lead to joinable critical pairs, so the program is confluent for ω!. It can
be noted that if the input consists only of e/2 constraints, then the dp rule is
unnecessary since all p/2 constraints are added to the persistent store and the
semantics of ω! would already prevent duplicates.

5 Confluence Checker

The theoretical results of the previous section are used to create a confluence
checker for ω!. It can test syntactical correct programs for confluence. Those
programs are not allowed to contain rules that recreate removed head constraints,
so called pathological rules. It only supports the Prolog unification = /2 and

12

true as built-ins. It has the option to also support the built-ins =</2, >=/2,
</2, >/2 and ==/2. These are implemented as constraint solvers with ask and
entailed constraints to replace the built-ins in the guards and can be extended
for further built-ins, as it is presented in [9]. For the joinability test it runs a
source to source transformation that implements ω! and checks if the final states
are equivalent.

The application is based on the confluence checker for the abstract semantics
that has been written in 2010 by Johannes Langbein [6].

5.1 Modifying the Confluence Checker

The idea behind the modification for ω! is to use the source to source transfor-
mation of [2] to create a transformed program. The overlaps that are found in
the untransformed program are then used to create critical pairs that can be
tested with the transformed program in the joinability test.

The confluence checker starts by parsing all rules to search for overlaps.
Since during the parsing process all of the necessary information for the source
to source transformation is present, it is also used to create the transformed pro-
gram according to Definition 13. This transformation is based on the implemen-
tation of ω! as source to source transformation that is presented in [2]. It creates
a transformed program that behaves like the original program would behave in
ω!. This transformed program is executed in the so-called refined semantics [3]
that is typically used in implementations. In this semantics the order of the rules
has influence on the priority of their execution. To differentiate between linear
and persistent constraints, each constraint gets an additional argument. This is
either l for linear constraints, p for persistent constraints, t for potentially added
linear constraints or c for potentially added persistent constraints.

Definition 13 (Source to Source Implementation). For every n-ary con-
straint c/n in P there exists a constraint c/(n + 1) in JP K. In the follow-
ing, for a multiset of user-defined ω! constraints M = {c1(t̄1), ..., cn(t̄n)} let
l(M) = {c1(l, t̄1), ..., cn(l, t̄n)}, p(M) = {c1(p, t̄1), ..., cn(p, t̄n)},
t(M) = {c1(t, t̄1), ..., cn(t, t̄n)} and c(M) = {c1(c, t̄1), ..., cn(c, t̄n)}.
The following source to source transformation shows how the rules of JP K are
created [2].

1. For every rule r @ H1 \ H2 ⇔ G | Bc, Bb in P , and all multisets
H l

1, H
p
1 , H

l
2, H

p
2 s.t. H l

1] H
p
1 = H1 and H l

2] H
p
2 = H2 and H l

2 6= ∅, the
following rule is added at the end of JP K:

l(H l
1)] p(Hp

1)] p(Hp
2) \ t(H l

2) ⇔ G | t(Bc), Bb

2. For every rule r @ H1 \ H2 ⇔ G | Bc, Bb in P , and all multisets
H l

1, H
p
1 , H

l
2, H

p
2 s.t. H l

1] H
p
1 = H1 the following rule is added at the end

of JP K:
l(H l

1)] p(Hp
1)] p(H2) ⇒ G | c(Bc), Bb

13

3. For every rule {c(p, t̄), c(p, t̄′)}] H1 \ H2 ⇔ G | Bc, Bb in JP K with fresh
variables where t̄ and t̄′ are unifiable, add also the following rule at the end
of JP K with t̄

.
= t̄′:

{c(p, t̄)}] H1 \ H2 ⇔ G | Bc, Bb

4. For every user-defined constraint c/n in P , add the following rules at the
top of JP K, where t̄ is a sequence of n different variables:

c(p, t̄)\c(c, t̄) ⇔ > c(p, t̄)\c(t, t̄) ⇔ >
c(c, t̄) ⇔ c(p, t̄) c(t, t̄) ⇔ c(l, t̄)

c(p, t̄)\c(p, t̄) ⇔ > c(p, t̄)\c(l, t̄) ⇔ >

Unlike in [2] this transformation is not designed for the priority based seman-
tics. Instead it uses the refined semantics [3] that is used for the CHR imple-
mentation in SWI Prolog. In this semantics propagation rules can only fire once
with the same constellation of constraints and the priority for rule execution
is from top to bottom. Additionally rule 3 now performs the equivalence check
of arguments by matching the arguments of the head constraints. The original
definition uses an equivalence check in the guard, which would not work in the
intended way for free variables in SWI Prolog. Rule 4 is extended for the new
equivalence definition and adds a cleanup rule for persistent constraints. This
ensures that the final state has the smallest number of constraints possible for
easy state equivalence checks.

The transformed program can be executed in SWI Prolog and behaves like
the untransformed program would be behave in ω! [2]. To differentiate between
linear and persistent constraints, each constraint has an additional argument. So
only one goal store for CHR constraints is needed in a state. An initial query and
its final state of the execution in the transformed program can be represented
as terms with the form state(G,B, V). This is the representation needed for the
state equivalence checker. The states are always reduced to the equivalent states
with the smallest number of constraints according to condition 5 of Definition 4
and Definition 6. This allows the equivalence checker to be used for final states.
The parser can be used on its own as an implementation of ω! as source to source
transformation.

The confluence check is modified so that for every found overlap all possible
critical pairs are created according to definition 12. Each constraint of a critical
pair has the additional argument to determine if the constraint are added as
linear or persistent.

Example 4. Calling the confluence checker with the following program.

b <=> true.

a <=> true.

a ==> b.

14

This program is confluent in the abstract semantics, but not in ω! due to the non
removability of persistent constraints. The checker finds a non-joinable critical
pair and gives the following output:

==

The following critical pair is not joinable:

state([],[true],[])

state([a(l),b(c)],[],[])

This critical pair stems from the critical ancestor state:

[a]

with the overlapping part:

[(a,a)]

of the following two rules:

a<=>true

a==>b

==

’The CHR program in ’’E:\\examples\\example-1.pl’’ is NOT confluent!

’1’ non-joinable critical pair(s) found!’

5.2 Limitations

The source to source transformation that is used to simulate the behavior of ω!

cannot be used with programs that contain pathological rules. Programs that
have pathological rules need to be rewritten by splitting the rule in several rules
with appropriate guards, where constraints are added to the kept head instead
of removing and adding them. Since this also removes potential trivial non-
termination in ω!, the resulting program is not operationally equivalent to the
original program, but usually has the intended behavior.

The source to source transformation creates many rules for a single rule in
the original program. The worst case of the blowup of rules for a single rule
lies in O(2nn!) where n is the number of head constraints of the rule, while the
best case still lies in O(2n). There can be redundant rules or propagation rules
with true as body. The later kind of rule causes the confluence checker to write
compiler warnings to the console during the joinability tests. These problems
could be fixed by a real implementation of ω!. If such an implementation is
made, the source to source transformation can be removed from the confluence
checker and it can be modified to use the real implementation for the confluence
tests without changing the overall operation of the confluence checker.

The confluence checker only supports a limited number of built-ins. While
more built-ins can be added by constraint solvers those can still be limited, espe-
cially when trying to add something like mathematical operations e.g. addition.

Since the joinability test only checks final states for equivalence some join-
able critical pairs may be presented as non-joinable. If this happens the non-
joinability that leads to different final states is implied by another critical pair
that is not joinable.

15

6 Related Work

In [1] the idea of persistent constraints is introduced, ω! is defined and its ter-
mination behavior is analyzed. The equivalence definition in this work misses
the idea that linear constraints can be implied by persistent constraints in the
context of state equivalence. The implementation of ω! as source to source trans-
formation is presented in [2]. It has an insufficient definition for pathological
rules and had to be adjusted for the new equivalence definition. In [7] a decid-
able criterion for equivalence in ω! is introduced. This is for the original state
equivalence definition and had to be adjusted for the new definition. Addition-
ally [7] presents a lemma for monotonicity in ω! which is incorrect. Our work
introduced a weaker property to replace the incorrect monotonicity lemma. So
far there were no analysis of confluence behavior and confluence tests for ω!.

In [6] the confluence checker for the abstract semantics is presented. The test
for confluence that it uses is described by [3]. This is used as foundation for the
confluence checker for ω! and extended by built-ins that are not supported in
the original implementation.

7 Conclusion and Future Work

A confluence test for the operational semantics ω! for CHR with persistent con-
straints has been presented (c.f. theorem 2). For this purpose, the state equiv-
alence definition of ω! states has been adapted such that it better reflects the
intuitive meaning of persistent constraints. Other definitions and results for the
original definition have been shown to be compatible with the improved state
equivalence definition (c.f. section 3).

The standard confluence test of CHR has been adapted to match ω!. As it
heavily relies on monotonicity which is broken by ω!, a weaker property has been
established to allow for the confluence test (c.f. lemma 3). The number of critical
pairs increases exponentially compared to ωva (c.f. definition 12).

The confluence test has been implemented based on the confluence checker
for the abstract semantics of CHR [6] (c.f. section 5). Due to the close relation of
the proposed confluence criterion to the criterion for ωva, the confluence checker
for ω! has less limitations than the confluence checker for the abstract semantics
on which it is based. The confluence checker integrates support for built-in con-
straints other than true, false and syntactic equality =. The general interface of
this extension allows for integration of even more built-in constraints.

For the future it can be investigated if confluence in ω! also implies the linear
logical reading of programs and easy parallelization. Since most existing CHR
programs are written with the abstract semantics with token store in mind, many
programs have to be modified to work properly in ω!. Hence, it would be inter-
esting to investigate programs that have been originally been written for ω! and
their behavior regarding parallelization. Furthermore, a direct implementation
of ω! that replaces the source to source transformation in the confluence checker
would be useful as it would improve efficiency of the execution of the programs

16

and the confluence checker. The results presented in this paper are independent
of the actual implementation of ω! and could therefore be used without deviation
together with such a direct implementation.

Further it would be interesting to investigate so-called completion methods
for ω!. Those are methods that add rules to a non confluent program in order
to make it confluent, like it is investigated in [4] for CHR without persistent
constraints.

To improve the efficiency of the confluence test for ω! it should be investigated
if the number of critical pairs can be reduced.

Acknowledgments

We want to thank the reviewers for their detailed feedback which was a great
help for improving this work.

References

1. Betz, Hariolf ; Raiser, Frank ; Frühwirth, Thom: Persistent constraints in con-
straint handling rules. In: WLP 9 (2010), S. 155–166

2. Betz, Hariolf ; Raiser, Frank ; Frühwirth, Thom: A complete and terminating
execution model for constraint handling rules. In: Theory and Practice of Logic
Programming 10 (2010), Nr. 4-6, S. 597–610

3. Frühwirth, Thom: Constraint handling rules. Cambridge University Press, 2009
4. Abdennadher, Slim ; Frühwirth, Thom: On completion of constraint handling

rules. In: Principles and Practice of Constraint ProgrammingCP98 (1998), S. 25–39
5. De Koninck, Leslie ; Schrijvers, Tom ; Demoen, Bart: User-definable rule pri-

orities for CHR. In: Proceedings of the 9th ACM SIGPLAN international conference
on Principles and practice of declarative programming ACM, 2007, S. 25–36

6. Langbein, Johannes ; Raiser, Frank ; Frühwirth, Thom: A state equivalence
and confluence checker for CHR. In: Proceedings of the 7th International Workshop
on Constraint Handling Rules. Report CW Bd. 588, 2010, S. 1–8

7. Raiser, Frank: Graph transformation systems in Constraint Handling Rules: im-
proved methods for program analysis, Universität Ulm, Diss., 2010 http://dx.doi.

org/10.18725/OPARU-1742

8. Raiser, Frank ; Betz, Hariolf ; Frühwirth, Thom: Equivalence of CHR states
revisited. In: 6th International Workshop on Constraint Handling Rules (CHR),
2009, S. 34–48

9. Richter, Frank: An Operational Equivalence Checker for CHR. Bachelor Thesis,
Ulm University, 2014

10. Richter, Frank: Confluence for Constraint Handling Rules with Persistent Con-
straints. Master Thesis, Ulm University, 2017 https://www.informatik.uni-ulm.

de/pm/fileadmin/pm/home/fruehwirth/Bachelor-Thesis-Frank-Richter.pdfl, .
– Accessed: 2017-07-25

