ulm university un|ver5|tat ‘

[

An ExtenS|bIe Platform
for the Analysis of Graph

Transformation Systems using
Constraint Handling Rules

Mathias Wasserthal

Universitdt Ulm

Fakultét fiir Ingenieurwissenschaften

und Informatik

Institut fiir Programmiermethodik und
Compilerbau

Februar 2009

Diplomarbeit im

Studiengang Informatik

Gutachter:
Prof. Dr. Frithwirth
Prof. Dr. von Henke

Betreuer:
Frank Raiser

Fassung 10. Februar 2009
(© 2009 Mathias Wasserthal
Satz: PDF-ISIEX 2¢

Contents

1

Introduction 1
1.1 Stateoftheart. 1
1.2 Motivation e 2
1.3 Examples 3
1.3.1 Findingcircularlists 3

1.3.2 Dining philosophers 3

1.4 Organizationof thethesis 4
Preliminaries 5
2.1 Constraint Handling Rules (CHR) 5
2.1.1 Syntax 5

2.1.2 Operational semantics 6

2.1.3 Example 7

2.2 Graph Transformation Systems (GTS) 9
2.2.1 Definitions: Graphs oo 10
2.2.2 Definitions: Graph transformation system 10

2.2.3 Double pushout as a gluing construction 12

224 Example e e 14

225 Notation 15

2.3 CHRencodingof GTS 17
23.1 Encoding 17

232 Examples e e 18

24 Eclipse. o 20
24.1 Theplatform 20

2.4.2 Plug-ins and extension points 21
Conception 23
3.1 Available GTStools 23
311 AGG ... 23

312 Groovet e 24

3.1.3 Conclusion 25

32 Goals 26
3.3 Requirements analysis 27
34 Findingtherighttools. 29
34.1 Modelcreation 29
34.1.1 JGraphT 29

3412 JGraph 30

3413 EMF 30

34.2 Graphicaleditors L 30
34.2.1 Graphical Editing Framework (GEF) 30

3.4.2.2 Graphical Modeling Framework (GMF) 31

3423 JGraph 31

3424 yFile 31

343 Textualeditors 32
3431 JCHRIDE 32

3432 XTexXt . . .o v 32

1ii

Contents

3.4.3.3 Textual Editing Framework (TEF) 32

344 CHRenvironments, 32
3.44.1 JavaConstraint Kit JaCK) 33

3442 KU.LeuvenJCHR 33

345 Codegeneration 33
345.1 XSLT . ..o 33

3.4.5.2 Java Emitter Templates JET) 34

3.4.6 Graph layout and visualization 34
34.6.1 JGraph,yFiles, 34

34.6.2 Zest ... e 34

3.4.7 Suitability of thetools 34

4 Realization 37
41 GTSmodel 37
4.1.1 Design 37
4.1.1.1 Model 37

4.1.1.2 Editingcommands, 38

4.1.2 Implementation 42
4.1.2.1 Modelo 42

4.1.22 Editingcommands oL, 43

4.2 Theplatform 45
421 Design 45
4.2.1.1 Graphical userinterface 45

42.12 Extendability., 46

422 Implementation 49
42.2.1 Multi-bareditor Lo 49

4.22.2 Saving/Loading GTSmodels 50

4223 Wizards 50

4224 Extensionpoint 50

4225 Actionbar o 51

4.3 The graphicaleditor 52
431 Design e e e e e 52

432 Implementation 54
4.3.2.1 Model View Controller MVC) 54

4322 Editpolicies o 57

4323 Editor 58

4.3.2.4 Tools and actions in the editors 60

4.3.3 Sample computation 61

44 Thetextualeditor 64
441 Design e 64
44.1.1 Notation 66

4.4.1.2 Encoding/decoding algorithms 67

4413 Editor 71

442 Implementation 73
4421 Grammarandmodel 0L 73

4422 Encoding/decoding algorithms 74

4423 Editor 75

443 Samplecomputation 76

4.5 How to create a tool: The termination analysistool 78
451 Design 78
4.5.1.1 Ranking functions 78

4.5.1.2 Graphical userinterface 79

45.2 Implementation 80

4.6 The CHR based analysistool 82

v

5

Contents

4.6.1.1 CHR analysis tools extension point

4.6.1.2 Graphical userinterface

4.6.1.3 Code generation

4.6.1.4 Compilertool,

4.6.2 Implementation
4.6.2.1 Extensionpoint

4.622 Tool

4.6.23 Codegeneration

4.6.2.4 How to create a CHR tool: Compilertool

4.7 The graphical analysistool
471 Design e
4.7.1.1 Interactive CHR environment

4.7.12 Code generation

4.7.1.3 Graphical userinterface

4.7.1.4 Synchronization of display and handler

472 Implementation
4.7.2.1 Generation of the JCHR handler and its interface

4.7.2.2 Loading of the generated files

4723 Using the generated handler

473 Sample computation
4.8 Further analysistools o
4.8.1 Random host generationtool
4.8.2 Confluence analysis

Conclusion
5.1 Summaryofresults
52 Futurework

Bibliography

A

Installation guide and CD content
A.l CDecontent e e
A2 InstallationGuide

Introduction to category Theory

B.l Categories
B.2 Morphisms
B.3 Pushouts e

Source Code

C.1 Examplecommands
C.2 GTS analysis tool extension point
C.3 CHR analysis tool extension point
C.4 JET Template for JCHR code generation
C.5 CHR editor validity and update algorithm
C.6 FullTEF grammar,

111

115
115
115

117
117
118
118

Contents

vi

List of Figures

1.1
1.2

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13

3.1
32
33

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

Shortening acircular list oL 3
The dining philosophers problem 4
Transitions for the refined semantics 8
Example for gcdsolver 9
Type and typed graphexample 10
Typed graph transformation L. 11
Typed graph transformation 11
Double pushout 14
Type graph for dining philosophers 14
Typed graph for dining philosophers 15
Rules for dining philosophers oL 16
Two graphnotation L 16
One graph notation 16
Screen-shot of the eclipse workbench 21
Components of the eclipse platform 22
Screen-shotof AGG 24
Screen-shot of Groove L oo 24
Schematics of the MVCpattern. 31
UML class diagram for graphs 38
UML class diagram for GTS 39
Problematic model states 39
Problematic model states L. 40
Problematic model states 40
The multi-bareditor 46
Action bar of the multi-bareditor 46
Wizards e 47
Flow of information 48
Multi-bar and multi-page editor L 49
Graphical type graph editor 53
Graphical host grapheditor, 53
Graphical host grapheditor 0. 54
Graphical rule grapheditor o L. 55
Add and remove graph actions 55
Graphicaleditor L 55
MVC update mechanism 56
Flow of informationo 59
Sample computation (graphical editor) 61
Sample computation (graphical editor) 62
Sample computation (graphical editor) 62
Sample computation (graphical editor) 63
Sample computation (graphical editor) 63
Sample computation (graphical editor) 64
Sample computation (graphical editor) 65

vii

List of Figures

viii

4.26
4.27
4.28
4.29
4.30
431
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
442
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52

Sample computation (graphical editor) 65
Host graphencoding, 66
Rule graphencoding 67
Host graph encoding verification algorithm 68
Rule graph verification algorithm 69
CHRmodel 72
Annotation mechanism 72
CHReditoractions, 73
Sample computation (textual editor) 0oL L. 77
Sample computation (textual editor) 77
Sample computation (textual editor) L. 78
Termination analysis for dining philosophers 79
Termination analysis for circular listsexample 80
Communication of tools and platform 83
CHR based tool’sGUI 84
CHRcompiletool 89
Use case diagram for the graphical simulationtool 97
Select and order rule graphs Lo 97
Simulationof GTS oo oo 97
Interaction of the JCHR handler and the IGTSFacade 102
Finding matches and applying rules with the JCHR handler 103
Dialog to adjust code generation 104
Host graph in graphical simulationtool 104
Rule application in graphical simulationtool 105
Highlighted match morphism 106
Modifiedhostgraph 107
Random host generation GUT 107

List of Tables

4.1
4.2
4.3
44
4.5
4.6

Allowed combinations forrules 41
Table of editingcommands 44
Important methods of AbstractGraphicalEditpart. 56
Available EditPartclasses.o 57
IGTSFacademethods 99
AbstractGTSFacade abstractmethods 99

iX

List of Tables

Listings

2.1
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
C.1
C2
C3
C4
C.5
C.6
C.7
C.8

plugin.xmlexample L L 22
NodeDeleteCommand Snippet o v v v v v v v v v v ot 44
ChangeRuleGraphCommand snippet 45
Loadextensions 51
Start analysistool 52
getCreateCommand () snippet v oo v v v e 58
DeleteGraphActionsnippet 59
Conditional implementation snippet 60
CHR grammar 74
plugin.xml snippet o oo e e 80
Termination analysis tool snippet 81
runAnalysis () snppet 81
JCHR Fibonacciexample 84
JET template snippeto 86
Start a JET transformation 87
plugin.xml snippetfor CHRtools 88
startAnalysis () snppeto e e 89
JET template for activateRule () method 99
Generated activateRule () method 100
Generated code for new host graphs 100
Add a plug-in as dependency of aproject 101
The NodeDeleteCommand class 121
Definition for the entries in the plugin.xml 122
Source code of the interface L. 122
Definition for the entries in the plugin.xml 124
Source code of the interface oL 124
JET template for JCHR 124
Rule validity and update algorithm 127
TEF grammar for CHR 135

X1

Listings

Xii

List of abbreviations

AGG Attributed Graph Grammar, system for creation and analyzing GTS
CHR Constraint Handling Rules, a rule-based declarative language

CCHR CHR implementation in C

CD Compact Disc

DPO Double Pushout, construction in category theory

EMF Eclipse Modeling Framework, create source code from model definitions

GEF Graphical Editing Framework, framework for the creation of graphical editors for
eclipse

GMF Graphical Modeling Framework, framework for the model-driven development of
graphical editors for eclipse.

Groove Graphs for Object Oriented Verification, system for the creation and analyzing
GTS

GTS Graph Transformation Systems, rule-based formalism for the modification of graphs
GUI Graphical User Interface

IDE Integrated Development Environment

JaCK Java Constraint Kit, CHR environment for java

JAR Java Archive file, file containing executable java programs

JASE Java Abstract Search Engine, search mechanisms for java
JavaDoc Documentation generated from annotated java source code
JCHR The K.U. Leuven JCHR system, a CHR environment for java
JCHRIDE Eclipse text editor for JCHR

JET Java Emitter Templates, a code generator for java

JGraph Framework for creating graphical editors for graphs in java
JGraphT Library for representing graphs in java

MVC Model View Controller, a paradigm for the realization of GUIs
0AW openArchitectureWare, a framework for model-driven development
PO Pushout, construction in category theory

PDE Plug-in Development Environment for eclipse

PDF Portable Document Format

RCP Rich Client Platform, client software based on eclipse

xiii

Listings

Swing Framework for GUI used in java applications
SWT Standard Widget Toolkit, framework for GUIs used by eclipse
TEF Textual Editing Framework, framework for text to model transformations in eclipse

TMF Textual Modeling Framework, framework for model-driven development of text to
model transformations in eclipse

Ul User interface
UML Unified Modeling Language
XPath Query language for XML files

XSLT Extensible style-sheet language transformations, language for text to text transfor-
mations

XText Textual editor and parser for the TMF

yFile Framework for creating editors for graphs in java

X1V

1 Introduction

Graphs are one of the fundamental structures in computer science and can be used to model
a large variety of aspects. They represent an easy way of displaying certain structures (e.g.
road maps), concepts (e.g. flowcharts), and relations (e.g. UML class diagrams).

Graph Transformation Systems (GTS) ([18]) provide the means to manipulate graphs in a
rule based manner. GTS use rules which describe a graph before and after the application
of the rule. These rules can be applied to host graphs in order to modify them. GTS have
applications not only in theoretical computer science, but also in the fields of visual mod-
eling techniques, model transformations, and concurrent distributed systems. Therefore,
GTS are often embedded in other projects, but there are only few general purpose develop-
ment environments that enable you to create and analyze GTS. Graphs for Object Oriented
Verification (Groove) ([33]) and Attributed Graph Grammar (AGG) ([18]), to name two of
these environments, both have graphical editors for GTS. Furthermore, the tools provide
analysis methods for GTS, e.g. analysis of critical pairs ([18]).

Another rule based formalism are Constraint Handling Rules (CHR) ([20]). A CHR pro-
gram is described by rules which modify a constraint store by adding and removing con-
straints from it. CHR has a large variety of applications including scheduling, agents, spa-
tial or temporal reasoning, and verification. Additionally, CHR programs can be analyzed
in various ways, e.g. termination analysis or operational equivalence analysis.

Implementations of CHR exist for various programming languages. Besides that, CHR can
be used to describe, execute, and analyze GTS, as well ([32]). To do that, rules of a GTS
are expressed as rules in CHR and graphs can be expressed as lists of constraints.

In the remainder of this chapter, I present the state of the art in GTS tools, CHR implemen-
tations, and integrated development environments in section 1.1. Based on this, I motivate
my thesis in section 1.2. In section 1.3, I present two examples that are used throughout
the thesis.

1.1 State of the art

The tools mentioned above for the creation and analysis of GTS (Groove, AGG) offer an
impressive list of features. AGG provides a graphical editor to define graphs and rules.
Further editing features are the introduction of graph constraints and negative application
conditions which restrict the applicability of rules. It provides methods to test the rules for
confluence, i.e. it is checked whether the resulting graphs are isomorphic when rules are
applied in an arbitrary order. Groove also has a graphical editor to create and edit graphs.
This editor is, however, based on entering keywords to describe properties of nodes and
edges of a graph, but no graphical user interface elements like context menus are provided.
Groove also has interesting analysis features. It can, for example, display the explored
state space when running the GTS. Each intermediate graph, called the state of a graph, to
which the original graph can be transformed is shown as a node. The rules that are needed
to reach one state from another are displayed as edges in this graph. However, not the
full state space is displayed but nodes representing isomorphic graphs are merged into one
node. Both tools offer the possibility to apply rules to a given host graph, so that the GTS

1 Introduction

can be tested on chosen inputs. An Application Programming Interface (API) to extend the
functionality of the systems is not available in both tools.

Implementations of CHR exist in many languages, for example Prolog, java, and C ([39]).
The earliest implementations of CHR are based on logic programming languages ([24]).
The most widely used system is K.U. Leuven CHR which is implemented on top of cer-
tain Prolog based languages, e.g. SWI-Prolog ([38]) and Sicstus-Prolog ([36]). There are
also implementations available for the functional language Haskell, e.g. HaskellCHR! and
TaiChi ([5]). Concurrent CHR ([28]) is a CHR implementation that can be run concur-
rently and is implemented in Haskell. Implementations for java are the Java Constraint
Kit (JaCK) ([2]) and the K.U. Leuven JCHR System (JCHR) ([40]). CCHR ([45]) is an
implementation of CHR for the programming language C.

Eclipse® is an open-source platform for creating Integrated Development Environments
(IDE). Eclipse is written in java and has many technologies available that make the de-
velopment of IDEs comfortable. For example, it already provides frameworks that allow
the creation of custom graphical and textual editors. Eclipse is based around plug-ins, so
that developers can extend the functionality of eclipse based on already available plug-in
definitions or create new plug-in definitions that can be used by other developers. IDEs can
also be distributed as Rich Client Platforms (RCP), so that only the functionality of the IDE
is provided without having to install a whole eclipse system.

1.2 Motivation

As mentioned above, AGG and Groove are not extensible with further analysis or editing
methods. They do not provide all the features that may be needed for the design of a GTS.
AGG, for example, offers a confluence analysis for the rules while Groove can explore
the whole space of graphs that can be created with the rules. Both features are great for
designing GTS, but they are not available in one single tool and none of the tools has a
documented API for extending it with the desired functionality. Furthermore, Frank Raiser
discovered that GTS can easily be encoded in CHR ([32]), so that GTS can be simulated
with CHR. Because of that, analysis methods for CHR can also be applied to a GTS. The
CHR notation of rules and graphs yields a simple textual representation of a GTS that can
be used for editing, as well. Additionally, eclipse already provides frameworks to create
graphical and textual editors and allows the creation of custom plug-in definitions that can
be used by other developers to extend the functionality.

For these reasons, I have decided to develop a new platform that is based on eclipse and
provides the possibility to create, edit, and analyze GTS in combination with CHR. This
platform must have a graphical editor similar to those in AGG and Groove, but the Graph-
ical User Interface (GUI) should offer a better usability. As GTS can be encoded in CHR,
the graphs and rules of the GTS should also be displayed in this encoding. As the encoding
provides a textual representation of a GTS, support for editing the GTS via the CHR en-
coding must also be provided. Additionally, this new platform should be easily extensible
to support further analysis methods. Therefore, a common API must be available for the
platform to add tools for analysis and editing purposes. To demonstrate the capabilities of
the platform, selected analysis tools should be provided. The most important ones are a
tool to simulate a GTS based on CHR and a tool that allows the easy embedding of CHR
analysis methods.

by Gregory J. Duck, 2004. Download: http://www.cs.mu.oz.au/~gjd/haskellchr/
2 Available at http: //www.eclipse.org/

http://www.cs.mu.oz.au/~gjd/haskellchr/
http://www.eclipse.org/

1.3 Examples

c) d)

Figure 1.1: A circular list consisting of four nodes (a)), after removing one node (b)), with
only two nodes (c)), and only one node (d)).

1.3 Examples

I have chosen two examples to show the features of the developed platform. First, an
example for detecting circular lists from a graph is presented. The second example is the
dining philosophers problem.

1.3.1 Finding circular lists

This is an example which finds circular lists in directed graphs. Figure 1.1 a) shows a graph
consisting of four nodes that are connected in a circle. The algorithm to find circular lists
tries to shorten linked lists of three nodes in a row. Therefore, from each linked list with
three nodes in the graph, the middle node is removed and replaced by an edge connecting
the two remaining nodes (figure 1.1 b)). This is repeated until only two nodes are left
(figure 1.1 c)) that are connected to each other. These two nodes are then replaced by one
node with a loop (figure 1.1 d)).

The result of this algorithm is a new graph. If the graph only contains one node with a
single loop, then the original graph was a cyclic list. Else, the graph was no cyclic list. This
is a useful example for demonstrating the encoding of GTS to CHR (section 2.3.2) and is
used as an example throughout the thesis.

1.3.2 Dining philosophers

The dining philosophers problem is an illustrative example for multi-process synchroniza-
tion problems which is a common computing problem in concurrency ([8]). The problem
is that n philosophers are sitting next to each other on a round table. Every philosopher has
a plate with spaghetti in front of him. There is also one fork between every two of them
resulting in n forks on the table. Each philosopher can either think, wait until he can take

1 Introduction

Figure 1.2: Tllustration of the dining philosophers problem with five philosophers (from
http://en.wikipedia.org/wiki/File:Dining_philosophers.png).

the two forks lying next to him, or eat his spaghetti (if he has the two forks). Figure 1.2
illustrates this. This problem is an example of multiple processes (the philosophers) which
need multiple shared resources (the forks).

A problem that can arise is, that each philosopher takes the fork to his left and waits for the
fork of the philosopher to his right, so that he can start to eat. But none of them will ever get
two forks because all are waiting. This is called a deadlock state. Another problem is, that
some of the philosophers may never get the chance to eat. This is the so called starvation
problem. These are problems that can occur between multiple processes (the philosophers)
which are concurrently accessing shared resources (the forks). The porting of this problem
to GTS is shown in section 2.2 and its encoding to CHR in section 2.3.

1.4 Organization of the thesis

The main part of this thesis is grouped into four parts:

e Chapter 2 describes the theoretical background of GTS, CHR, and eclipse

e Chapter 3 describes the goals and requirements which are a result of the conception
phase. Based on this, tools are analyzed which can realize the requirements.

e Chapter 4 describes the design and implementation of the project in order to fulfill
the goals and requirements. Theoretical aspects needed for the realization are also
explained here.

e Chapter 5 summarizes the results of the thesis and provides ideas on the further
development of the project. Furthermore, possible application areas are shown.

http://en.wikipedia.org/wiki/File:Dining_philosophers.png

2 Preliminaries

In this chapter, I give a short introduction to Constraint Handling Rules (CHR), Graph
Transformation Systems (GTS), and eclipse. As mentioned in section 1.2, CHR can be used
to simulate GTS. Therefore, I first give a small introduction to CHR. Afterward, I give an
introduction to GTS. GTS are described here with an algebraic approach which is based on
category theory. The mathematical background for category theory is covered in appendix
B. Other approaches to GTS can be found in [41] and [19]. After the introductions to GTS
and CHR, I show how to encode GTS to CHR. As the last topic, I present the architecture
of the eclipse platform, because it will be used as framework for this project.

2.1 Constraint Handling Rules (CHR)

Constraint Handling Rules (CHR) are a constraint-based language developed by T. Friih-
wirth in 1998. The syntax and operational semantics of CHR are described in this section.
This introduction is based on [20] which gives a more comprehensive overview of the topic
of CHR.

CHR are a rule based language. A CHR program consists of the declaration of constraints
(first-order logic predicates) and a set of rules. Constraints are separated into built-in and
user-defined constraints. Built-in constraints are handled by a constraint solver and user-
defined constraints are solved by the CHR program itself.

2.1.1 Syntax

Constraints are defined by giving them a unique combination of a name and an arity. A
constraint c of arity n is defined as ¢/n (in Prolog-based systems). An n-ary constraint c is
denoted by

C(t1, v ,fn)

where t1, ..., t, are terms. These terms can either be ground, i.e. they represent a constant
value, be a variable, or be an expression of further terms. Identifiers used in ground terms
are lower case identifiers and variable names are given by a name which starts with a capital
letter.

The input is a sequence of user-defined and built-in constraints which is called the goal
G =[Gy,...,G,]
where G4, ..., G, are user-defined or built-in constraints. Rules are of the form:
Rulename @ Hy,...,H,\Hy,...,H; < D1,...,Dj|By,..., By

where Rulename is an optional unique name for the rule. Hy., := [Hj,..., H}], the
kept constraints, and H,e,, := [Hy, ..., H;], the removed constraints form the head (de-
noted by H := Hyep + Hyem) of the rule. D := {D1,...,D;} is called the guard and
B :=[By,..., Byg] is the body of the rule. The body consists of user-defined and built-in

2 Preliminaries

constraints, whereas the head consists only of user-defined and the guard only of built-in
constraints. Rules of these form are called simpagation rules.

If Hyep = [] then the rule is written as
Rulename Q Hy,...,H; < D1,...,D;|By,..., By
and called a simplification rule. If H,..,, = || then the rule is written as
Rulename @ HY, ... ,H,, = Dy,...,D;|By,...,By

and called a propagation rule. Hy,, and H,.,, must not both be empty.

2.1.2 Operational semantics

There exist several definitions of the operational semantics of CHR depending on how
detailed the operations of a CHR program should be modeled. All operational semantics
are based on a state transition system. The states are a combination of user-defined and
built-in constraints. The transitions define how rules are applied to modify these states.
Furthermore, a Constraint Theory C'T is provided for the state transition system which
can solve the built-in constraints. The starting state is defined by the goal which is a
list of constraints. From a given starting state, the rules of the CHR program are applied
continuously to the current state (using the defined transitions) until a contradiction of the
built-in constraints occurs or no rules can be applied anymore. Rule application means to
find constraints in the current state that match the constraints in a head H of a rule, so
that the guard D of the rule is implied by the built-in constraints of the state under the
meaning of the constraint theory C'T'. Informally, the constraint of a head is a pattern for
which a constraint of the input is searched. A constraint from a rule’s head can be matched
to a constraint in the current state if their name and arity are equal and if there exists a
substitution of the form [T'/c] or [T'/T"] for variables T, T" and constant ¢, for the terms of
the two constraints. For a more detailed explanation of a match, see [20].

A very detailed operational semantics, called the refined semantics, is used here. It is
adopted from [20]. The CHR program itself is modeled as a sequence of rules and the head
and body of rules are sequences of constraints. The guard of a rule is a conjunction of
built-in constraints. Constraints in the heads of the rules are associated with numbers (their
occurrence). The head constraints are numbered starting from 1 in a top-down order (from
the first to the last rule) and from left to right. However, constraints in H,.,, are numbered
before constraints in Hy,,.

A state is a tuple (A4, S, B, T)? where A, S, B, T, n, and v have the following meaning:
A is the goal stack, a sequence of built-in and user-defined (unnumbered-, numbered-, and
active) constraints. S is the CHR store, a set of numbered constraints. B is the built-in
store, a conjunction of built-in constraints. 7' is the propagation history, a set of tuples
(r, I), where r is the name of a rule and [is the sequence of the identifiers of the numbered
constraints that matched the head constraints of 7. n is is the next number that can be used
as an identifier for an unprocessed goal constraint. v is the sequence of the variables of the
initial goal constraints. Usually v is omitted, because it does not change between states.
An initial state is (G, 0, true, 0)%, where G are the unnumbered constraints of the goal and
v is the sequence of the variables of G.

The constraints in a state can be labeled in three different ways:
unnumbered constraint Constraints that are still unprocessed by the CHR program.

They are denoted by their name and attributes. These constraints appear only in the
goal stack.

2.1 Constraint Handling Rules (CHR)

numbered constraint User-defined constraints that have been processed and given an
identifier to distinguish between several occurrences of the syntactically same con-
straint. These are denoted as c#i, where i is the unique identifier of the constraint.

active constraint User-defined constraints that should only match with occurrence j of
of constraint c in a given CHR program P. They are denoted as c#¢ : j, where ¢ is
again the unique identifier of the constraint.

The function chr(c#i : j) = chr(c#i) = cis defined to return the corresponding con-
straint to an active or numbered constraint. Accordingly, the function id(c#i) = i returns
the id of a numbered constraint.

A state is failed if B contains contradictions (i.e. CT = JB). A state with consistent
built-in constraints and empty goal stack (A = []) is called successful. A state is final if
it is failed or if it is successful and no transitions can be applied anymore. Given a final
state, its answer is chr(S) and B (a failed state has always false as answer, because B is
inconsistent).

Figure 2.1 shows the transitions that are used by the refined semantics (for sequences,
the Prolog list notation is used). In the refined semantics the constraints from the goal
stack are executed from left to right. If the top-most constraint of the goal stack is a user-
defined constraint (that may already be numbered), it is made an active constraint (transition
(re)activate). Furthermore, if the constraint was not already numbered before it was acti-
vated, it is added to the CHR store as a numbered constraint with the new number n from
the current state as its identifier. If the topmost constraint of the goal stack is a numbered
constraint c#4 : j (the occurrence j of constraint c is in rule r), if matching constraints H’
for the rule r can be found in the CHR store, if the guard is implied by the built-in store
under the resulting match H’, and if the propagation history permits it, the rule is applied
and the constraints of its body and the constraints matched to Hy,, are added from left to
right to the goal stack. The applied rule together with the identifiers of the matched con-
straints is then added to the propagation history (transition apply). The propagation history
is used by the transition rule to reject the re-execution of propagation rules by comparing
the constraints’ identifiers of the match H' to the sequences of identifiers in the tuples of
the propagation history.

If no match for the rule’s head can be found with the current occurrence, the next occurrence
is tested (transition default). However, if the active constraint could not be matched to any
rule, then it is removed from the goal stack, but still remains in the CHR store (transition
drop). If the top-most constraint in the goal stack is a built-in constraint, then it is added
to the built-in store and constraints in the CHR store might be reconsidered (woken) if
the newly added built-in from the goal stack further constrains variables of the user-defined
constraint. It is then put back on top of the goal stack (transition solve+wake). The function
wakeUp(S,c,B) defines the constraints that need to be reconsidered if a built-in ¢ is added
to the built-in store B.

Described in an informal way, a CHR program tries to apply rules in a top-down manner
to a growing starting sequences of the goal stack. New constraints from the rule body are
added during rule application to the stack. Therefore, the goal stack may grow during rule
application just like function call stacks in imperative programming languages.

2.1.3 Example

In this section, I give an example for the syntax and operational semantics described above.
The example is a CHR program for the computation of the greatest common divisor that

2 Preliminaries

solve+wake
<[C|A]7 S7 B7 T>n — solve+wake <U)al€€Up(S, C, B) + A, S, Bl7 T>n
where c is a built-in constraint and CT = V((c A B) < B’).

activate
<[C|AL Sa Ba T>n —activate <[C#7L : 1‘14], c#n @] S, B, T>n+1
where c is a user-defined constraint.

reactivate
<[C#Z‘A]a 57 B> T>’n reactivate <[C#'L : 1|A}, S, B, T)n
where c is a user-defined constraint.

apply
([e#ti : j|A], Hiep U Hrem U S, B, T n —apply (C + H + A, Hiep U S, chr(Hrem) =
o A B, T U{(r,id(Huep) + id(Hrem))
where the %" occurrence of a user-defined constraint with the same symbol and arity as c is in the
head H, {CEP\Hﬁem of a rule with newly created variables of the form
Hl/cep\H;"em A D|B

where CT' = 3(B) AV(B — 3z(chr(Hyep) = Hyep A chr(Hrem) = Hiep, A D)) and

(r,id(Hyep) + id(Hrem)) € T. H = [c##i : j] if the occurrence for ¢ is in Hy,,, and H = [} if it is
in H.,.

drop
<[C#Z :]|AL Sa Ba T>7’L drop <Av 57 B7 T>’ﬂ
if there is no occurrence j for c.

default

<[C#’L : le], S, B,T>n —default <[C#’L 17+ 1|A}, S, B,T)n
if no other transition is possible in the current state.

Figure 2.1: Transitions for the refined semantics.

2.2 Graph Transformation Systems (GTS)

([ged(6), ged(9)], 0)1
M activate <[ng(6)#]— 1 QCd(g)]v{gC (6)#1}>2
Fdefault ([ged(6)#1 : 2, ged(9)], {ged(6)#1})2
—default <[ng(6)#1 3 ng(g)]a{QCd(6)#l}>2
= de fault (lged(6)#1 : 4, ged(9)], {ged(6)#1})2
> drop ([ged(9)], {ged(6)#1})2
—activate <[ng(9)#2 1} {ng(6)#]—aQCd(9)#2}>3
= de fault ([ged(9)#2 : 2], {gcd(6)#1, ged(9)#2}) 3
T apply ged2 (K is 9 — 6, gcd(K)], {ged(6)#1})3
— solvet+wake <[g ()]’{QCd(G)#1}>3
—activate <[g ()#3 : 1]7 {ng(G)#l,ng(S)#3}>4
Hdefault <[g ()#3 : 2}7 {ng(G)#lang(S)#3}>4
'_)default <[& ()#3 3] {ng(G)#lung(3)#3}>4
—apply ged2 <[is6—3 ng() ng(S#g : 3)]’{90d(3)#3}>4
 solvetwake <[g ()a.QCd()#3 . 3]a{96d(3)#3}>4
—activate <[g ()#4 : 1ang(3)#3 : 3]7 {gcd(3)#3’gcd(3)#4}>5
Hdefault <[g ()#4 2 QCd(3)#3 : 3]7{ng(3)#3ang(3)#4}>5
apply ged2 (K is 3 — 3, gcd(K), ged(3)#3 : 3], {ged(3)#3})s
= solvetwake <[g ()>ng()#3 3] {ng()#3}>5
—activate <[g ()#5 1 ng(#3 3] {ng(g)#37ng(0)#5}>6
P apply gedl (lged(3)#3 : 3], {ged(3)#3})6
P default (lged(3)#3 - 4], {ged(3)#3})6
—drop <H {ng()#3}>6

Figure 2.2: Example computation of the gcd solver according to the refined semantics.

follows the algorithm of Euclid. This is called the gcd example in the remainder of this
work. There’s only one user-defined constraint

constraint ged/1.
that has the arity one. There are two rules
gedl Q ged(0) < true.

gcd2 Q ged(I)\ged(J) < J > 1,1 > 0|K is J — I, gcd(K).

For these two rules in the given order, the constraint ged(0) has occurrence 1, ged(J) has 2,
and ged(T) has 3. Figure 2.2 gives a sample computation with the goal [ged(6), ged(9)]. In
this example, the built-in constraints and propagation history are not displayed for simpli-
fication reasons. The propagation history is not needed, because there are no propagation
rules. Furthermore, the variables constrained in the built-in store are directly replaced in
the goal and CHR store. As one can see, the original constraints from the store are added
one after the other to the CHR store. If there are enough numbered constraints in the CHR
store, so that a rule’s head can match, the matching rule that comes first in the list of rules
is applied and new constraints are added to the top of the goal stack.

2.2 Graph Transformation Systems (GTS)

The concept of Graph Transformation Systems (GTS) dates back to the late 1960s when
it became a generalization of rewriting techniques for trees. The basic idea of GTS is
the rule-based modification of graphs. This section describes the basic definitions to un-

2 Preliminaries

LICTER [| Typed graph

~
i ~

-

~
~
......

Figure 2.3: Type graph with a typed graph. The dotted arrows represent the graph mor-
phism from the typed to the type graph.

derstand GTS. The theoretical basis on which GTS are described here is category theory
which is described in appendix B. The definitions and notations are adopted from [18]. The
example illustrations represent a GTS which finds circular lists in graphs as described in
section 1.3.1.

2.2.1 Definitions: Graphs

A graph is a tuple G = (Vg, Eg, srcg, tgte) with the sets of nodes (V) and edges
(Eg) and two functions srcg,tgtc : Eg — Vi which specify the source and target
nodes of the edges in G. The degree of a node is further defined as degg : Vg — N,
v = |{e € Eg|srca(e) = v} + [{e € Egltgtc(e) = v}|. If the graph can be deducted
from the context, the subscripts are omitted. A graph morphism f = (fv, fg) : G1 —
G4 between two graphs GG and G is a tuple of two functions fy : Vg, — Vg, and
fe : Eq, — Eg, that preserve the source and target functions. That means fy o srcg, =
sreg, o frand fyotgta, = tgta, o fE. Atype graph T'G is a graph with uniquely labeled
nodes and edges. A typed graph is a tuple GT¢ = (G, TG, type(T;G) consisting of a graph
G, a type graph TG, and a graph morphism typeL® : G — TG. A typed graph morphism
fT¢: GTC — GF is defined as a graph morphism that fulfills typelS o f7¢ = typelS.
If the type graph can be deducted from the context, the superscript is omitted and a typed
graph is denoted as G = (Vg, Eg, srca, tgta, typea).

In figure 2.3 an example of a type graph and a typed graph can be seen. The type graph has
uniquely labeled nodes and edges while the typed graph has no labels. The dotted arrows
represent the graph morphism from the typed graph to the type graph. The type graph
consists only of a node with a loop. That means, that the nodes in an according typed graph
can be connected arbitrarily by edges.

2.2.2 Definitions: Graph transformation system

A graph transformation system gts = (P, T'G) is a tuple consisting of a set of typed graph
production rules P and a type graph T'G. A typed graph production rule (or just rule if
the context is clear) is a tuple of the form p = (L LKL R) where L, K, and R are
typed graphs (called the rule graphs) and] = K — L and r = K — R are injective
typed graph morphisms (the superscripts for the type graph are omitted, because it results
from the context). Given a typed graph production p = (L R R), a typed graph
G (called the host graph), and a typed graph morphism m : L — G (the match), the
application of p to G viam (G "L H) is called a typed graph transformation. Intuitively,

10

2.2 Graph Transformation Systems (GTS)

Rule twoloop:

Host graph

Figure 2.4: Typed graph transformation. The upper row shows the graphs L, K, and R of
the production rule twoloop. The lower row shows a host graph that is modified
by the rule.

Rule unhook:

Host graph

Figure 2.5: Typed graph transformation of the rule unhook from the circular list example.

when L is matched (via the match morphism m) to a sub-graph of G, then all vertices and
nodes in G\m(L\I(K)) are removed from G resulting in an intermediate graph D (called
the gluing graph). After that, new nodes and edges are added from R\r(XK), so that the
resulting graph H = D W (R\r(K)) is the disjoint union of the graph D and the added
nodes and edges in R. Figure 2.4 gives an example of a typed graph transformation. The
top row shows the rule, the bottom row its application to a host graph. The L graph of
the rule matches to a sub graph, consisting of two nodes connected to each other. One of
the two nodes is removed together with the edges and a loop is added to the remaining
node. Elements that are removed are displayed in red in the L graph and elements that are
added are green in the R graph. The dotted lines between the upper and lower left graph
is the match m. The rule and transformation example shown in figure 2.5 removes the
middle node of a list of three nodes connected in a row. A new edge is inserted between the
remaining two nodes. These two rules represent a GTS for finding circular lists in a graph
which is explained in section 1.3.1.

11

2 Preliminaries

2.2.3 Double pushout as a gluing construction

The informal description of a typed graph transformation given above corresponds to the
category theoretical principle of two pushouts, a so called double pushout (DPO). A short
introduction to category theory can be found in appendix B.

A category C = (Objc, Morg, o,id) is a tuple and its elements have the following mean-
ing: Objc is a class of objects. For each tuple A, B € Obj¢ there is a set Mora (A, B) of
morphisms. o is the concatenation of morphisms in Morc with
Morc(B,D) o Morc(A,B) — Morc(A,D) and idgy € Morc(A, A) is the identity
morphism for every A € Objc. A morphism f € Mor(A, B) can also be written as
f:A— B.

Informally written, a pushout is the gluing of two objects in a category along a common
object. Given f : A — Band g : A — C € Morc, then a pushout (PO) (D, f',g’) is
defined by a pushout object D and morphisms [’ : C' — D, ¢’ : B — D with fog=g¢'of
such that the following universal property is fulfilled: For all objects X € Objco with
morphisms 2 : B — X and k : C — X with ko g = h o f there is a unique morphism
2:D — Xsuchthatzog =handzo f' = k.
B
" b

\\

In category theory the category GraphsTG consists of typed graphs (over the type graph
T@) as its objects, typed graph morphisms as its morphism and the concatenation of mor-
phisms as concatenation operator.

Q

g

0 «— >

The detailed definition of a pushout for the category GraphsTG can be found in appendix
B. The pushout

Q
Q

in GraphsTG can be constructed by creating equivalence classes for the nodes and edges
in B and C where two nodes or edges b € B and ¢ € C are equivalent if b = f(a) and
¢ = g(a). The morphisms f’ and ¢’ can then be defined as f'(c) = [¢] Ve € C and
g'(b) = [b] Vb € B (where [c] and [d] denote the according equivalence classes). This
pushout construction fulfills the following properties:

1. If f is injective (or surjective), then f’ is injective (surjective)

2. The pair (f’, ¢’) is jointly surjective (for every element in D there exists a preimage
in C or B)

3. If f is injective and 2 € D has preimages b € B and ¢ € C with ¢'(b) = f/(¢) = =,
then there is a unique preimage a € A with f(a) = band g(a) = ¢

12

2.2 Graph Transformation Systems (GTS)

4. If f (and hence also f”) is injective, then D is isomorphic to D' = C' & B\ f(A).

These properties can easily be proved ([18]): The first property can be shown with the
properties of the equivalence relation. The second property is valid due to the construction
of D, which also implies property three. For the last property, one can show that D’ is
isomorphic by giving a bijection b : D’ — D. b(z) = [z] is such a bijection.

The possibility of constructing a pushout in the category GraphsTG can be used to check

if a typed graph production rule p = (L LR R) can be applied to a host graph G via
amatch m : L — G. The rule p is applicable to the typed graph G if there exists a valid
context graph D, so that K together with! : K — L and n : K — D forms a pushout as
described above. However, this definition provides no procedure to check whether a rule
can be applied to a host graph. To apply a rule to a host graph, the context graph D must be
a proper graph. An improper graph is a graph which contains edges, that are not connected
to a node. These edges are called dangling edges. The gluing condition defines a criterion
that must be fulfilled, so that a rule can be applied. Given the production rule p, the host
graph G, and a match morphism m : L — G, the following three sets are defined

1. The gluing points G P are those nodes and edges in L that are not deleted by p, i.e.
GP =[(K)

2. The identification points I P are those nodes and edges in L that are identified by m,
ie. IP={veV|qwe Vi, w#v:my(v)=my(w)}U
{e€ EL|3f € Er, f #e:mp(e) =mp(f)}

3. The dangling points D P are those nodes in L whose images under m are the source
or target of an edge in G that does not belong to m(L), i.e.
DP={ve Vi|F3ee€ Eg\mg(EL) : srcg(e) = my (v) ortgtg(e) = my(v)}

p and m satisfy the gluing condition if DP U IP C GP, i.e. arule can only be applied
if all dangling points and all identification points are also gluing points. However, Raiser
([32]) provides a simpler definition that covers only injective matches for nodes and edges,
i.e. my (v) # my (w)Vv,w € Vi, and mg(e) # mg(f)Ve, f € EL. The gluing condition
can then be posted in the simpler form DP C GP, because there are no identification
points. Furthermore, Raiser describes that non-injective matches can be simulated in the

following way: Given the rule p = (L LKL R) and a non-injective match m : L — G
for which m(v) = m(w),v # w,v,w € Vp, anew rule p’ can be introduced, in which the
nodes v and w are merged to a new node v,, in all three graphs of the rule. Therefore, the
non-injective match m(v) = m(w) is simulated by matching v,, to m(v,,) where m(v,,)
is the same node as m(v) (and m(w)) in G. Consequently, new rules can be introduced
for all combinations of possible non-injective matchings simplifying the gluing condition
to the form above.

Lemma 1. (existence of the context graph) For a typed graph production rule

p= (L LKL R), a typed graph G, and a match m : L — @, the context graph
D with the PO (1) exists if and only if the gluing condition is satisfied.

13

2 Preliminaries

Figure 2.6: Double pushout for a rule p = (L LKL R) and a host graph G.

think onTable

Figure 2.7: Type graph for the GTS representation of the dining philosophers problem.

The proof can be found in [18] on pages 45 to 46

The lemma stated above provides a way of constructing a direct graph transformation ([18]

pp. 46-47). Given a production rule p = (L LKL R), a typed graph G, and a match
m : L — @, the context graph D can be constructed as follows: D = (G\m(L)) U
m(I(K)) with the morphism k(K) = m(I(K)) and the morphism f is an inclusion. In
a second step, the final pushout graph H can be constructed from K, n : K — D, and
r : K — R in the category GraphsTG. Figure 2.6 shows the two pushouts (1) and (2) that
are used for a graph transformation.

Figure 2.4 shows an example for the construction of D and H. To construct D, the graph G
is taken and m(R\I(K)) is removed from it (the elements marked red). To the intermediate
graph D, the elements of R\r(K) are added (marked green in the figure) to get the final
graph H.

2.2.4 Example

Another example for a GTS can be created from the dining philosophers problem described
in section 1.3.2. The type graph shown in figure 2.7 describes the nodes and edges that are
needed. The meaning of the nodes is obvious, the edge between the philosopher and the
fork means that this fork lies next to the philosopher. If the loop on the fork is present, then
the fork is lying on the table, i.e. the loop is removed when a philosopher is eating with
this fork. The loops on a philosopher describe the states he can be in: thinking, eating, or
waiting. The loops on the type graph’s nodes are also intended to be loops in a typed graph
in order to describe the state of a node. Therefore, the type graph does not ensure that the
typed graphs are valid instances of the dining philosophers problem. For example, the loops
on the type graph’s nodes can also result in edges connecting two different philosopher
nodes in the typed graph. Figure 2.8 shows a correct instance of the dining philosophers
problem with five philosophers where one philosopher is eating and one is waiting. One
fork is between every two philosophers which is connected to each of them. No two eating

14

2.2 Graph Transformation Systems (GTS)

think think

- liesNextTo liesNextTo -
philosopher philosopher

onTable liesNextTo liesNextTo

onTable

liesNextTo liesNextTo

philosopher philosopher

liesNextTo

fork I
OnTableC liesNextTo liesNextTo

philosopher

wait

liesNextTo

Figure 2.8: Typed graph for the dining philosophers problem with five philosophers and
one philosopher eating.

philosophers are next to each other. The two onTable loops on the forks are missing where
the philosopher is eating and each philosopher has exactly one loop.

To describe the change between the different states of the philosophers (eating, thinking,
and waiting), three rules have to be introduced. The rules are designed in a way, so that no
deadlocks can occur, i.e. as soon as two forks are available, they are both taken simultane-
ously. There are three rules in this GTS that describe the state transition of the philosophers
from thinking to waiting, from waiting to eating, and from eating back to thinking. The
rules are shown in figure 2.9. The first rule thinkToWait removes the think loop from a
philosopher node and adds a wait loop. The second rule waitToEat removes the onTable
loops from the forks that are connected to the philosopher, as well as the wait loop from
the philosopher and adds a new eat loop to him which symbolizes the philosopher taking
up the forks and starting to eat. The last rule eatToThink adds the onTable loops to the two
forks connected to the philosopher, removes the eat loop, and adds the think loop to the
philosopher. This means he stops eating, puts back his forks, and starts thinking again.

2.2.5 Notation

There exist several notations for the rules of GTS. The notation with three graphs K, L,
and R, used in this section, is good for describing the DPO approach for rule applications.
Another approach is to use only two graphs L’ and R’ for a rule and define a partial mor-
phism k' : L' — R’ that connects the nodes and edges that are connected via the K graph
in the three graph notation. Figure 2.10 shows the unhook rule of the circular list GTS.
The middle graph K is replaced by a single morphism &’ : L' — R’. For both, the three
and two graph notation, the coloring of the nodes and edges in the graphs is only a visual
help to see the nodes and edges that are not an image or preimage of the morphisms [, r,
and k’. Another even more compact notation only uses one graph, but in this notation the
coloring is important. The graph K of the three graph notation is displayed in black while
the nodes and edges in the graphs L and R that are not part of the image of the morphisms
[and r are displayed in red and green, respectively. As the rule is presented in one graph,
no explicit morphisms are needed anymore. Figure 2.11 also shows the unhook rule, but
this time in the one graph notation. The one graph notation is used for the remainder of

15

2 Preliminaries

thinkToWait: think | | wait

philosopher

waitToEat: | |
onTable eI e mmmm—aen.
(| fork | I | fork |) | ‘l fork |
VPTER AT e A
. 1 sNextTo ~4 fesNextTo IiesNexﬂﬁ .
waiting | I eating
Cl philosopher 4----| ----- | philosopher f======== >| philosopher
yesNextTo _{liesNextTo liesNextT
A '-~)-(___________ - VV'N.T _______ _——%}
(@ 3 P [or] T [Ren]
onTable | """ I""'
eatToThink: *___---I ------ s |_ ______ R onTable
| fork | . | fork | : | forkl)
W R O S I S
) A sNextTo “fiesNextTo liesNext o
eating thinking
C philosopher |<---‘| ----- | philosopher ----l-----bl philosopher |)
iesNextTo JliesNextTo liesNextTg
AN IS Lol I,
Dttt 1 N 11 ©)
| .'"i'""' onTable

Figure 2.9: The rules thinkToWait, waitToEat and eatToThink of the GTS for the dining
philosophers problem.

L R’

- k v|:| _,.v|:|

I~ -
~ ~ - -
T = -

Rule unhook:

Figure 2.10: Two graph notation of the rule unhook of the circular list GTS.

K

Rule unhook: V/-D

Figure 2.11: One graph notation of the rule unhook of the circular list GTS.

16

2.3 CHR encoding of GTS

this thesis, because it provides a simple and compact way of representing GTS rules. To
distinguish the nodes and edges in this graph, the symbols L', R/, and K are used for red,
green, and black nodes and edges of the graph. In the three graph notation L' is L\I(K),
R’ is R\r(K) and K is the K graph.

2.3 CHR encoding of GTS

Section 2.3.1 describes how to encode a GTS to CHR in general. Section 2.3.2 shows the
encoding of the GTS for the examples introduced in section 1.3.

2.3.1 Encoding

The encoding of a GTS in CHR is adopted from [32]. To embed a GTS in CHR, an encod-
ing must be provided for the typed graph production rules and for typed graphs in general.
Production rules can be encoded as CHR rules and graphs in general as a sequence of con-
straints that represent the nodes and edges of the graph. As described in section 2.2, a GTS
consists of three types of graphs: A type graph, multiple rules, and multiple host graphs.
Let gts = (P, TG) be a GTS with the type graph TG = (Vrq, Erg, srera, tgtre) and a
set of rules P which contains rules of the form p = (LT¢ L KTG I, RTE) that are typed
over T'G and let host graphs be of the form G = (Vi, Eg, srcg, tgta, typec) which are
also typed over T'G. The elements of the type graph provide the constraint definitions of
the CHR program: for every node v € Vg a constraint definition v/2 is added, and for
every edge e € Ep¢ a constraint definition e¢/3 is added to the CHR program.

For the encoding of typed graphs, [typec(z)] is defined as the name of the type of the
node or edge x in a typed graph. The functions dvar,var : G — VARS,x — X, map
nodes and edges to variables (VARS is an infinitely large set of variable names), so that
X, is a unique variable name associated with the node or edge x of a typed graph. With
these mappings, the following encoding from nodes and edges of a typed graph to CHR
constraints is defined:

- [typeq (x)](var(z), dega(z)) o € Vg
chra(host,) = { [typec (x)](del, var(srcg(x)), var(tgta(x))) .,z € Eg

[typec(x)](var(zx), dvar(x)) , v € Vg

chr(keep, z) = { [typeq(z)](dvar(x),var(srcg(x)), var(tgta(z))) ,z € Eg

A constraint that encodes a node is called a node constraint, and a constraint that encodes
an edge is called an edge constraint. The encoding of a complete graph is the encoding of
all the nodes and edges which are added to a sequence:

chr(host, G) = [chrg(host, x1), ..., chrg(host, z,)]

and
chr(keep, G) = [chra(keep, x1), ..., chrg(keep, z,)]

where z1, . ..x, are the nodes and edges of GG. The first attribute of a node constraint is
the identifier attribute, the second argument is the degree (for the host encoding) or the
degree variable (for the keep encoding). The edge constraints have three attributes. The
first one is the deletion attribute that either contains a variable or a ground term. For host
encodings, it is always a ground term (the constant del is used here). For keep encodings it
is a variable. The second and third argument contains the identifiers of the node constraint
they are connected to. These attributes are called source and target attribute. Therefore,

17

2 Preliminaries

their values are called source and target identifiers. If a host graph G is encoded with
chr(host, G), the resulting sequence can be used as a list of goal constraints as input for a

CHR program. For each rule p = (L LKL R) of a GTS, a new CHR rule of the form
pQCL & Cg

with
Cr = {chr(host,x)|x € L\K} U {chr(keep,z)|z € K}
Cr= {chr(host,z)|x € R\K} U {chr(keep,e)le € Ex}U
{chr(keep,v’),var(v'") = var(v),
dvar(v') = dvar(v) — degr,(v) + degr(v)|v € Vi }

is defined. This means that elements that are removed and added during a rule application
are encoded as host elements and put into the head and body of the rule, respectively.
Edges that are kept (e € E) in the graph during the transformation are encoded as keep
elements and put in the head and body. Each node that is kept (v € Vi), is encoded as keep
constraint in the head and in the body. In the body, however, a new node v’ is introduced,
together with built-in constraints that set the identifier of the nodes v and v’ equal. A built-
in constraint, to set the degree variable v’ to the difference of the degrees of the graphs R
and L is also added.

The rule twoloop (figure 2.4) from the GTS for finding circular lists in a graph is encoded
as

twoloop @ node(Ny, Degp), node(Ny,2), edge(del, Ny, N1), edge(del, N1, Ny)
< node(N{), Deg(,), N; = Ny, Degly = Dego + 0 — 0, edge(del, Ng, Np).

This notation can be simplified to

twoloop @ node(Ny, Degp), node(Ny,2), edge(del, Ny, N1), edge(del, N1, Ny)
< node(Ny, Degog + 0 — 0), edge(del, No, No).

by replacing the variables introduced for v” with the variable and expression from the built-
in constraints. This notation is used in the remainder of this thesis.

This encoding ensures that rules can be applied to the goal constraints if and only if the
according graph production rule can be applied to the according host graph. More de-
tailed information about this encoding and proofs for its soundness and completeness can
be found in [32]. With these results, a GTS can be simulated by encoding it to a CHR pro-
gram. Rule applications in this CHR program correspond to rule applications in the GTS.
Therefore, if the input is a valid encoding of a graph, the constraint store also encodes a
valid graph after rule applications.

2.3.2 Examples

The GTS for modeling the dining philosophers problem is described in section 2.2. The
GTS consists of the three rules thinkToWait, waitToEat and eatToThink. The type graph
can be encoded to the constraint definitions

philosopher /2, fork/2,think/3,wait/3, eat/3, onTable/3,liesNextTo/3

18

2.3 CHR encoding of GTS

The rules are encoded (in the simpler notation) as

Py = [thinkToWait @ philosopher(P, Degp), think(del, P, P)
& philosopher(P, Degp), wait(del, P, P).
waitToEat Q@ philosopher(P, Degp), fork(Fy, Degp,),
fork(Fy, Degr,), liesNextTo(Dely, Fy, P),
liesNextTo(Dely, Fy, P),onTable(del, Fy, Fy),
onTable(del, Fy, Fy), wait(del, P, P)
< philosopher(P, Degp),
fork(Fy, Degp, — 2), fork(Fs», Degp, — 2),
liesNextTo(Dely, Fy, P),liesNextTo(Dely, Fy, P),
eat(del, P, P).
eatToThink Q@ philosopher(P, Degp), fork(Fy, Degr,),
fork(Fy, Degg,),liesNextTo(Dely, F2, P),
liesNextTo(Dely, F1, P), eat(del, P, P)
< philosopher(P, Degp),
fork(Fi1, Degp, + 2), fork(Fs, Degp, + 2),
liesNextTo(Dely, Fy, P),onTable(del, Fy, Fy),
liesNextTo(Dely, Fy, P),onTable(del, Fy, Fy),
think(del, P, P).]

In this GTS no nodes are added or removed. Because of that, all degree attributes in the
heads are variables. The degree attributes of the bodies are expressions. The number that
is added or subtracted from the variable represents the change in the number of edges that
are connected to this node. In the waitT oFEat rule, for example, which encodes the GTS

rule p = (L LKL R), the node encoded by fork(Fi, Degp,) has a degree of three
in the L graph and a degree of one in the R graph. Therefore, the constraint in the body
of the CHR rule is fork(Fy, Degr, — 2), because the degree is decreased by two during
rule application. The deletion variables of the edges that are removed or added are set to
del while the edges that are kept receive a unique variable (Dely and Dely). A host graph
consisting of two philosophers with two forks where one philosopher is eating while the
second one is waiting can be expressed with the list of constraints:

TwoPhilos := [philosopher(py,4), fork(f1,2), fork(fa,2), philosopher(pz,4),
liesNextTo(del, f1,p2),liesNextTo(del, fa,p2),

liesNextTo(del, f1,p1),liesNextTo(del, fa,p1),

eat(del, pa, p2), wait(del, p1,p1)]

The according starting state (compare section 2.1) of a the CHR program Phil = (Pppi)
would be
(TwoPhilos, D, true, B);

The rule eatToThink can be applied when all but the last constraint are added to the CHR
store. After that, the graph encoded in the goal stack and CHR store contains again the two
philosopher and fork nodes together with the edges from forks to the philosophers. The
eat(del, p2, p2) constraint is replaced by a think(del, p2, p2) attribute, and two onTable
constraints are added for the fork constraints.

19

2 Preliminaries

The GTS for finding circular lists in graphs introduces the two constraint definitions node/2
and edge/3. The two rules are encoded as

unhook @ node(Ny, Degn,), node(Ny,2), node(Ns, Degns,),
edge(del, Ny, Ny), edge(del, Ny, N3)
< node(Ny, Degn,), node(Ns, Degn,), edge(del, Ng, N3).
twoloop @ node(Ny, Degn,), node(N1,2), edge(del, Ny, N1), edge(del, N1, Ny)
< node(Ny, Degn,), edge(del, Ny, Ny).

In these rules, nodes are removed. For that reason, the degree attribute of the removed
nodes is the number of edges that are connected to them (two in both rules). All edges that
appear in the rules are removed or added. Therefore, they are all host encoded and contain
the ground term del.

2.4 Eclipse

This section covers a short introduction to the eclipse platform and its architecture. Besides
that, I describe shortly how to contribute plug-ins and define new extension points. Further
information can be found in [22].

2.4.1 The platform

The Eclipse Platform is designed for hosting integrated development environments (IDEs)
and arbitrary tools. It is written in Java. As can be seen in figure 2.13 the eclipse platform
is split up into multiple layers.

An important concept of eclipse is its plug-in structure. Except a small core (the Runtime
Platform), every functionality of eclipse is realized via plug-ins. Plug-ins define extensions
and extension points. Basically, extensions are pieces of functionality that are plugged into
extension points. When defining an extension point, at least an identifier must be provided,
so that extensions can refer to this extension point. Furthermore, multiple attributes can be
defined. Often a java class name is given that represents the code of the extension to be
loaded. In most cases this class is requested to implement a certain interface, so that other
extensions can communicate with this new one. Extensions implement the definition of the
extension point, as well as the attributes requested by it.

The Runtime Platform is mainly responsible for finding all plug-ins at start-up and manag-
ing them. Plug-ins are usually not loaded when starting the platform, but they are dynam-
ically loaded when they are needed. All other elements in figure 2.13 are plug-ins that are
loaded on start-up by the Runtime Platform.

The Workspace is the root for the files and folders that can be used with the plug-ins loaded
in the platform. It consists of multiple projects which are mapped to folders on the file
system. Every project in a workspace can have multiple natures defining its properties,
e.g. a java project has the JavaCore nature which provides java source folders and au-
tomated compilation of the sources. All files and folders in the workspace are so called
resources which are a more fundamental concept than files and folders, because they let
you extend the functionality of the resource elements. One example for this is the so called
marker mechanism for annotations: Resource elements can be marked with annotations,
e.g. compilation errors or warnings which are displayed in a file browser and in editors.
Another example is the possibility to add resource listeners that get notified when the re-
source changes.

20

@ java~

java - Eciipse Platform

2.4 Eclipse

Fle Edit Source Refactor Navigate Search Project Run Window Help

BEX]
|

Bo/$ 0 Q-
% Hierarchy

12 Package Explorer %

~ 2 orguniuim.gts
b = JRE System Library [255-1.5]
b = Plug-n Dependencies
v g@src
£ ogruniuim.gts.model.commands
~ g org.uniuim.gts
n;
b {1) GraphEditorActionBarContributc
b [1) GTSEditoroutline java
b [I) GTsMultiBarEditorjava
b [3) PluginselectToolbarContributior
b org.uniuim.gts.controllertree
b g org.uniuim.gts.model
b org.uniuim.gts.model persistance

B #HE &G
=8| graph

P e |25l © e 9
@
package org.uniulm.gts;

psetex ([}

#import java.util.MissingResourceException;

* The activator class controls the plug-in life cycle

public class Activator extends AbstractUIPlugin {

The plug-in 1D
public static final String PLUGIN_ID = "org.uniulm.qts’;

The shared instance
private static Activator plugin;

** Resource bundle. *
private static ResourceBundle resourceBundle;

* The constructor

£ [#Java

= 0|z Properties 18

Property

public Activator() {
b g org.uniuim gts wizards }
@resources

b e=doc

eclipse.ui.plugin. AbstractUIPlugin#start (org.osgi. framework .Bundl.
> eicons

b G METAINF
& access_festriction_attrib.gif

public void start(BundleContext context) throws Exception {
L 5)
@ Javadoc %

=
[T — | o]

¢ 2 E=5=0

& build properties [Declaration| & Progress

2 plugin properties
£ pluginxmi
b 2 org.uniuim.gts analysistool

@ org.uniulm.gts.Activator

The activator class controls the plugn life cycle

b 2 org.uniuim.gts.analysistools.chranalyze
b 2 org.uniuim.gts.analysistools.chrbasede

uniuim.gts analysistools.graphicale
uniulm gts analysistools.randomho
b 32 org.uniuim.gts.analysistools.simpleterr
b 32 org.uniuim.gts.chrexporter

b 2 org.uniuim.gts.chrexporter. plainchrexp

b 13 org.uniuim.gts.doc =
<]

¢ ne Writable Smartinsert | 15: 1

Figure 2.12: Screen-shot of the eclipse workbench.

All the elements described above are completely independent from a graphical user in-
terface (GUI). The Workbench is the framework for GUIs in eclipse (which is a plug-in
itself). The workbench is based on the Standard Widget Toolkit (SWT) for drawing basic
components and JFace, a GUI toolkit which is based on SWT and offers a lot of classes
for handling many common GUI programming tasks. SWT comes in many versions that
use different underlying window systems and defines itself an API which is independent
from the underlying system. JFace provides components for imaging, font registry, dialogs,
preferences, wizards, and progress reporting for long-running operations. The workbench
itself supplies the structures in which tools interact with the user. The eclipse platform
GUI paradigm is based around views, editors, and perspectives. While views and editors
are elements visible to the user, the perspective gives information about the constellation
of the elements. Editors are tools for editing and displaying files while views are tools
for viewing objects currently worked with in the workbench. The eclipse platform takes
care of integrating, initializing, and destroying editors and views. Further basic features
of the eclipse platform is the team support and the help which are not further considered
here. The Screen-shot in figure 2.12 shows the java perspective with an editor and multiple
views.

2.4.2 Plug-ins and extension points

Creating a plug-in in eclipse is done as follows: The user defines two files, plugin.xml
and manifest.mf. The plug-in file is an Extensible Markup Language (XML) file, in
which the user describes all the extensions in his plug-in. For every extension, a unique
identifier must be given to identify the given extension, as well as the identifier of the ex-
tension point being extended. Furthermore, the attributes described by the extension point
definition must be added. The most common attribute is the class attribute which provides
the extension with the information about what class should be loaded when the extension
is activated. This class must also implement the interface given in the description of the ex-
tension point. Defining an extension point works in a similar manner. In the plugin.xml

21

2 Preliminaries

Eclipse Platform

{ Help ™

SWT \

Platform Runtime

Figure 2.13: Overview of the components of the eclipse platform (from http:
//www.eclipse.org/articles/Whitepaper-Platform-3.1/
eclipse-platform-whitepaper.html).

<plugin>
<extension
id="example.exampleview"
point="org.eclipse.ui.views">
<view
class="example.Example"
icon="icons/sample. gif"
id="example . ExampleView"
name="Example View">
</view>
</extension>
<extension—point
id="example.exampleExtensionPoint"
name="An exampe extension"
schema="example .example.exsd"/>
</plugin>

Listing 2.1: A plugin.xml example.

file, a tag must be inserted that describes the extension point. The schema file is a XML file
that describes the attributes an extension must provide, as well as a textual description of the
extension point for documentation. Listing 2.1 shows an example plug-in file for an exten-
sion of the org.eclipse.ui.views. The extension tag is used to create a new exten-
sion by providing the id attribute and the point attribute which specifies the identifier of the
used extension point. The definitions for the extension point org.eclipse.ui.views
states that there must be a view tag with several attributes. In the class attribute, a class
must be given that implements the org.eclipse.ui.IViewPart interface (this in-
formation is also contained in the extension point definition). The listing also shows an
extension point which is defined by an extension-point tag. This tag requires a unique id,
so that all extensions to this point can be found, a name that describes the extension point,
and a schema file, which describes the extension point. The schema file contains the struc-
ture of the XML tags for the extensions (like the view tag described above). Usually, a java
interface is provided together with an extension point, that must be implemented by the
extensions. This interface is then used to communicate with the extensions. The schema
file lists which interface must be implemented by the java class that is given in the class
attribute.

The manifest .mf file describes the packages that are exported by the plug-in and the
dependencies of this plug-in. Besides that, it defines the execution environment and other
information needed to properly manage this plug-in.

22

http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html

3 Conception

In this chapter, I present already available programs for editing and analyzing GTS in sec-
tion 3.1. Furthermore, I analyze the goals mentioned in section 1.2 and refine them further
in section 3.2. For these goals, I make a requirements analysis in section 3.3. In section 3.4,
I present possible tools that can be used for the realization of the project and describe which
tools have been chosen for realization.

3.1 Available GTS tools

In this section, I analyze the tools Attributed Graph Grammar (AGG) ([18]) and Graphs
for Object-Oriented Verification (Groove) ([34]) that have already been mentioned in the
introduction to give a conclusion about the pros and cons of each tool. I analyze the usabil-
ity, available analysis features, the possibility to extend the tools, and whether they can be
used in other applications. These topics are chosen for analysis, because they are also the
main features of the platform developed during this thesis.

3.1.1 AGG

AGG features a user interface divided into four parts. On the left is a list of rules, host
graphs, and the type graph (the graph pane). On the right is a list of the type nodes and
type edges (type pane). In the middle are three fields. The upper two fields are for drawing
rule graphs (rule pane) in a two graph notation (compare section 2.2.5) and the lower one
is for drawing the type or host graph, respectively (host or type pane). Before creating a
type graph, one must define the nodes and edges in the list on the right side. See also the
screen-shot in figure 3.1.

When creating edges in host and rule graphs, there is no visual feedback if the connection is
valid, according to the type graph, until the user finishes the connection. If the connection
is invalid, an error message dialog pops up informing about the problem. Furthermore, the
nodes must be mapped manually between the rules’s left and right side. The left side can
also be copied over to the right, then the mapping is done automatically. When deleting
nodes or edges, a dialog pops up to confirm the deletion.

AGG can apply the given rules automatically to a host graph or by defining the matches
manually. When selecting matches manually, they can also be auto-completed. There is
also the possibility of undoing transformation steps. Another feature is the non-deterministic
transformation mode where rules are applied in a non-deterministic mode. One analysis
features of AGG is the critical pair analysis for checking confluence. Confluence is the
property that rules can be applied in arbitrary order and the final result, when no rule can
be applied anymore, is always the same. The other feature is to test the applicability of a
rule sequence to a host graph. The advanced features are the creation of attributed GTS that
let you assign attributes to edges and nodes. Furthermore, it supports graph constraints, to
further restrict the applicability of rules, as well as positive and negative application condi-
tions. There are additional analysis methods for these advanced features, but they are not
discussed here (see [18] for more information about these topics), because this is beyond
the scope of this work. AGG provides no functionality to add further plug-ins for analyzing

23

3 Conception

s/agyfeyclegyc) =S

le Edit Mode Transform Parser Analyzer Preferences Help

][o] [r |/ [[[c]
bejwie (RIS A]+][=] MBS [s]@= CIEE

—

Y AGe VLsd ([home/userfDiplomarbsii/bsisp
File Edit

[Gragras J | twoloop of GraGra1 [8]¢:| Node Types
3 @ GraGral edge Ol node
T [DITypeGraph edge !
lGraph)
unhook
woloop
Ll I ID

Edge Types
— edge

-N:w -m -m

) | Clickon an object o select f deselect it. | O node
Kl [y — tdoe

Figure 3.1: Screen-shot of AGG.

R cyclz@4niodes - Production Simulator g@
Eile Edit Yiew Explore Werify External Help
[kos ||) R L)G
=% [{ Labels
s Mt L
s Mt edge
cemsaMae | node
e Male 'node |
edige edge

Rule unhook

Figure 3.2: Screen-shot of Groove.

or editing a GTS. But the kernel of AGG (without GUI) can be used in other applications.
Therefore, an API for creating GTS is provided, so that rules can be applied to host graphs
in arbitrary applications.

3.1.2 Groove

Groove provides a similar appearance to AGG. On the left side is a list of rule graphs with
their matches on the host graph as sub-elements. There are no type graphs in Groove, nodes
and edges can only be labeled with strings. Therefore, there is no consistency check for
the validity of the graph. On the right is a list of labels which can be used for nodes and
edges (label list). In the middle is a tabbed pane with four tabs, one for the host graph (this
is called the start graph), one for the rules, one for the exploration of all the graphs that can
be created with the given rules and one for analysis purposes. See also the screen-shot in
figure 3.2.

24

3.1 Available GTS tools

The graphs cannot be directly edited in this middle pane, but an editor can be started from
there. This editor is rather simple, it lets you create nodes and edges and add labels. The
labels are not imported from the other graphs in the main program and they must be en-
tered by hand for each node. Rules are displayed in the one graph notation (compare
section 2.2.5) where light blue dashed lines represent the elements that are removed and
broader green lines symbolize elements that are added during rule application. Elements
that stay, are kept in black. Groove supports non-injective match morphisms, i.e. it can
match one element in a rule application multiple times. If this is not intended, the two
elements in the rule have to be marked as unequal, so that they are not matched to the
same element. This is done by adding a connection between them with the label “not : ="
which is then displayed as a red edge between the nodes. However, this is not a transitive
operation. Because of that, if n nodes can be matched non-injectively, O(n?) edges have
to be inserted. For the editing of the rules, the same editor is used as for graphs, so there
are no additional GUI elements for creating it. The properties of an element are, therefore,
described by adding special keywords to the label, e.g. elements that are added during rule
applications have a preceding “new:” in their label. This makes editing rules and graphs
very uncomfortable.

As described above, Groove itself is not an editor but a simulator and the editor for the
graphs is another tool, so the main feature of Groove is the application of the rules to a
start graph. On the left pane, all rules with their corresponding matches on the start graph
are displayed. By selecting one of the matches, it is displayed in the start graph and the
corresponding rule can be applied. The new matches are directly updated on the left pane.
The other feature of Groove is to display the space of all graphs that can be reached by
applying rules to the start graph. This space is itself displayed as a graph where each node
represents a graph in the transformation and each edge represents the rule that is applied
to transform the graph of the source node to the graph of the target node. By clicking on
the nodes, the corresponding graph is displayed. Groove automatically merges nodes that
contain isomorphic graphs. The space can either be fully explored or only in a linear way
(isomorphic graphs are evaluated only once), which supports a non-deterministic order of
rule application, as well. Groove can try to find final states of a GTS. Therefore, it tries
to apply rules in depth- or breadth-first way until no rule is applicable anymore. The final
and the intermediate graphs are also displayed in the explored space tab. The extended
features of Groove are the possibility to add wild-cards and regular expressions to labels
which are evaluated when applying rules. Furthermore, simple data types can be associated
with nodes and edges which can be changed during rule application. For more information
about these advanced features see the Groove documentation ([33]). They are not covered
here, because that would be beyond the scope of this thesis. There is no documented way
of extending Groove with a better editor or further analysis possibilities. An API for using
Groove without its GUI in external programs is not documented.

3.1.3 Conclusion

Both tools provide a different approach in graphical editing, but both have disadvantages.
AGG informs the user very late about editing errors by popping up messages instead of
giving earlier visual feedback. Groove’s editing mechanism is based on entering keywords
in the nodes’ and edges’ labels without the use of further graphical interfaces. That requires
a constant switching from the keyboard to the mouse. Groove does not even provide support
for type graphs, it is based only on the matching of labels. That is why no type system is
provided to check the consistency of the start and rule graphs. Both tools provide interesting
features, e.g. Groove provides the exploration of all intermediate graphs that can be created
by applying rules, while AGG provides a confluence analysis. However, none of the tools

25

3 Conception

is extensible in order to add other missing features. Only AGG can be integrated in other
projects to use GTS.

3.2 Goals

Raiser describes in [32] how GTS can be ported to CHR. Given this fact, methods for
analyzing CHR programs can directly be used to analyze GTS, e.g. confluence, termina-
tion, and operational equivalence analysis. But these methods cannot be integrated into the
existing tools described above. Furthermore, both tools are stand-alone tools that are not
embedded in a common framework. Therefore, there is no common API to extend their
functionality.

For that reasons, the subject of this thesis is to create a platform that enables you to create
and analyze GTS. Editing should be possible in graphical notation and by using the en-
coding in CHR. The textual editor for the CHR encoding should be provided, because it
represents a simple textual notation for editing a GTS and it helps to understand the results
of analysis tools that are based on CHR. The platform must not be a stand-alone tool, but it
should be embedded in the eclipse framework to allow easy extensibility. For that reason,
no analysis methods are provided by the platform itself, but by further plug-ins. Because
of that, an API must be made available, so that analysis tools that work directly on the GTS
and analysis tools that are based on CHR can be integrated with little work.

To demonstrate the power of the platform, another goal is to create several prototypical
analysis tools. One analysis method, available in both AGG and Groove, is the application
of the created rules to a host graph. Therefore, an analysis tool must be offered, that adds
this feature to the platform. This tool is based on CHR, because CHR can be used to
simulate a GTS. Another goal is to create a tool that provides another API, so that CHR
analysis methods (called CHR tool in the remainder) can be added to the platform. A
prototypical CHR tool should be added that creates an executable CHR program from the
GTS, because this can be needed by several other CHR tools, e.g. confluence analysis.
Furthermore, the executable CHR program can also be embedded into other applications,
so that the created GTS can be used there. Exemplary tools, that are independent from
CHR should also be provided. That is why a possibility to analyze the termination of the
GTS should be realized. The creation of random host graphs is an example for a tool that
modifies the GTS. Realizing more of the analysis methods found in AGG or Groove, e.g.
graph space exploration of the GTS or confluence analysis, would be out of the scope of
this thesis and are left for future work.

To summarize, the functional goals are

e Provide editors GTS

— in a graphical way

— and in textual way via CHR
e Design of extension possibilities to add arbitrary analysis tools for GTS

— Provide several prototypical analysis tools:
* Simulation of GTS via CHR
* Generation of random host graphs
* Termination analysis for rules
— Provide an analysis tool for embedding CHR based analysis methods

A non-functional goal is to provide a good usability for the editors and tools to allow rapid
creation and analysis of new GTS.

26

3.3 Requirements analysis
3.3 Requirements analysis

In the following, I work out the requirements to achieve the goals described in the previous
section. As described in section 3.2, there are two main goals for this thesis: the develop-
ment of editing capabilities for GTS and the design of an extensible analysis platform.

As described in the previous section, there will be graphical, as well as textual editors which
can be used in parallel. Therefore, an important requirement is the development of a front-
end that displays two editors in parallel. As there are multiple editors, loading and saving
of a GTS from and to a file must be handled by the platform itself. For the graphical editors
it is very important to prevent the creation of inconsistent graphs and rules. Additionally,
they should give early visual feedback of allowed editing steps. As a GTS gts = (P,TG)
consists of a set of rules P and a type graph T'G, at least two editors are needed. Further-
more, a set of host graphs to apply the rules to must be available, therefore, an additional
editor is needed. For the textual editors, a parsing mechanism is needed, so that it can
be checked whether the CHR source encodes a GTS. Besides that, the textual editor must
provide specific feedback of errors in the encoding. The encoding described in section 2.3
is too complex for editing a GTS, because it also provides some redundant information
(the degree, and deletion attribute of constraints) that is only required when running the
CHR program and for confluence analysis. As a consequence, a simpler encoding must be
provided to make the editing more comfortable.

To synchronize the editors, a common model of the GTS, the GTS model, must be pro-
vided that is used by both editors and the platform. The editors must work synchronously
and always display the same information to allow comfortable editing. Furthermore, an
undo/redo stack is needed, so that changes made to the model can be undone. This stack
must be shared between the editors to prevent inconsistencies of the GTS.

The second main goal is to provide a platform for easy extensibility with analysis tools
for GTS. As a consequence, a plug-in structure must be developed to share the currently
edited GTS model with the desired plug-in. Additionally, a simple GUI must be designed
for starting these plug-ins. These plug-ins are called (GTS) analysis tools. For the CHR
based analysis of GTS, an analysis tool called the CHR based analysis tool that creates
CHR source code and opens a CHR analysis tool with this generated file must be provided.
For the CHR code generation, the possibility to activate and deactivate rules, as well as
to change their order is required, because this is important for the execution of CHR pro-
grams (section 2.1). Current implementations of CHR for java are all deterministic. That
is why a non-deterministic mode cannot be provided here. Furthermore, the tool requires a
possibility to encode host graphs as input for the CHR analysis tools. When rules or host
graphs are selected, they should be displayed in the editor, so that the user has direct visual
feedback of the activated rules. In order to add available analysis methods for CHR to the
platform, another plug-in system must be developed to integrate them into the platform.
The most basic functionality that is needed is the creation of an executable environment of
the CHR source, so a CHR analysis tool must be developed that creates this environment.
A good example for a CHR analysis tool is a confluence analysis. Therefore, a strategy has
to be developed on how to embed an automatic confluence analysis into the platform. The
CHR analysis tools should also have the possibility to display rules or parts of them in the
editors that correspond to CHR rules. For that reason, the CHR based analysis tools must
transform the request from a CHR tool to a request for the platform in order to display a
certain graphs or highlight parts of it.

The analysis tool for rule application to a host graph via CHR must have a graphical front
end to display the graph represented by the CHR store, so a synchronization between the
CHR store and the graphical front end must be developed. Layout algorithms are needed
for proper display of the resulting graph. AGG and Groove both provide the possibility
to apply rules step-by-step and manually select the next match for a rule to test the GTS

27

3 Conception

thoroughly. These features should be included in this tool, as well. Therefore, there must
be a possibility to enable and disable CHR rules and change their order. Additionally, a
method has to be developed, so that the CHR rules can be applied step by step and the
match of the rules can be specified manually. When rules are disabled or enabled, they
should also be displayed in the editors.

The tool for creating random host graphs must provide a simple interface to enter the num-
ber of nodes and edges that should be created. Because of that, an algorithm must be
provided to create a consistent typed graph from this information.

Termination can be analyzed by using a ranking function. Therefore, a method must be
provided to enter the ranking function and analyze the rules with it.

Some of the tools require a communication back to the platform in order to display certain
graphs or at least parts of them. Therefore, a communication infrastructure must be de-
veloped, so that the platform can also receive information from the tools to display graphs
or highlight parts of it. More of the features that can be found in AGG and Groove are
not provided as additional tools, because the goal of this thesis is the development of an
extensible platform and not to implement all the features of AGG and Groove into a single
program.

Here is a list of the resulting requirements:

e Platform in general:

— Shared model for GTS, used by editors and tools
— Shared command stack

— Saving/Loading mechanisms for GTS models
e Editors in general:

— Synchronization of view
e Graphical editor:

— Forbid inconsistencies in the GTS
— Early visual feedback about invalid model states

— Multiple embedded editors for host, rule and type graphs
e Textual editor:

Create model from CHR source

Algorithm to check for valid encoding of a graph
Update the GTS model from the CHR source

Error feedback in the editor

Simpler encoding for easier editing
e Plug-in system:

— Provide model, command stack, and file for the tool

— Receive information from tools to update the view in the editors
e CHR based analysis tool:

— Plug-in structure for CHR analysis tools

— Select rule order

28

3.4 Finding the right tools

CHR code generation

Create executable environment of CHR source

Confluence analysis tool

Display graphs selected in CHR tools in the editors.

e Tool for running a GTS based on CHR with graphical front-end:

Develop a method to execute CHR programs step by step and define matches
manually

Create executable environment of CHR program

Graphical front-end with automatic graph layout

Synchronization of CHR store and graphical front-end

Select order of the rules

Display rules in editors
e Random host graph tool:

— Simple GUI

— Creation of valid models
e Termination analysis tool:

— Manual definition of ranking function

— Display non-terminating rules in editors

3.4 Finding the right tools

In this section, I give an overview of the tools that are available to possibly provide the func-
tionality requested above. The selection of the tools is covered at the end in section 3.4.7.

3.4.1 Model creation

The most basic concept of the platform is a common model on which the editors and anal-
ysis tools can operate. The model can be designed manually or a library providing graph
models can be used.

3.4.1.1 JGraphT

JGraphT! is a graph library which is based on java and supports many different types of
graphs, e.g. directed and undirected graphs. Furthermore, it implements the listener pattern
([23]) to get notified about changes made to the graph. JGraphT is designed to be simple
and highly efficient with large graphs. Additionally, many algorithms from graph theory
are available. JGraphT graphs can be used as models for JGraph which is described when
discussing about graphical editors in section 3.4.2.3.

!Available at http: //www. jgrapht .org/

29

http://www.jgrapht.org/

3 Conception

3.4.1.2 JGraph

JGraph? is a graphical framework for displaying graphs, but it also provides an own model
for the representation of graphs that can also be used without the JGraph graphical frame-
work. The graph model is meant for extending it for custom application, but a standard
graph model is already provided that works for most applications.

3.4.1.3 EMF

Eclipse features a framework for creating arbitrary models and generate code from it. It is
called the Eclipse Modeling Framework (EMF) ([15]). EMF creates java interfaces from
the model definition, as well as implementations of it. It provides structures to keep the
model consistent, i.e. if two classes are connected to each other and a reference is deleted
or added in either of the two objects, it also gets deleted or added in the other one. Another
benefit of EMF is that it implements the listener pattern ([23]), so that editors and viewers
can be updated automatically upon changes to the model. Aside from references between
objects, the concept of containers and containments is provided to create a tree like struc-
ture for the objects, i.e. elements can only be contained in one containment at the same
time. EMF also offers the possibility to add custom code to the models.

3.4.2 Graphical editors

For the graphical editors, eclipse itself provides two solutions: The Graphical Editing
Framework (GEF) and the Graphical Modeling Framework (GMF). There are third party
graphical editor frameworks that can be used without eclipse: JGraph and yFiles.

3.4.2.1 Graphical Editing Framework (GEF)

GEF ([16]) is a framework for graphical editors in the eclipse platform. It is based on
the model view controller (MVC) paradigm which is further described in [27]. Figure 3.3
shows the relation between model, view, and controller objects in the MVC pattern. The
model represents the data that should be displayed and edited. The view renders the con-
tents of the model. The view can query the model itself for changes or add itself as listener
to it, so that it gets notified when the model changes. The controller translates interactions
from the user with the view into modifications of the model. In this design, the controller
only receives information from the view and propagates it to the model. However, in GEF
the controller has a more central part and is named edit-part. It registers itself as listener
to the model and updates the view object when the model is changed. Therefore, the view
and the model are decoupled. Edit-parts can have multiple edit-policies. Requests which
are sent by fools to edit the model, are send from the edit-part to the corresponding edit-
policies which itself create commands that modify the model. The tools are provided by
GEF and give the user the possibilities of editing the model. Tools for creating, deleting,
and moving objects are already provided by GEF, but they can also be extended to provide
more specialized functionality. The creation of the views is based on draw2D, a simple
toolkit for creating graphical figures. The technology used for the model is not defined by
GEF. The model has to implement the listener pattern. EMF can be used for creating the
model, for example. GEF is widely used in the eclipse community for creating graphical
editors and good documentation, as well as sample code is available.

2 Available at http: //www. jgraph.com

30

http://www.jgraph.com

3.4 Finding the right tools

Model
* Encapsulates application state
* Responds to state querias

* Exposes application
functionality

« Mofifies views of changes State

Change

Change
Notification

i Vi o .
Lo View Selection ontroller

* Renders the models = Defines application behavior

» Requests updates from models » Maps user actions to

= Sends user gesturestocontroller "9 1 1 1 1 | model updates

» Allows controller to select view User Gestures * Selects view for response
* One for each functionality

Method Invocations
(1 1 | Events

Figure 3.3: Schematics of the MVC pattern (from http://java.sun.com/
blueprints/patterns/MvVC—detailed.html).

3.4.2.2 Graphical Modeling Framework (GMF)

GMF ([17]) is based on GEF and EMF. GMF lets you define an EMF model, as well
as views, tools, and a mapping between them in a graphical editor. From this information,
code for a graphical editor is generated. Many standard functions often used in GEF editors
are automatically implemented such as zooming and adding comments to elements. A
separation of the model itself and a model for the graphical representation is available, as
well as the possibility to save them to and load them from a file. To conclude, GMF is a
tool to rapidly create standard graphical editors.

3.4.2.3 JGraph

JGraph? is a complete framework for the graphical editing of graphs. The model for editing
is already available in JGraph, but it can also be customized. Other models can be used,
as well, e.g. the JGraphT model. The JGraph editor components are based on the Swing
API. There is a free open-source core of JGraph that provides classes for creating own
editors. However, there are also some commercial add-ons for laying out graphs (Layout
Pro) and for creating feature rich editors (GraphPad Pro). A complete programmers guide
is available together with a few example projects on the project website.

3.4.2.4 yFile

yFile* is a commercial project. It consists of an extensive library that features algorithms
for the analysis, visualization, and automatic layout of graphs. The library is written in java

3 Available at http: //www. jgraph.com
4Available at http: //www.yworks.com/

31

http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://www.jgraph.com
http://www.yworks.com/

3 Conception

and uses the Swing API for visualization. It can only be extended in limited ways, because
most licenses are only byte code licenses, which are not offering access to the source code.

3.4.3 Textual editors

Eclipse itself already provides base classes for textual editors, however, these editors do not
offer parsing mechanisms to retrieve the information that is encoded in the text. An editor
made especially for JCHR (a java-based CHR implementation) is currently developed at
the university of Leuven. Two other frameworks are for creating an EMF model from the
contents of a text editor based on a grammar: The Textual Editing Framework (TEF) and
the Textual Modeling Framework (TMF), which are both based on eclipse.

3.4.3.1 JCHRIDE

The JCHRIDE ([1]) is an eclipse text editor with syntax highlighting and rudimentary code
completion. Furthermore, support for compiling JCHR source code files with the K.U.
Leuven JCHR compiler is provided. The compilation, however, works only on Microsoft
Windows systems. The editor does not generate a model of the JCHR source, but only
checks for syntactic correctness.

3.4.3.2 XText

XText ([13]) is part of the eclipse Textual Modeling Framework (TMF). For XText, a gram-
mar and an according EMF model has to be created. Then XText creates a parser, a serial-
izer, and a text editor from the model and the grammar. Therefore, models can be created
from text or serialized into a string according to the grammar. The editor has many features
(syntax highlighting, auto-completion. . .) and is integrated into eclipse. At the time of im-
plementation XText has still been part of the openArchitectureWare (0AW) project ([30]),
a framework for model driven development, which is based on eclipse. However, XText
has been on the move from the 0AW project to the eclipse TMF project, but no version has
been available for TMF at the time of implementation.

3.4.3.3 Textual Editing Framework (TEF)

A similar tool is the Textual Editing Framework (TEF), which is currently in development
at the technical university of Berlin ([35]). TEF provides a text editor base class, which
is supplied with a context-free grammar, annotated with classes and properties of classes
from an EMF model. This grammar is then interpreted by the TEF framework to create an
instance of the EMF model described by the content of the text editor. Furthermore, TEF
features error annotation in the editor for syntax errors and reference errors in the generated
model instance. Models can also be serialized to strings and displayed in the text editor.
The grammar also supports special white space terminals, that are only considered when
creating a string from a model. TEF uses the method of background parsing to continuously
create a model in the background. Depending on the type of the TEF editor, a new model
is created on every background parsing step or an existing model is being edited. There is
a rudimentary auto-completion function available that can be further extended.

3.4.4 CHR environments

CHR is an extension of a host language, therefore, there exist a lot of implementations for
several languages. [39] contains an extensive list of available CHR implementations. Most

32

3.4 Finding the right tools

implementations are based on logical programming languages like Prolog, but only few are
available for imperative languages like java or C. In the following, I present the two most
used implementations for java.

3.4.4.1 Java Constraint Kit (JaCK)

JaCK ([2]) is the earliest CHR implementation for java. It has been started in 2001. JaCK
is a combination of several components. JCHR is a CHR dialect that combines Prolog
based CHR syntax with java syntax. VisualCHR is a tool for visualizing the execution
of JCHR programs. The last component is the Java Abstract Search engine (JASE) in
which tree-based search strategies can be specified. It provides the possibility to implement
search algorithms to use backtracking when inconsistent states occur during the execution
of JCHR. However, this project is no longer maintained.

3.4.4.2 K.U. Leuven JCHR

The K.U. Leuven JCHR system (not to be confused with the JCHR component of JaCK)
is currently in development at the Catholic University of Leuven ([40]). The term JCHR is
used in the remainder of this thesis for the K.U. Leuven JCHR system. JCHR is not only
an implementation of CHR in java, but an integration of the CHR features in java. For an
introduction to the features of JCHR, please refer to the official K.U. Leuven JCHR docu-
mentation [43]. Basically, the K.U. Leuven JCHR compiler creates a java 1.5 compatible
source file from a . jchr file. The resulting class is called handler. The syntax of jchr
files is a combination of Prolog based CHR and java syntax. JCHR offers the possibility to
embed arbitrary java classes and methods into a handler. Therefore, elements of the java
language can also be used in JCHR handlers. Furthermore, the generated handlers can be
embedded in other java programs. To do that, the handler provides methods to retrieve a
list of the constraints in the CHR store and methods to add new constraints to the store.

3.4.5 Code generation

As described in 3.3, there are analysis tools that might rely on CHR source code files. As
a consequence, code generators are needed. I describe Extensible Style-sheet Language
Transformations (XSLT) and Java Emitter Templates (JET).

3.4.5.1 XSLT

XSLT ([26]) is an XML based transformation language for transforming XML documents
into other document types like HTML or java source code. The XML source file is not
modified, but a new file is created from the content of the old document. XSLT uses XPath
([4]) to query the source XML document for the information needed in the new document.
An XSLT file represents the new file with embedded tags that represent the information
from the input XML document. Tags are available for iteration and conditional execution
based on the input document. Furthermore, a processor is needed that interprets the XSLT
program and generates the output document. The two best known processors for java are
Xalan-J° which is developed by the Apache foundation and Saxon® which is based upon
SAX the java XML parsing tool.

5Available at http: //xml.apache.org/xalan-7j
6 Available at http: //www.saxonica.com

33

http://xml.apache.org/xalan-j
http://www.saxonica.com

3 Conception

3.4.5.2 Java Emitter Templates (JET)

JET ([12]) is used to create source files in the EMF project, but this tool can also be used
standalone. Originally, JET was only used to generate code from structures defined by
XML files but has been extended to accept EMF model instances as input. The definitions
for the generated source is provided via a text file in which the static parts of the source file
are written as they should appear in the generated source and XML tags can be embedded
to insert dynamic information gained from the input XML file or the EMF model. The
syntax is similar to that of XSLT. There are tags for iteration over multiple elements and
conditional insertion of parts of the source file. Further tags can be created as tag libraries
by creating an eclipse extension to JET. The input is queried with XPath ([4]). XPath is
basically a method for querying XML files in an easy and intuitive way. XPath expressions
can also be used as input for so called XPath functions. These functions include, for ex-
ample, counting the number of elements returned by the query or manipulate lists. Further
XPath functions can be added by creating an according JET extension which contains the
implementation of the function in java. JET offers the possibility to store calculated values
in the model during transformation.

3.4.6 Graph layout and visualization

The tool for the execution of GTS based on CHR requires a visual representation of the
CHR store as a graph. Therefore, a tool for displaying and laying out a graph is needed.

3.4.6.1 JGraph, yFiles

The tools, mentioned above for the graphical editors that offer layout algorithms can be
used as visualization tool-kits. The only interaction that is allowed, is selecting nodes and
edges and moving them around. All the other editing features are left away. JGraph and
yFiles are the two tools that also provide layout functionality.

3.4.6.2 Zest

For displaying and laying out arbitrary graphs Zest ([14]) can be used. It uses draw2d from
the GEF project for vizualization. Zest provides a graph object to which nodes and edges
can be added. Zest is based on eclipse and uses the Standard Widget Toolkit (SWT) APL.
Furthermore, Zest already features several layout algorithms. They can be also be extended
to create custom layout algorithms. The algorithms can also be used independently from
Zest. In addition to that, possibilities of selecting nodes and edges and moving nodes
around are provided. Listeners can be added to get notified about selection events occurring
at the node and edge widgets.

3.4.7 Suitability of the tools

As mentioned above, it can hardly be decided for each category on its own which tools
should be used, because some of them rely on each other. First, I exclude some of the
tools. Tools with graphical components (i.e. the graphical editors and the visualization
tools) that use the Swing API are difficult to use, because eclipse uses the SWT API for
its graphical user interface. Although there are libraries that let you integrate Swing com-
ponents into eclipse, this requires much additional work and is error-prone. That is why
JGraph and yFile are not used as editors or visualization tools. This leaves GEF or GMF

34

3.4 Finding the right tools

for the graphical editor and Zest for the visualization and layout toolkit. GMF is based
on GEF and EMF and provides the automatic generation of standard editors. However,
the platform contains a textual editor besides the graphical one and these editors interact
with each other. So, if GMF was chosen, the generated code would have to be modified
a lot, so that it could be integrated into the platform and the inter-editor communication
structure. As GMF editors are generated from model specifications, every change in the
specification would result in a newly created editor and the changes that must be made for
the integration into the platform would have to be redone. GEF, on the other hand, can
be better customized and is not generated from specifications, but implemented manually.
Therefore, GEF editors can be used better in combination with other editors. For these
reasons, GEF has been chosen as the framework for graphical editors.

One requirement of the textual editor is that the content must be parsed to retrieve the
information about the encoded GTS model. JCHRIDE is not used, because it only checks
for syntactical correctness and does not provide further parsing mechanisms. That leaves
XText or TEF as possible solutions. Both frameworks have all required features: they
can both create an EMF model instance from the content of a text editor and both can
print a model instance to the text editor. However, XText has been on the move from the
0AW to the TMF project at the time of implementation and no version has been available,
which is specifically designed for the eclipse TMF framework. Because of that, TEF is the
framework that could be embedded better into eclipse and has, therefore, been chosen as
textual editor.

The decision for the code generation tool was mainly driven by the eclipse platform. JET
is specifically designed for eclipse and seamlessly integrates in the workspace concept by
providing tags for creating files, folders, and new projects. Furthermore, XSLT with Saxon
or Xalan-J only takes XML documents as input, while JET also provides the possibility to
use instances of EMF models as input. For these reasons, JET is chosen as code generator.

The choice how to provide the model for the GTS is heavily influenced by choosing TEF
and GEF as editors and JET as code generator. Although JGraphT provides an elaborate
model for creating own graph models, many tools based on the eclipse framework use EMF
models as input. Therefore, I have decided to design a GTS model based on EMF. Another
advantage of EMF over JGraphT is, that it directly supports saving and loading of models to
and from XML files. In combination with JET, EMF model instances can be used directly
as input for code generation without having to save it to an XML file first.

The K.U. Leuven JCHR system is currently the best supported and fastest ([39]) CHR
implementation for java. JaCK is no longer maintained and does not perform as well as the
K.U. Leuven JCHR system. Therefore, the K.U. Leuven JCHR system is used for creating
executable environments of CHR programs. Because of that, all generated CHR source is
in JCHR syntax.

Further details about the tools and how they are used is provided in chapter 4 as needed.

35

3 Conception

36

4 Realization

In this chapter, I describe the design and implementation of the project. First, I present the
model for GTS in section 4.1. In section 4.2, I show how I have designed the platform itself
including the plug-in system for the analysis tools and the elements to display two editors
synchronously. The graphical and textual editors together with synchronization algorithms
are described in sections 4.3 and 4.4. In sections 4.5 to 4.8, I present the realization of the
plug-ins. I pay special attention to the tool for CHR based analysis (section 4.6) and the
simulation of a GTS based on CHR (section 4.7). Section 4.5 is a detailed guide that shows
how to create custom analysis tools with the example of a tool for termination analysis. In
section 4.8, I present a tool for generating random host graphs and provide a guide how
a confluence analysis for CHR could be added as a CHR analysis tool. Each topic will
be divided in showing the design first and then giving details about the implementation.
Chosen parts also have an additional section which show a sample computation.

The implementation sections give reference to the eclipse project names, where the source
can be found. These project can be found on the CD-ROM to this thesis (see appendix A).

4.1 GTS model

In this section, I explain how the model is designed and present the possibilities for edit-
ing it. The model is not directly edited by the tools or by the editors, but commands are
provided to edit the model. These commands are managed by a command stack in order to
provide undo and redo functionality.

4.1.1 Design

In the following, I describe the design of the model and the design of the commands.

4.1.1.1 Model

The model for the GTS (model or GTS model for the remainder of this work) consists of
multiple graph models. As described in section 2.2, a GTS consists of a set of rules P
typed over a type graph T'G. Furthermore, the possibility to specify a set of host graphs
HG typed over T'G should be provided. One thing that all the graphs mentioned have in
common is that they consist of nodes and edges that connect the nodes. Each node has a list
of edges that have it as source and a separate list for the target edges, whereas each edge has
exactly one source and target node. Furthermore, the edges and nodes belong to exactly one
graph. This description of a graph can be seen in the Unified Modeling Language (UML)
class diagram in figure 4.1. The nodes and edges are modeled as a composition, because
nodes and edges can only belong to one graph. Graphs have an identifier, as well.

Figure 4.2 shows the UML class diagram of the complete GTS model. A type graph (Type-
Graph) is essentially a graph as described above, only that it has an additional list of its
typed graphs. The nodes and edges of the type graph (TypeNode and TypeEdge) also have
a list of their typed nodes and edges (TypedNode and TypedEdge), respectively. The type

37

4 Realization

- Graph -
+id
Node|1 is source for» 0..*|Edge
Il is target for»]G"*

Figure 4.1: General UML model of a graph in this GTS model.

graph, type nodes, and type edges are inherited from the standard graph model (Graph,
Node, and Edge). The type nodes and edges have an additional unique identifier as at-
tribute.

Typed graphs (TypedGraph) are the counterparts of the type graphs, so the typed graphs
and its nodes and edges contain exactly one reference back to their type graph, type node,
or type edge, respectively. In regard to the encoding of GTS to CHR, every node in a
typed graph receives an unique id. The graphs in HG (HostGraph) are inherited from
the typed graph class and have a reference back to the GTS they belong to. A GTS can
contain multiple host graphs, as described in section 2.2. Rule graphs consist of three

graphs that are in relation by two graph morphisms of the form p = (L LKL R)
with the graphs L, K, and Ro and the graph morphisms [and r. I decided not to use this
approach directly in the model, because nodes and edges in K are additionally stored in L
and R and the morphisms have to be provided explicitly which would require additional
logic in the model. As a result, I have designed the rules as a triple of the form p’ =
(L',K,R') where L’ = L\K and R' = R\K. A transformation from p’ back to p can
be achieved by defining R = R’ W K and L = L’ W K and setting the morphisms [and
r to map the nodes from the graph K to the nodes that are added from K to L’ and R/,
respectively. With this new way of presenting a rule, the three graphs can be encoded in one
typed graph T = L' W K W R’ (RuleGraph) by giving each node and edge (TransformNode
and TransformEdge) an attribute that describes whether they are in L', R, or K. The nodes
and edges in L’ correspond to the red elements in the one graph notation described in 2.2,
the nodes and edges in R’ to the green elements, and the nodes and edges in K to the
black elements. All these types of graphs are bundled together in one graph transformation
system class (GTS) by two lists of host and rule graphs and a single type graph over which
the other graphs are typed. Another approach to model a GTS that is closer to the category
theoretic basics described in 2.2 would be possible, but in the implementation section I
explain why I have chosen the approach described above.

4.1.1.2 Editing commands

Commands can be used by the editors to edit a GTS model. There are multiple tasks, when
editing a GTS. First, rule and host graphs can be added and removed and their name can
be changed. For each type of graph, i.e. host, rule, and type graph, nodes and edges can
be removed. The type graph’s edges and nodes can also be renamed. The identifier of
the nodes in rule and host graphs can also be modified. Finally, the nodes and edges of a
rule graph p’ = (L’, K, R’) can be moved between the graphs L', K, and R’. Table 4.2
lists the modifications that can be applied to GTS model. However, the GTS model does
not imply, for example, that type nodes can only be added to a typed graph, and not to a
host graph. Therefore, commands must be provided that ensure that no such invalid model
states can occur. In the following, I describe the possibilities of returning an invalid model.
The according figures illustrate invalid model states.

38

4.1 GTS model

i 0 0..* is source for»r 1
—> TypedGraph Graph - Edge Node [<}
—D +id 0..* is target form» 1
0.. A A
is typ¢d over»
= -——-
1 |1<<contains>> |TypeEdge
HTypeGraphl _ ! TypeNode
|<<conta1ns>> T oy
i — T
. is typed over
is typg¢d over
Li 0..-
GTS - 9..*|HostGraph|_ _<$cgnt_ai_ns_>>_>TypedEdg= 0..*
l<<contains>> TypedNode[—
0 A +id
RuleGraph|_

Figure 4.2: UML class diagram of the model of a GTS.

TransformNode

type graph typed graph b) graph
type graph typed graph

-
-
ke e m ==

Figure 4.3: Problematic states when editing nodes in a graph (removed elements are red,
added elements are green, and modifications are blue).

39

4 Realization

a) |type graph typed graph | ©)

type graph

A7
me

b) ltype graph typed graph

~
o d -

O

Figure 4.4: Problematic states when editing edges in a graph (removed elements are red,
added elements are green, and modifications are blue).

rule graph rule graph
O—7: —>
. rule graph A
O-»
rule graph rule graph
O—: —

Figure 4.5: Impossible combinations of nodes and edges in the graphs R',L’, and K of a
rule. Elements in L’ are red, R’ is green, and K is black. A dashed line means,
the element can be in any graph.

40

4.1 GTS model

sre/tgt | L/ K R
L|r r 1]
K |L L,K,R R
R | 0 R R

Table 4.1: Allowed combinations of edges with source and target nodes for rule graphs.

Node commands When adding nodes in a typed graph with no type node being spec-
ified (figure 4.3 a) shows a typed node without its type morphism), the model is
invalid. The identifier of a new node must be unique among the other nodes (fig-
ure 4.3 b) shows two nodes with the same identifier). When a node’s identifier is
changed, it must also be ensured that it is unique. The uniqueness of the identifiers
is important for the encoding of a GTS in CHR (section 2.2). Removing a node can
be problematic: Edges can be left dangling and if the removed node is a type node,
then typed nodes that reference it have no type anymore (figure 4.3 c)).

Edge commands When changing or setting the id of a type edge in a type graph, it must
be ensured that the identifier is unique (figure 4.4 a)). When adding typed edges in
typed graphs, the types of the source and target nodes must match the source and
target of the type edge (figure 4.4 b) shows typed nodes that are connected by the
wrong edge), i.e. the typing morphism described in section 2.2 must be valid. When
creating a typed edge, a type edge must be provided (figure 4.4 a)). Deleting an edge
only raises problems when it is a type edge, because typed edges referencing it would
not have a type anymore (figure 4.4 b)).

Graph commands Adding and removing graphs does not impose any problems, except
when changing the name of typed graphs, attention must be paid that the new name
is unique for host and rule graphs, respectively.

Commands for nodes and edges in rule graphs The problems stated above for
edges and nodes are also valid for rule graphs, but editing rule graphs can lead to
additional invalid model states. When changing the graph to which the nodes and
edges belong (L',R’, or K), it must be ensured that edges cannot arbitrarily connect
nodes from the three graphs, e.g. an edge can never connect a node in R’ to a node
in L'. See figure 4.5 for the combinations that are invalid. The valid combinations
of nodes and edges in the graphs are listed in table 4.1. The table shows the graphs
in which an edge can be in depending on the fact in which graphs the source and
target nodes are in. An edge in L’ may only be connected to nodes in L’ and K.
Accordingly, an edge in R’ may only be connected to nodes in R’ and K. Edges in
K may only be connected to nodes in K.

To prevent the invalid model states described above, commands must be designed in a way,
so that they ensure that modifications to a model do not lead to any invalid model state.
The problems of checking for unique identifiers when adding or removing nodes, edges, or
graphs can be solved by rejecting the modification if the identifier is not unique. The same
solution holds for adding typed nodes or typed edges when no type node or edge is present.
Then the modification is rejected. However, one problem that must be discussed is how to
handle the removal of node and edges. As described above, by removing nodes, edges can
be left dangling. By removing type edges or nodes, there can exist typed edges or nodes
that have no type any more. There are two solutions for this problem: Either forbidding the
deletion of those elements until all other elements that reference it are removed or removing
the referenced elements. I have decided to remove the referenced objects, as well, in order
to make the editing of the model more comfortable.

A similar problem must be discussed for rule graphs. In fact, a rule consists of three graphs
L', K, and R’ which are encoded in one graph in the model. The change of the attribute to

41

4 Realization

which graph a node or edge belongs is called a move between the graphs. When moving a
rule node in a rule graph, the resulting graph may become invalid according to figure 4.5.
There are again two solutions: modifying the connected edges, so that the model is valid
again or forbidding the the modification until the according edges are in the correct graph.
I have decided to modify the connected edges in order to simplify the editing of the model.
However, there are, in fact, three possibilities that can occur when moving a node:

1. After moving the node, the graph is still valid
2. The graph can be made valid, by moving edges

3. The graph cannot be made valid by moving the edges

In the first case, nothing has to be done, because the model is already valid. In the second
case, the edges that are connected to the moved node can also be moved to other graphs, so
that the model becomes invalid. In the last case, there is an edge that connects a node in R’
to a node in L'. For this combination, no edge can connect these two nodes (table 4.1). In
this case, there are two possible strategies: forbidding the move to a new graph for the node
or deleting the edges that would render the model invalid. I have decided again to delete
the edges, because this simplifies the editing of the model.

The last task of editing is the moving of an edge between the three graphs of a rule. However,
solving invalid model states by moving connected nodes, too, is problematic, because there
can exist multiple ways of moving the nodes, so that the model becomes valid again. Be-
cause of that, the move of an edge is simply forbidden if the resulting model would be
invalid.

4.1.2 Implementation

In this section, I describe how the model and editing commands are implemented. The
model can be found in the projects org.uniulm.gts.model and
org.uniulm.gts.model.edit. The commands are bundled in the project
org.uniulm.gts.model.commands.

4.1.2.1 Model

For the implementation, I use the two java technologies EMF and GEF. I decided to use a
code generator for creating the source code for the model, because generated code tends
to contain less errors and saves a lot of time. I chose to use EMF, the eclipse based code
generation tool for modeling. Despite its advantages, code generators often provide only
few possibilities to add user generated code which might be necessary to describe logic that
would otherwise make the model itself very complex. Because of that, the code to keep
the model valid is not put into the model itself, but it is realized by using GEF commands.
GEF commands are used, because the graphical editor uses GEF. Therefore, the commands
can be better integrated in the editor.

The UML class diagram in figure 4.2 can be ported directly to EMF by creating an ecore file
from it which describes all the classes, their attributes, relations, and further the hierarchic
compositional structure of the elements (this is called a containment/container relationship
in EMF). The containment structure is especially important for serializing the model to
XML files, which is described in section 4.2.1. The nodes and edges for rule graphs contain
an attribute to express to which graph of the rule they belong to. This is realized by the
java enumeration RuleGraphType with three states, namely K, R, and L, representing
the belonging of the element to the graphs K, R’, and L'.

42

4.1 GTS model

The EMF generates two projects out of an ecore file: the interfaces and implementations
of the classes (org.uniulm.gts.model) and classes that provide rudimentary editing
capabilities for them (org.uniulm.gts.edit). Other projects like testing environ-
ments and editors can also be generated, but they are not considered here. Furthermore, the
generated implementation provides the listener pattern ([23]) for every class. Automatic
consistency for elements that have a binary relation is also available. When changing the
relation in one object, it gets also changed in the other one automatically, e.g. when the
source attribute of an edge is set to null, the edge is automatically removed from the list
of edges of the former source node. The reason why the model design is not closer to
the theory described in 2.2 is that EMF is based around classes and their connections to
each other. Morphisms for typed graphs or between the graphs of a rule could be realized
as methods of a class, but the implementation would not be provided automatically. As
a result, the morphisms are expressed as relations and compositions between the classes.
In addition to that, the model described above is much more convenient for the editors, as
described in section 4.3. Some further adjustments have to be made to the ecore model in
regard to the graphical editor: The classes for the nodes, edges, and graphs have a reference
to a view object that saves visual information about the corresponding element, i.e. size
and position. As described in [3], a model could also be divided into two models where the
second model only saves the graphical representation. This would provide a separation of
the display information from the information of the GTS itself which is in general a good
feature of a model, but there is no advantage specifically for this project. If there were mul-
tiple graphical editors, all with a different way of displaying the graphs, it would justify
the separation. Furthermore, the implementation of such a separation would have been too
time-consuming. Because of that, the visual information is saved in the same model.

4.1.2.2 Editing commands

The commands are implemented as GEF commands, so they can easier be integrated into
the graphical editors just as described in [29]. GEF provides a base class Command where
methods for executing, undoing, and redoing are provided. This class is meant for extend-
ing it. Additionally, commands have a canExecute () method that is checked by the
command stack prior to executing it. This method can be used to check for possible invalid
model states. In the following, I show how I have solved the problems of editing the model
(section 4.1.1) by using commands. A full list of commands for the modification of the
model is listed in table 4.2 (commands for changing the visual presentation of the model
are not listed). From this list, one can see that there is not one command for each element
of the GTS. The commands are more generic and determine the correct object of the model
from the given information, e.g. if the graph to which the node or edge is added is a rule
graph, the node or edge is also a rule node or edge, respectively. Each command checks in
the canExecute () command if it can be executed without rendering the model invalid.
The execute () method saves values for undoing the command. If further modifications
have to be applied to the model to keep it valid, the corresponding commands are also cre-
ated in the execute () method. At the end of this method, the redo () method is called.
In the redo () method, the changes are in fact executed. Whereas in the undo () method,
the previously saved values are restored and commands executed in the redo () method
are undone

In appendix C.1, two exemplary commands are shown: one for deleting nodes and one
for moving a node or an edge between the graphs R’, L', and K in a rule. I have cho-
sen these two commands, because they present the two more complex situations that can
render a model invalid. Listing 4.1 shows an excerpt of the NodeDeleteCommand. In
this command, further commands are created in the execute () method (lines 1-19) in
order to delete edges connected to the node. If it is a type node, delete commands for
the typed nodes referencing it are created. These commands are executed in the redo ()

43

4 Realization

EdgeCreateCommand
EdgeDeleteCommand
EdgeModifyCommand
NodeCreateCommand
NodeDeleteCommand
NodeModifyCommand
HostGraphCreateCommand
RuleGraphCreateCommand
GraphDeleteCommand
ChangeGraphNameCommand
ChangeRuleGraphCommand

Create an edge

Delete an edge

Change the identifier of an edge
Create a node

Delete a node

Change the identifier of a node
Create a new host graph

Create a new rule graph

Delete a typed graph

Change the name of a typed graph
Change the belonging of a node or
an edge to another rule graph

Table 4.2: Table of available editing commands.

public void execute () {

removedEdges=new LinkedList<EdgeDeleteCommand>() ;
removedTypedNodes=new LinkedList<NodeDeleteCommand>() ;

if (child instanceof ITypeNode) {

for (IAbstractNode n: ((ITypeNode)child).getTypes())
removedTypedNodes . add (new NodeDeleteCommand(n));

}

if (child
typeNode =

}

instanceof INode) {

((INode)child).getType () ;

for (IAbstractEdge e:child.getSrcEdg()){
removedEdges.add (new EdgeDeleteCommand(e));

}

for (IAbstractEdge e:child.getTgtEdg()){
removedEdges.add (new EdgeDeleteCommand(e));

}
redo () ;

}

public void redo() f{

for (EdgeDeleteCommand e:removedEdges) {

if (e.canExecute()) e.execute();

}

if (child instanceof ITypeNode) {

for (NodeDeleteCommand n:removedTypedNodes)

if (n.canExecute()) n.execute ();

}

if (child

child .setGraph(null);
}

public void undo() {
child .setGraph(parent);
if (child instanceof INode){

instanceof INode) ((INode)child).setType(null);

((INode)child).setType (typeNode);

}
if (child

instanceof ITypeNode) {

for (NodeDeleteCommand n:removedTypedNodes)

n.undo () ;

}

for (EdgeDeleteCommand e:removedEdges) e.undo();

}

Listing 4.1: Excerpt from the NodeDeleteCommand.

44

© ® 9w

10

12
13
14

16
17

4.2 The platform

public boolean canExecute () {
if (model instanceof ITransformEdge) {
TransformElementType src=((ITransformNode) ((ITransformEdge)model). getSrc()).getTrans
(O
TransformElementType tgt=((ITransformNode) ((ITransformEdge)model).getTgt()).getTrans
(O
if (newType. equals (TransformElementType .K) &&
src.equals (TransformElementType .K) &&
tgt.equals (TransformElementType .K))
return true;
else if (!newType.equals(TransformElementType .K) &&
(src.equals (TransformElementType .K) |l src.equals(newType)) &&
tgt.equals(TransformElementType .K) |l tgt.equals(newType)))
return true;
else return false;

}
if (model instanceof ITransformNode) return true;
return false;

}
Listing 4.2: Excerpt from the ChangeRuleGraphCommand.

method (lines 20-30) by first removing the typed nodes (if the node itself is a type node),
then the edges, and at last the node itself. Especially note the undo () method (lines
32-42) where all the commands are undone, but in opposite order to keep the model
valid in intermediate states. Listing 4.2 shows the canExecute () method from the
ChangeRuleGraphCommand. This command works on both, edges and nodes. For
edges, the canExecute () method checks whether the combination in the new graph is
valid according to table 4.1 (lines 2—14). Nodes may always be moved between the graphs
(line 15), because edges connected to them are moved or deleted, as well.

4.2 The platform

The design of the platform itself is very important, because all the tools and the editors are
embedded there. The platform consists, on the one hand, of GUI elements for displaying
the editors and for giving a choice for the analysis tools and, on the other hand, of the
eclipse extension point where analysis tools can be plugged in.

4.2.1 Design

In this section, I explain the design of the GUI and the extension point, as well as the flow
of information between analysis tools and editors.

4.2.1.1 Graphical user interface

The GUI of the platform consists of an editor which is placed in the eclipse workbench and
a corresponding action bar. The editor must be able to display two embedded editors at the
same time (the graphical and the textual one). This split editor is called multi-bar editor
(in relation to the already existing multi-page editor provided by eclipse). In the multi-bar
editor, the editors are arranged vertically below each other, each one having a bar above
containing its name. The screen-shot in figure 4.6 shows a multi-bar editor instance with a
textual editor expanded and a graphical editor collapsed. Each editor can be collapsed and
expanded by clicking on an arrow in the bar next to its name.

The GTS editor is extended from the multi-bar editor and is used as base editor for the
platform. It handles loading and saving of the GTS model and provides a shared command
stack for the editors and analysis tools.

45

4 Realization

e My 82 -8
I» Graphical
~ CHR

public Constraint node({lLogical), edge(lLogical,logicall;

rules{

node (id®), node(idl), edge(idl,idd), edge(id0,idl)

===

node (1d®), edge(idd,ido).

]

[« [*]

Figure 4.6: The multi-bar editor.

A 4| Scloct atool: | &

Generate random host graph

J= phil
B CHR based analysis tools
7 Grapl Graphical simulation

% Termination analysis

Figure 4.7: The action bar of the multi-bar editor.

The second GUI element is an action bar for the multi-bar editor which can be seen in fig-
ure 4.7. This action bar shows actions that are available for the editors which are embedded
in the corresponding multi-bar editor. Furthermore, it contains a combo box that lists all
the available analysis tools. Buttons for undo, redo, and delete operations are inserted at
the left side of the combo-box. The analysis tools can be launched by clicking the entries
of the combo box. The buttons on the right side of the combo-box are managed by the em-
bedded editors. These buttons can be updated by the embedded editors. For example, the
graphical editor can display buttons to add new host and rule graphs depending on which
graph is displayed at the moment.

Other needed GUI elements are file and project creation wizards that guide the user through
the creation of new GTS. There must be a wizard to create a new GTS project which can
host multiple GTS files. For creating files that contain a GTS, another wizard must be
created. Both wizards are kept very simple and only ask the user to enter the name of the
GTS project or select the project where the new GTS file should be added to and provide
the name of the file. Both wizards are shown in figure 4.8.

4.2.1.2 Extendability

Before discussing how the platform’s extensibility can be designed, I describe the flow
of information in the platform between the tools and the editors, first. Information about
changes in the model do not need to be exchanged between tools and editors, because
the editors and tools can be directly updated from the model itself. Therefore, the only
information that must be send to the analysis tools is the model itself, the file it was loaded
from, and the command stack, so that the tools can read the model, modify it, or create
further files depending on the file name of the model.

46

4.2 The platform

I GTS file Wizard \EI.M

GTS Wizard

Create a new Graph Transformation System

Enter or select the parent folder:

sample

File name: Iphilisoph.braph

Advanced >> |

(7 < Back [ext = | Finish | Cancel |
[@ Create new gts project =17}

Create new gts project

Set the name of the new project

Project name: Isample|

Use default location
Location:|fhomefuser,!DipIomarbeitfruntime—EcIipseAppIication(l}l,n’s Browse..., |

6] < Back | [ext = | Einish | Cancel

Figure 4.8: File (upper) and project (lower) creation wizards.

47

4 Realization

tool requests display updateb‘

| | notifyDisplayUpdate() y
V|

GTSAnalysisTool ‘ GTSEditor ‘ Textual Editor Graphical Editor
i N i
! editor starts tool !
I I
i setModel() ! i

setFile() i
setCommandStack() i
addChangelListener() i

]
I
I
]
I
I
]
I
I
]
|

o
i notifyDisplayUpdate() N
i Update displayvu‘—_\
]
I
i notifyDisplayUpdate() i
I I I
! ! Update display !
i i i
! ! i i
! ! when updating the view of an editor,
! ! the other editor's view is updated, too
i i .
! ! notify DisplayUpdate() Q
I I
i notifyDisplayUpdate() i N i
T
i i Update displayvu‘—_\
| | .
! notifyDisplayUpdate() y ! !
I I I
! ! Update display !
! ! ; !
GTSAnalysisTool GTSEditor ‘ Textual Editor ‘ Graphical Editor

Figure 4.9: UML sequence diagram of the flow of information between the editors and the
tools.

The information that is displayed in the editors and the tools should always be synchro-
nized. For that reasons, the information that must be transferred is which graphs, nodes,
and edges are currently displayed, so that tools can display graphs and selections of nodes
and edges directly in the editors. The sequence diagram in figure 4.9 shows that the GTS
editor is the central point of information transfer. Analysis tools can send information to
the GTS editor about activated graphs and selections. This information is then sent to all
the editors which update their view accordingly. This mechanism can also be used for syn-
chronizing the view between the embedded editors by sending a notification with the graph
to display from one of the editors to the platform. The platform then updates the view of
both editors.

An eclipse extension point is used for plugging in analysis tools. As described in sec-
tion 2.4, creating an extension point comes in two parts: designing the extension point
definition and providing an interface which must be implemented by the extension. Ba-
sically, extension points only offer a flow of information fo the extension, but a flow of
information from the extension is not realized. However, the analysis tools need to send
back notifications, so that graphs can be displayed in the editors. This is described in figure
4.9. Therefore, the interface of the extension point must provide methods to set the GTS
model, the command stack, and the file in the analysis tools. The file is needed, so that
analysis tools that generate further files can name them reasonably. The command stack is
needed for analysis tools that modify the model. To receive information from the analysis

48

4.2 The platform

& philosopher2 =0
~ Graphical

wait think eat onTable

philosopher | jiesnextTo

Type-Graph Editor| Host Graph Editor| Rule Graph Editor
= CHR
public Constraint philosopher(Logicall, fork(Logical), liesMextTollLogic

Figure 4.10: This screen-shot shows a multi-bar editor with two editors embedded. The
upper editor is a multi-page editor, the lower one is a text editor.

tools, methods for the listener pattern must be added, so that the platform can add itself as
listener to the analysis tool to get notified when a new graph or a part of a graph should be
displayed. Because of that, a listener interface must be created that can be implemented by
the platform to receive notifications from the analysis tools. The extension point definition
contains only three attributes: The identifier of the extension, the name that is displayed
to the user when the extensions are listed, and the class that is loaded when starting the
extension.

4.2.2 Implementation

This section is split up into several parts: First, I provide some details about the multi-bar
editor implementation, then I show how to save and load EMF models from files. After
that, I explain the methods of the interface for the extension point. The complete inter-
face is also listed in appendix C.2. The next topic is the registration and visibility of
actions in the action bar. Then, there is a short section on how to load extensions and
display them in the combo-box of the action bar. At the end, I show how the communi-
cation of the plug-ins with the editors is realized. The platform itself can be found in the
main project org.uniulm.gts. The extension point definition is found in the project
org.uniulm.gts.analysistool.

4.2.2.1 Multi-bar editor

The multi-bar editor is implemented in the class MultiBarEditorPart which is simi-
lar to a MultiPageEditorPart, but with a MultiBar widget instead of a
CTabFolder widget as underlying structure. Figure 4.10 shows an example of a multi
page editor and a multi-bar editor where the multi-page editor is embedded in a multi-bar
editor. These editors embed further editors on separate pages. Extending the

49

4 Realization

MultiPageEditorPart and overwriting all the methods that access the CTabFolder
widget is, however, problematic, because there are methods that are marked final and
can not be overwritten. As a consequence, the editor has to be reimplemented. Fur-
thermore, some concepts from the Mult iPageEditorPart cannot be supported. The
MultiPageEditorPart provides several means of modifying the active page which
refers to the currently displayed page in the CTabFolder widget. However, a multi-bar
does not have an active bar because everything is displayed in parallel. For that reason,
these features are not implemented. Additionally, the method for adding new editors has
been changed. A float value has to be given when adding a new bar for an editor. This float
value gives the relative height of the newly added bar. When resizing the window, collaps-
ing or expanding a bar, these additional float values are evaluated to recalculate the height
of the expanded bars. The higher the float value is, the more space the editor gains. The
upper editor in the multi-bar editor in figure 4.10 has a float value that is twice as high as the
one of the lower editor. This MultiBarEditorPart is extended by the GTSEditor
(which is referred to as GTS editor in the remainder).

4.2.2.2 Saving/Loading GTS models

The GTS editor is the main editor of the platform. It features loading and saving mech-
anisms for GTS models. Loading and saving EMF models is done by serializing them
into XML files. This service is directly provided by EMF: An EMF Resource object
is created from an eclipse Path object, then save and load operations can be applied to
the Resource object. An eclipse Path object contains the path to a file or folder. After
doing a load on a resource one can retrieve a list of its contents. There is the possibility
of saving multiple contents, i.e. multiple GTS models, but for this application only one
model is saved. As described in section 4.1.2, the modeling technique of containers and
containments is used in EMF. Objects can be inside of at most one containment. This gives
the model a tree-like structure which is needed for persistence, because EMF uses XML
to serialize the model and XML has a tree-like structure. If there are elements that are
currently not in a containment, saving fails. Therefore, special attention must be paid when
modifying the model (see section 4.1.1), so that all referenced objects are contained in an-
other object. The functionality of loading and saving EMF models is bundled in the class
ModelManager which provides the functionality to load and save models to files and to
create new models when starting a fresh GTS.

4.2.2.3 Wizards

Other features that have to be implemented are project and file creation wizards for GTS.
In section 4.7, I explain why an own project is needed for GTS. However, the project
creation wizard (bundled in the class NewGTSProjectWizard) creates a new eclipse
plug-in project, so that plug-ins can be added as dependencies. The creation is done via
JET which is described in section 4.6. JET is used, because it features an easy way to
create projects and files in the eclipse workspace. The new file wizard (bundled in the class
ModelWizard) creates a new GTS model with only the type graph, but without host and
rule graphs. This model is then serialized to the file which the user has entered in the
wizard. The creation of the initial model is done by the Mode 1Manager class mentioned
in the previous section.

4.2.2.4 Extension point

The implementation of the extension point is very close to the design described above. The
interface’s name is IGTSAnalysisTool. However, an additional method is added to the

50

16

4.2 The platform

public void computeTools(List<String> names, List<IGTSAnalysisTool> tools){
names.clear (); //save the names
tools.clear(); //save the tools instances
IExtensionRegistry registry=Platform. getExtensionRegistry ();
IExtensionPoint ep = registry.getExtensionPoint("org.uniulm. gts.analysistool");
IExtension[] exts=ep.getExtensions();
for (IExtension ext:exts){
for(IConfigurationElement c:ext.getConfigurationElements ()){
try{
Object tool=c.createExecutableExtension("class");
if (tool instanceof IGTSAnalysisTool){
names.add(c. getAttribute ("name"));
tools .add ((IGTSAnalysisTool)tool);

}

}catch (Exception e) {...}

Listing 4.3: Load extensions from an extension point.

interface in order to tell the analysis tool that it should start its analysis (runAnalysis ()).
This method is called after the command-stack, the file, and the model are set for the tool.
The complete code for the interfaces and the extension point definition can be found in
appendix C.2. A guide for creating an analysis tool can be found in section 4.5.2.

Loading extensions in eclipse is done in multiple steps. Listing 4.3 shows the used code
that is used to load all the analysis tools from the extension point and save them to two
lists. First, the extension registry must be fetched (line 4). From there, one gets the desired
extension point by giving its identifier (line 5). The extension point contains a list of its ex-
tensions (line 6). Each extension consists of a list of ConfigurationElements where
each element contains a definition of an extension. The attributes of the extension can be
queried for each ConfigurationElement. From the attribute class an executable
class is loaded and instantiated (line 10). This object is then saved in a list of tools (line
13). The name attribute is saved in a list of strings. This list is used for displaying the
analysis tools in a combo box (line 12).

4.2.2.5 Action bar

As described in the design section (4.2.1), the platform has a common action bar for all the
editors. This action bar’s main element is a combo-box that displays all available analysis
tools. This combo box is implemented in the class
PluginSelectToolbarContribution. Elements, except buttons, that are added to
an action bar, are called action bar contributions in the eclipse framework or contribution
if the context is clear. This combo-box contribution handles the loading of the extensions
as described in the previous section and launches the tools by clicking on their entry. List-
ing 4.4 shows how an analysis tool extension is started. When launching an analysis tool
extension, the model, the file, and the command stack of the currently active editor are set
in the tool. Furthermore, the currently used GTS editor is added as a listener to the tool af-
ter removing all old listeners (lines 9—14). Finally, the runAnalysis () method is called
(line 15) within a SafeRunnable instance which provides an extra thread that catches
exceptions (lines 2—15). The active model, file, and command stack are always saved in
the combo-box in corresponding variables. Further attention has to be paid when using
multiple instances of the GTS editor in parallel, because they all share the same action bar.
Therefore, each editor has a reference to the combo box in the action bar and every time an
editor receives focus, it sets the model, file, and command stack in the combo box, so that
the tools receive the content of the currently displayed editor.

51

4 Realization

final IGTSAnalysisTool t=tools.get(cb.getSelectionIndex ()—1);
ISafeRunnable run= new ISafeRunnable () {

public void handleException(Throwable exception) {

String [] but={"Ok"};

MessageDialog md=new MessageDialog(null, "Error executing tool", null, "An
unexpected error occurred during tool execution", 0, but, 0);
md. open () ;

public void run() throws Exception {
t.setModel (model) ;
t.setCommandStack (commandStack) ;
t.setFile (file);
t.removeAllListeners () ;
if (editor!=null)
t.addChangeListener (PluginSelectToolbarContribution. this.editor);
t.runAnalysis () ;
}
}s

Listing 4.4: Start selected extension from PluginSelectToolbarContribution.

As already mentioned, the editors can register their own actions to the action bar. To realize
that, the action bar has the method registerRetargetActions (List<IAction>)
to add actions to it. Not all actions are shown permanently, but only when the displayed
editors need them. Because of that, every time when the platform is notified about a display
update for the editors, it queries the currently active actions of the editor and sends them to
the action bar, which updates the displayed actions accordingly.

Up to now, only tools can send information about active graphs, nodes, and edges to the
platform, but there is no communication between the tools. However, the interface already
provides methods for setting active graphs, nodes, and edges. This might be especially
useful for tools that combine multiple other tools, e.g. analysis environments combining
several analysis tools or alternative display modes.

4.3 The graphical editor

This section covers the realization of the graphical editor. The design section explains the
graphical user interface of the editor. The editor is based on GEF and implements the
MVC paradigm. This is described in the implementation section together with the tools
and actions that are provided for the editor. A sample computation for the creation of a
GTS is shown at the end of this section.

4.3.1 Design

This section covers the design of the graphical editor’s GUIL In a GTS, there are multiple
types of graphs (type graph, host graphs, and rule graphs) which need to be edited by this
editor. The editor should provide an intuitive method of editing together with visual feed-
back about invalid model states (section 4.1.1.2). Editing type graphs is basically editing
a normal graph where identifiers for nodes and edges must be supplied. Because of that, a
standard editor with tools for creating nodes and edges can be chosen. Figure 4.11 shows a
standard GEF editor with a palette on its right containing a selection, a node-, and an edge-
creation tool. Typed graph editors are needed for editing rule and host graphs. For typed
graphs, the type graph or at least a list of the types for nodes and edges, must be available.
However, displaying the type graph directly to choose the edges and nodes that should be
created next is better, because it shows directly the context of the node or edge type that
should be created. Using only a list of types (like in Groove or AGG) leads to switching
back to the type graph editor to look up the adjacent edges and nodes of the selected node

52

4.3 The graphical editor

we Palette 3

wait think eat onTable A0
philosopher | e snextTo | fork
T [I&Edyz1D
U Please enter a UNIQUE identifier for this edge
|newEdge
oK Cancel

Figure 4.11: Standard graphical editor for creating type graphs where the identifier of a
new edge is queried.

~ Type graph

think wait eat onTable

N

philosopher| jiagnextTo |fork

= Hosts

L
f1 /R\

<*ieshextTo |fork

Figure 4.12: Host graph editor together with a type graph, to select the types of nodes and
edges.

or edge. Furthermore, when creating new edges in a typed graph, the nodes that cannot be
selected as source (or target) should be grayed out, so that the user cannot add edges to the
graph that are incorrect according to the type graph. An editor for creating a host graph
(which is in fact a typed graph) could be realized as shown in figure 4.12 with the type
graph displayed above the typed graph editor. The type graph is displayed above the host
graph editor and can be used to select the type of the node or edge that should be created
next. A new edge of the type onTable is currently created in the screen-shot. This edge can
only connect nodes of the fork type, therefore, the philosopher nodes are grayed out. Typed
nodes and typed edges can be created in the type graph by selecting the corresponding type
node or edge in the type graph and then clicking at the appropriate position in the typed
graph editor.

In a GTS, there are in general several host graphs and rules. Because of that, the typed graph
editor must offer a way to select the graph that should be displayed in the editor. Figure
4.13 shows a typed graph editor with an embedded list of the available graphs on the right
side. A new graph can be displayed by clicking on the according entry. Furthermore, the
name of the graph must be displayed in the graphical representation of the graph.

53

4 Realization

» Type graph
~ Hosts
> Palette

-

FivePhilos
TwoPhilos

P2
philosopher

eat

Figure 4.13: Host graph editor together with a list of available graphs on the right side. The
type graph is collapsed.

Another variant of typed graphs are rule graphs. There are several ways of giving a graphi-
cal notation of rule graphs, as described in section 2.2. In the two and three graph notations,
the morphisms between the graphs must be provided explicitly. The one graph notation im-
plicitly contains these morphisms. I have decided to use the one graph notation, because
it is a compact and simple notation without the need of manually specifying morphisms.
Another benefit of this is that the typed graph editor described above can also be used for
editing rule graphs. However, for rule graphs, a context menu has to be added, so that the
nodes and edges can be made green, red, or black. Figure 4.14 shows the rule editor with
the context menu for moving an edge between the red, black, and green graph of a rule.

As the editors for host and rule graphs both enable the user to edit several graphs, actions
must be provided to add and remove host graphs and rules. These actions can be embedded
in the action bar of the platform, as shown in figure 4.15.

As just stated, the graphical editor should consist of three editors (for type, host, and rule
graphs). These editors are grouped together on multiple pages, so that the user can switch
between them. The actions in the action bar contributor should be updated accordingly
when the editors are switched. Figure 4.16 shows these pages for the type, rule, and host
graph editor. The type graph editor is currently displayed.

4.3.2 Implementation

The implementation is divided into multiple parts. First, I describe how the model view
controller (MVC) ([27]) paradigm is implemented in GEF, then I show the implementa-
tion of the edit-policies for creating the commands to edit the models. This can all be
used by the editors for type, rule, and host graphs in common. The next section de-
scribes how the editors themselves are implemented and the last section shows how fur-
ther actions for the editors are added. The graphical editors can be found in the project
org.uniulm.gts.graphicaleditors.

4.3.2.1 Model View Controller (MVC)

In GEEF, the controller objects are called Editparts. GEF already provides a base im-
plementation in form of an AbstractGraphicalEditpart, which contains several
methods that can be overwritten to add functionality. Table 4.3 shows the methods that are
of interest. There are a few more methods, but I present only the ones used in this project.

For the graph model defined in section 4.1.1, there are basically three EditPart classes,
one for edges, one for nodes, and one for graphs. The EditPart instances are created via

54

» Type graph
= Rules

4.3 The graphical editor

L Eyee—m——"

4145 Palette >
i Redo thinkTowWait
% Delete waitToEat
eatToThink

Elerment Stays

Element is added

Element is removed
Change graph name

Bun As
Debug As
Team
Compare With
Replace With

4
4
4
3
3

P

i

Input Methods

4

think philosopher s—._ #ait

Figure 4.14: Rule graph editor with context menu for changing the graph of an edge or a

node in a rule.

J <) %> W Select atool:

) 2

ﬁﬁhilosogher?_ 3 ;

= Graphical
b Type graph
= Hosts

liesMextTo

P4
philosopher

T

Figure 4.15: Actions for adding and removing host graphs in the action bar of the platform
(marked with a red rectangle).

wait think eat

philosopher|

liesMextTo

onTable

fork

<o Palette >

.20

e Graph Editor Host Graph Editor Rule Graph Editor

Figure 4.16: Multi page editor containing a rule, host and type graph editor, the type graph
editor is currently the active page.

55

4 Realization

createFigure () create the view object

refreshVisuals () refresh the view from the model
getModel () return the model object
getModelChildren () return all children elements of the model
getModelSourceConnections () return all edges that are connected as source
getModelTargetConnections return all edges that are connected as target
activate () activate the edit-part

deactivate () deactivate the edit-part
createEditPolicies () create edit policies for the edit-part

Table 4.3: Important methods, provided by the AbstractGraphcialEditpart, that
should be implemented by the extending class.

NodeModifyCommand | Node | NodeEditPart | NodeView

i changeld() i

notifyChanged()

refreshVisuals() :l

setld() N
y______wid
__________ woid
| wig || i
1 1 1
NodeModifyCommand | Node | NodeEditPart | NodeView

Figure 4.17: UML sequence diagram, showing how the view of a node is updated from the
model.

a factory used by the -editor. This factory is implemented in the class
GraphEditPartFactory and returns the corresponding EditPart instance for a
model element. EdgeEditPart instances are created for objects which are instances
of the class IAbstractEdge. Accordingly, a NodeEditPart is created for instances
of the TAbstractNode class and a GraphEditPart is created for objects of the class
IGraphModel. The edit parts together with their model instances are listed in table 4.4.

All of the edit parts implement the activate () and deactivate () method in which
they add or remove themselves as listener to their model element. To do that, they must im-
plement the EMF Adapter interface, which provides the not i fiyChanged () method.
This interface is used by the EMF to notify its listeners. In this method, the edit-parts get
notified about changes in the model. The UML sequence diagram in figure 4.17 shows how
the edit parts are updated from the model. This example shows how a Node object is mod-
ified by a NodeModifyCommand and how the corresponding NodeEditPart is updated.
When the Node is modified, e.g. by changing its id attribute, the not i fyChanged ()

method of the corresponding NodeEditPart instance is called. In this method, the edit-
part itself updates the corresponding view element with the method refreshvVisuals ().
The class NodeView implements the graphical representation of a node. Depending on
the type of the edit-part, other refresh methods are called. The GraphEditPart calls
the refreshChildren () method which fetches the model element’s children, i.e. the
nodes, by calling the getModelChildren () method. getModelChildren () re-
turns a list of all the nodes in the GraphEditPart’s model. The GraphEditPart

56

4.3 The graphical editor

NodeEditPart Controller for (type-, host- and rule-) nodes
EdgeEditPart Controller for (type-, host- and rule-) edges
GraphModelEditPart Controller for (type-, host- and rule-) graphs

Table 4.4: Available EditPart classes.

then checks if any nodes or edges are removed or added and updates the edit-parts for the
nodes accordingly.

In the createFigure () method which is also implemented by all edit parts, a draw2d

figure is created. Edges are represented as PolylinePonnection, nodes as NodeView,
and graphs as FreeformLayer instances. Only for the nodes, the new class

NodeViewPart is extended from the draw2d Rectangle class. Graphs and edges

are displayed using standard classes from draw2d. A new class is created for the nodes,

because it contains multiple labels what makes updating this view more complex.

4.3.2.2 Edit policies

Before describing the createEditPolicies () method of the edit-parts (see table 4.3),
I want to explain how editing works in GEF. The root of all editing actions is the Tool
class. This class sends (upon user interaction) a Request instance to an EditPart. This
Request signals that the model shall be edited. The EditPart sends this Request to
its EditPolicy instances which create the corresponding Command instances to ma-
nipulate the model. The commands are already described in section 4.1.2. Therefore,
the GraphEditPart needs an edit policy for moving around and resizing nodes, as
well as adding them. This is the GraphXYLayoutPolicy. Changing the name of a
graph is handled by the ChangeGraphNameEditPolicy thatis only added for typed
graphs, i.e. rule and host graphs. NodeEditParts need edit policies for deleting nodes
(NodeComponentEditPolicy), adding edges (EdgeCreateEditPolicy), mov-
ing the nodes between the graphs of arule (TransformTypeEditPolicy, only for rule
graphs), and changing the name of a node (LabelDirectEditPolicy).
EdgeEditParts for edges of a type graph have an edit policy for changing the identifier
(LabelDirectEditPolicy). For creating edges, another edit-policy must be installed
(ConnectionEndpointEditPolicy). Edges in rule graphs have a
TransformTypeEditPolicy installed that generates commands for moving the edge
between the graphs of the rule. Handling bend-points of the edges is done in the
EdgeBendpointEditPolicy. Another edit policy is installed for deleting edges
(ConnectionEditPolicy). All these edit policies create the commands depending
on the model element contained by the edit part. Creating the command is done in the
getCreateCommand () method. Listing 4.5 shows the getCreateCommand ()
method from the GraphXYLayoutEditPolicy class for creating a new
NodeCreateCommand. In this example, a new command for adding a node to a graph
is created. First, it is checked whether the object contained in the request is of the correct
class INode (line 3). If that is not the case, the edit-policy returns null. This means
for edit-policies in general that they are not responsible for this request. If the request to
create a node is TypedNodeCreateRequest, i.e. when a typed node should be cre-
ated, then the according type node is queried from the request (line 4-7). At the end, a
new NodeCreateCommand instance is returned (line 8—11) which is initialized with the
model object for the graph, the size and location of the new node, the type node, and an
identifier for the node which is left blank. The command (section 4.1.2.2) modifies the
model according to the input. If the type is null and the graph model is a type graph then
a type node is created. If the type node is not null, then depending on the type of the graph,

57

4 Realization

protected Command getCreateCommand(CreateRequest request) {
Object childClass = request.getNewObject();
if (childClass instanceof INode) ({
ITypeNode type=null;
if (request instanceof TypedNodeCreateRequest) {
type=((TypedNodeCreateRequest)request).getTypeNode () ;

return new NodeCreateCommand (
(IGraphModel) getHost () . getModel () ,
(Rectangle) getConstraintFor (request),
type ,"");
}

return null;

}

Listing 4.5: getCreateCommand () from the
GraphXYLayoutCreateEditPolicy.

a node for a rule graph or a node for a host graph is created. If the identifier for the node is
left blank, then the command queries the name from the user.

4.3.2.3 Editor

GEF has several base classes for creating editors. I have chosen the
GraphicalEditorWithFlyoutPalette,because it already contains a palette which
can hold tools for creating nodes and edges. This base class has to be extended to cre-
ate custom editors. Basically, the two methods initializeGraphicalViewer and
configureGraphicalViewer have to be implemented for setting the model that
should be displayed and for configuring the editor. Configurations include setting con-
text menus and an edit-part factory. At first, details are given for the type graph editor and
then for the typed graph editors, i.e. the host and rule graph editors.

For the type graph editor, an instance of the GraphEditPartFactory as the edit part
factory is set and a palette with two tools, one for creating nodes and one for creating edges
(bundled the class TypeGraphPaletteFactory), is added. The two tools are already
provided by GEF.

Implementing the typed graph editors is more complex, as the type graph is also needed for
selecting the type nodes and edges. This is realized by embedding two editors in a multi-bar
editor, as shown in figure 4.12. The upper one displays the type graph (GraphViewer).
The lower one is the editor for typed graphs itself (TypedGaphEditor). The
GraphViewer is a GEF editor with only a selection tool and no palette, so that no edit-
ing can be done there. The typed graph editor has a reference to a GraphViewer and
adds itself as selection listener to it. Therefore, every time the user selects a new node or
edge in the GraphViewer, a notification is sent to the TypedGraphEditor. When
it receives notification that a new node or edge was selected, the active tool is changed.
If a node is selected in the graph viewer, a TypedNodeCreationTool becomes the
active tool. When an edge is selected, a TypedEdgeCreationTool becomes active.
Therefore, the graph viewer is the tool selector for this editor. When no node or edge is
selected, a SelectionTool is activated in the TypedGraphEditor. The palette is
used, as well, but it displays a list of available typed graphs and provides the possibility to
select them (see figure 4.13). To use the palette as a list of typed graphs, the editor adds
itself as PaletteListener to get notified when the active fool is changed. During a
tool change event, the editor removes the old graph from the display and sets the selected
graph as the new model. The elements in the palette are in fact selection tool entries with
different labels, so that the identifier of the graph is displayed. The typed graph editor also
adds itself as listener to the GTS model element, so that it gets notified when graphs are

58

4.3 The graphical editor

public void run () {
if (tge.getCurrentGraphModel () instanceof IHostGraphmodel) {
ITypedGraphModel g=(ITypedGraphModel)tge . getCurrentGraphModel () ;
GraphDeleteCommand host=new GraphDeleteCommand(g);
cs.execute (host);
}
}

Listing 4.6: run () method from the DeleteGraphAction super class.

’ GTSEditor ’ GTSMultiPageEditor ActivePage

| setActiveGraph() » |

|

|

switch to '
correct page !
according to !
the graph !

|

|

|

|

setActiveGraph

display new graph

TNT T T T T T T T T T T b |

’ GTSEditor ’ GTSMultiPageEditor ActivePage

Figure 4.18: Flow of information from the platform to the graphical editor.

added or removed. When a new graph is added, the editor displays this new graph and adds
an according entry to the palette. When a graph gets deleted, it displays the next graph in
the list and removes the current one from the palette. Furthermore, the editor needs a refer-
ence to the list of typed graphs it edits, the command stack, and the GTS model itself.The
editor described above can be used as host and rule graph editor.

For each typed graph editor two actions are registered in the action bar to add and delete
host and rule graphs, respectively. Actions provide a method run (), that is called when
clicking on a toolbar entry associated with this action. The actions for adding and removing
typed graphs each have super classes that implement the run () method. Listing 4.6 shows
the run () method of the DeleteGraphAction. The action has references to the typed
graph editor in the variable t ge and to the command stack (cs). The method retrieves the
current graph model from the editor, creates a GraphDeleteCommand from it, and adds
it to the command stack. The editor is then updated due to the changes that are made in
the model. The run () method of the NewGraphAction first asks the user to input a
unique identifier and then creates the according command for creating a new graph. The
methods for retrieving the correct command and for retrieving a list of available graphs (to
check if the entered identifier is unique) must be implemented by the actions for host and
rule graphs, respectively.

The three editors described above (for type, host, and rule graphs) are each added on a
separate page in a MultiPageEditorPart to become the final graphical editor for
GTS (GTSMultiPageEditor), as can be seen in figure 4.16. All editors, as well as
the MultiBar- and MultiPageEditorParts implement the analysis tool interface
from the extension-point, described in section 4.2.2.4, to simplify the flow of information
between the type-, rule-, and host graph editors and the platform. Figure 4.18 shows a
sequence diagram for the flow of information when the platform notifies the editor about
a new graph that should be displayed. The multi page editor may receive notifications

59

9
10
11

12
13

15

4 Realization

public boolean evaluate (EditPart editpart) {
if (editpart != null){
if (TypedEdgeCreationTool. this.getState () == TypedEdgeCreationTool.STATE_INITIAL
&& editpart instanceof NodeEditPart
&& ((NodeEditPart)editpart).getModel () instanceof INode
&& typeEdge.getSrc () .equals (((INode) ((NodeEditPart)editpart).getModel()).
getType ()))
return true;
else if (TypedEdgeCreationTool. this.getState () == TypedEdgeCreationTool.
STATE_CONNECTION_STARTED
&& editpart instanceof NodeEditPart
&& ((NodeEditPart)editpart).getModel () instanceof INode
&& typeEdge.getTgt().equals (((INode) ((NodeEditPart)editpart).getModel()).getType
0

return true;

}

return false;

}
Listing 4.7: evaluate () method of the Conditional class.

from the platform to display a new graph, so it checks what type of graph it is (type, rule,
or host), displays the corresponding page, and signals the editor on this page to display
the given graph. When certain nodes and edges shall be selected, the multi page editor
forwards the list of nodes and edges to the active editor. The active editor then translates
this list into a Selection for the GEF editor. Selections are a list of objects that are
marked as selected in the editor. When the user selects another graph in one of the typed
graph editors, the editor notifies the multi page editor about a graph change. When the multi
page editor gets notified about a graph change, it forwards this information to the platform.
When a page change occurs, it also notifies the platform, about the new displayed graph.
This is shown in figure 4.9. The platform can then update the other editor, so that the same
graphs are displayed in both editors.

4.3.2.4 Tools and actions in the editors

For the creation of typed nodes and edges, two special tools are needed that contain the type
of the new element. These two tools can be found in the classes
TypedNodeCreationTool and TypedEdgeCreationTool. The custom tools for
creating typed edges and nodes are made the active tools when a selection change event
in the graph viewer occurs. Consequently, the first element of the current selection is set
as the type for the next created element. The tool sends a TypedNodeRequest (or
TypedEdgeRequest) which contains the currently active type node (edge) to the ac-
cording controller object. The typed edge creation tool has an additional feature. As the
user should be informed very early about valid (and invalid) editing options, the editor adds
itself as state change listener to the tool, so that the editor gets notified when the tool is se-
lected when the source has been selected and when the operation is finished. The editor
reacts on these events with graying out the nodes to which the edge cannot be connected, i.e.
all nodes of the wrong type. This change of colors is done in the model itself. As described
in 4.1.2, each model references an object that saves its visual information. This object is
used to store whether a node may be used or not. This is then displayed accordingly by
the editor. The nodes are not only grayed out but also inaccessible for the tool. To realize
this, the get TargetConditional () method from the CreationTool base class is
used. It returns a Conditional instance. This class provides the method evaluate ()
which returns a boolean value. This implementation returns true if the targeted node is
valid and false otherwise. Listing 4.7 shows the implementation of the evaluate() method.
This conditional first checks in which state the tool is, i.e. wether the source or target must
be selected next (lines 3 and 8). Then it checks if the target or source node currently pointed
at is of the correct type, according to the source and target of the type edge (lines 46 and

60

4.3 The graphical editor

Create new gts project @

Create new gts project

Set the name of the new project

Project name: |Samp|e

Use default location

Location: |_.-"home_.-"user_.-'[liplomarbeit/runtime-EclipseApplication(1)/: Browse...

@ < Back Next > | Einish | Cancel

Figure 4.19: Wizard for creating a new GTS project.

9—11). If the node is valid, then t rue is returned, false otherwise. With this mechanism,
no invalid model states in regard to the type graph can be produced.

For the rule graphs, there must exist a possibility to set the graph of the nodes and edges
to R/, L', and K depending on whether they are removed, added, or if they stay dur-
ing the rule application. Therefore, the actions TransformTypeToKSelectAction,
TransformTypeToLSelectAction, and TransformTypeToRSelectAction
are added to the context menu of the typed graph editor. The entries in the context menu
are only available if the TransformTypeEditPolicy is added to the node or edge,
i.e. the entries are only available in the rule graph editor. By opening the context menu
of a node or edge and selecting one of the actions, the selected node or edge is moved to
graph L', R, or K (depending on the selected entry). As a result, the action creates a
corresponding command and adds it to the command stack.

4.3.3 Sample computation

In this section, I want to show how the GTS version of the dining philosophers problem
can be created with the graphical editor. First, a new GTS project must be started called
sample (figure 4.19). Then a new GTS file is created by launching the according wizard
(figure 4.20). As a first step in creating the GTS for the dining philosophers, the type
graph must be created, by selecting the according tools to create nodes and edges. The
user is prompted to enter a unique identifier for each edge and node. Figure 4.21 shows the
complete type graph for the dining philosophers problem.

In the next step, some rules are added. After switching to the rule graph editor page,
the button in the bar is clicked to create a new rule (the rule thinkToWait is created), see
figure 4.22. Now the type graph viewer can be used to select the philosopher node and
click on the rule graph editor to add this node to the graph. The new node is called P.
Now, two edges, one of type think and one of type wait, must be added as loops to the
philosopher node P. The resulting graph is depicted in figure 4.23. As the think edge is

61

4 Realization

.. GTS file Wizard

GTS Wizard
Create a new Graph Transformation System

Enter or select the parent folder:

|samp|e

B e =

File name: Iphilosopher‘graph

Advanced == |

< Back Mext = | Finish I Cancel

Figure 4.20: Wizard for creating a new GTS file.

£

[& Java - test/philosopher.graph - Eclipse SDK
& [ava

Fle Edit Navigate Search Project Run Window Help

09" J @[3 0° Q- | &8 & & |® & |- | comple |§i- §i- & G- @~

<) % X Selectatool: [« & &
: =m=
B
~ Graphical
5 L
crdete b |
Y l=]
think walt_eat onTable
philosopher | _jiesNextTo
| Type Graph Editor [Host Graph Editor| Rule Graph Editor
b CHR
- o |eeR ¢ @

Figure 4.21: The type graph for the dinging philosophers problem.

62

IR 4

& philosopher %2 _

[@ Transformation

Please enter a unique identifier for this transformation:

~ Graphical
= Type graph
think wait eat onTabl
NN s
philosopher| _jiesNextTo
[thinkTowaif
~ Rules

Type Graph Editor| Host Graph Editor | Rule Graph Editor

4.3 The graphical editor

itpalette b

Figure 4.22: Create a new rule for the GTS by clicking on the according icon.

Jow x MEE IO
=a

~ Graphical
~ Type graph

think wait eat orTable

AR

philosopher|_jiesnextTo
= Rules

Cipalette b

i)
think | Philosopher g

Type Graph Editor | Host Graph Editor| Rule Graph Editor]

thinkTowait

Figure 4.23: Node and two edges added to the rule thinkToWait.

63

4 Realization

> % MER
4 philosopher &3 =5
~ Graphical
~ Type graph

~ Rules

isPalette b
thinkTowait

—]P
i Philosopher

Type Graph Editor| Host Graph Edltor| Rule Graph Editor

Figure 4.24: Finished rule thinkToWait, the think edge is removed and the wait edge is
added by this rule.

removed during rule application, it is selected and the context menu is brought up. When
the entry “Element is removed” is selected, the edge turns red symbolizing that it is removed
during rule application. The wait edge is modified by selecting the “Element is added”
entry from the context menu resulting in the graph shown in figure 4.24. Further rule
graphs can be created in the same manner.

Creating a host graph is done in a similar fashion by switching to host graph page and
hitting the button to create a new host graph (figure 4.25). Adding nodes and edges is the
same as for rule graphs. Figure 4.26 shows a graph with four philosophers where one is
eating.

4.4 The textual editor

Originally, the textual editor for CHR was planned as a lab course at the institute where this
thesis has been created and should be integrated into the platform. But there were no results
available at the time of implementation, so I have decided to provide an own prototypical
implementation. Besides creating an editor, an algorithm must be designed to check if the
CHR source encodes a valid GTS and apply the according changes to the GTS model. The
CHR source code must of course be dynamically updated when the model is edited in the
graphical editors or with other analysis tools. Another feature that is provided for rapidly
creating rules and host graphs is the “easy editing mode” which offers a simpler encoding
of host and rule graphs, which is suitable for editing purposes.

4.4.1 Design

The design of the editor is divided into three parts: The design of the GUI elements of the
editor itself, the design of the algorithms that check if the CHR source encodes a valid GTS
and update the GTS model accordingly, and, as the third part, the notation which used to
display an encoded GTS is described. The notation is shown first.

64

4.4 The textual editor

| % % selectatool: [4 2

= { -5

~ Graphical
~Type graph]

think wait eat onTable

N
phiosopher|_festhiextTo

‘@t

Please enter a unique identifier for this host graph:

[fourPhilos
'~ Hosts

< Palette b

Type Graph Editor| Host Graph Editor [Rule Graph Editor

Figure 4.25: Create a new host graph for the GTS by clicking on the according icon.

J@ox [v|==m= 8 2

& =
~ Graphical
~ Type graph
think wait_eat orTable
philosopher| _liesNextTo
'~ Hosts
ipalette b

fourPhilos

ligskextTo
onTable

p2
philosopher

onTable walt

Type Graph Editor| Host Graph Editor [Rule Graph Editor]|

Figure 4.26: Host graph for the dining philosophers problem with four philosophers.

65

oW oN =

4 Realization

fl

aristotle |e—fesexo L' % platon

philosopher '\ﬁ@\ philosopher
v liesNe f2 ,er’
fork U
think

eat
:-philosopher(platon,4), fork(fl,2), philosopher(aristotle,4), fork(fz,2),
TiesNextTo(del,fl,platon), eat(del,platon,platon), TliesNextTo(del,fl,aristotle],
think(del, aristotle, aristotle), liesNextTo(del,f2,platon), LiesNextTo(del,f2,aristotle).

Figure 4.27: Encoding of a host graph.

4.4.1.1 Notation

The textual editor displays the encoding of two graphs at a time, either the type graph or
a typed graph together with its type graph. This restriction is set, because the graphical
editor described in section 4.3 shows at most two graphs of the GTS: The type graph and
eventually a host or a rule graph. Three types of graphs can be displayed, so three modes
of displaying the graph in the CHR editor are needed. A type graph is encoded as a list
of constraint definitions (see section 2.3). The syntax of the CHR code is kept similar to
the one of K.U. Leuven JCHR, because this is the language GTS are exported to for CHR
analysis tools (section 4.6). The type graph of the dining philosophers problem, which is
shown in figure 2.7, is encoded as follows:

public Constraint philosopher(Logical ,int), fork(Logical,int),

think (Logical ,Logical ,Logical), wait(Logical ,Logical,Logical),

eat(Logical ,Logical ,Logical), onTable(Logical ,Logical ,Logical),
liesNextTo (Logical ,Logical ,Logical);

As JCHR is a language with type support, types have to be defined for the constraints. The
type Logical is a generic type that describes a logical value to which arbitrary values can
be assigned. The type int stands for an integer value. In the example above, every node
and edge type is encoded as a constraint definition. In section 2.3, host graphs are encoded
as lists of goal constraints. However, JCHR does not have a notation for defining goals in
its source files. Goals can only be given in a java program that uses the JCHR handler. This
notation is not very suitable, because it would require a lot of writing for the user. That is
why a mixture of JCHR and Prolog based CHR syntax is chosen: The constraint definitions
are given at the beginning, according to the encoding of the type graph, then a line starting
with “: =" followed by a comma-separated list of the encodings of the host graph’s nodes
and edges which is terminated by a colon (“.”) is given. Figure 4.27 shows an encoding
of a host graph for the example of the dining philosophers problem (section 1.3.2). The
encoding of the according type graph can be found above. For the CHR encoding, every
node needs a unique identifier, so they are labeled platon and aristotle for the philosopher
nodes and fI and f2 for the fork nodes. The syntax of the encoding of single constraints
is equivalent to the one described in section 2.3. The encoding of rule graphs works in
a similar way: At the beginning, there are the constraint definitions from the rule graph
followed by the encoding of the rules according to the description in section 2.3. The
encoding of the rule is kept tight to the syntax of JCHR where all rules are enclosed by
arules{...} block and the empty body of a rule is symbolized by the java keyword
true. Figure 4.28 shows the encoding of the rule waitToEat from the dining philosophers
example (section 1.3.2), as described in section 2.2. Again, the type graph is not displayed.

66

W -

- NIV RSO TR C R

4.4 The textual editor

Fl | P " F2
fork liesNextTo | phiosopher " liesNextTo fork

Y

onTable wait onTable

rulesq{

philosopher (P,NC_0), fork(F1,NC_1), fork(F2,NC_2), liesMextTo(DN_0,F2,F),
liesMextTo(DN_1,F1,P), onTable(del,F1,F1), onTable(del,F2,F2), wait(del,P,P)
===

philosopher (P,NC_0), fork(F1,NC_1-2), fork(F2,NC_2-2),

liesMNextTo(DN 0,F2,P), liesNextTo(DN_1,F1,P), eat(del,P,P).

}

Figure 4.28: Encoding of a rule graph.

Additionally, another encoding for constraints is supported than the one described in sec-
tion 2.3. In this encoding, the constraints that represent nodes are unary and they contain
only the identifier of the node. The constraints that represent edges are binary constraints
and contain the identifiers of the node constraints for the source and target. For the two
types of constraints, the degree and the deletion attribute is left away. This can be done for
editing, because the degree attribute is only needed for rule application in a CHR program
to prevent dangling edges and the deletion attribute is only needed for confluence analysis
of CHR programs. The encoding of the host graph from figure 4.27 results in:

:—philosopher (platon), philosopher(aristotle), fork(fl), fork(f2),
liesNextTo (fl,platon), liesNextTo(fl, aristotle),
liesNextTo (f2,platon), liesNextTo(f2, aristotle),
think (aristotle , aristotle), eat(platon,platon).

The rule graph from figure 4.28 results in:

rules {
philosopher (P), fork(F1), fork(F2),
liesNextTo (F2,P), liesNextTo (FI1,P),
onTable (F1,Fl), onTable(F2,F2), wait(P,P)
<=>
philosopher (P), fork(Fl), fork(F2),
liesNextTo (F2,P), liesNextTo(F1,P), eat(P,P).

4.4.1.2 Encoding/decoding algorithms

In this section, I describe the algorithms for the encoding and decoding of the GTS to and
from CHR. Encoding is a simple algorithm for all types of graphs, because each graph can
be encoded into a correct CHR program, just as described in section 2.3. However, not
every CHR program encodes a correct GTS. This means, if the CHR source is syntactically
correct, the CHR rule or goal can still represent an invalid graph, e.g. the graph could
have dangling edges. See also section 4.1 for more information about incorrect GTS model
states. Therefore, an algorithm must be developed to verify CHR rules and goals, whether
they represent a valid host or rule graph. In the previous section, another, simpler encoding
for constraints is introduced. However, the encoding and decoding algorithms are not de-
scribed explicitly for this simpler encoding, because the parts that encode and decode the
degree and deletion attributes of the constraints can be omitted in this case.

The verification of type graphs is uncomplicated: if there are only constraint definitions
with arity two or three and the correct types as described in the previous section, the en-
coding represents a valid type graph.

67

4 Realization

: Input: TypeGraph model, Host Graph model, CHR model
: separate constraints of CHR model in node and edge constraints
. if there exist invalid constraints then
model is invalid
end if
: for all edge constraints do
search node constraints with the same identifier as source and target identifier, called source
and target constraints
8: if node constraints could not be found then

R N

9: model is invalid
10: endif
11: compare names of source and target constraints and the name of the edge constraints to the

identifiers of edge and its source and target node in the type graph
12: if constraint names and node identifiers are unequal then

13: model is invalid
14: end if
15: end for

16: for all node constraints do

17: if identifier of node constraint is duplicate then

18: model is invalid

19: endif

20: count number of edge constraints with the same source or target identifier as the node identifier

21: if degree attribute of node constraint is unequal counted number then
22: model is invalid

23: endif

24: end for

Figure 4.29: Pseudo code for verifying a CHR model encoding a host graph.

The verification of a host graph is a bit more complex. An algorithm for verification is
given in figure 4.29. For every constraint, one has to check if the constraint name is defined
in the constraint definitions and determine if it represents an edge or a node of the GTS.
These constraints are called edge constraints and node constraints, respectively. Then, for
all edge constraints’ target and source terms, a node constraint containing the syntactically
same identifier term must be searched. The encoding has dangling edges if an according
node constraint cannot be found. If the node constraints are found, their names have to be
compared to the identifiers of the source and target type node of the corresponding type
edge in the type graph model of the GTS. The type graph model must be used for this,
because the encoding of a type graph in CHR does not provide the information to which
type nodes the type edges are connected. If constraint names do not match the identifiers
of the type nodes, the typing morphism is invalid. The node constraints’ second attribute is
the degree of this node. Because of that, for every node constraint the edge constraints must
be counted that contain the same source or target attribute as the node constraint’s identifier
attribute. If the calculated number is not equal to the number found in the node constraint,
the model is invalid. Furthermore, if two node constraints have the same identifier attribute
the model is invalid, too, because a node identifier would have been used twice, which is
not allowed.

The procedure for rules is more complex and pseudocode can be found in figure 4.30. The
main problem is that the left and right side of a CHR rule partially encode the same graph
of arule. As a consequence, constraints from the head and the body of the rule have to be
compared. In a first step, the constraints have to be separated whether they are only on the
left, only on the right, or on both sides. Six sets are defined, one for every graph of a GTS
rule (R',K, and L) for node and edge constraints. At first, all constraints from the head of
the CHR rule are separated into the L’-sets (here is also checked if node constraints with

68

12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:

— =
TRV RXIINRELN 2

4.4 The textual editor

: Input: type graph model, rule graph model, CHR model
: separate constraints of CHR rule in node and edge constraints of the graphs R’, L’ and K.
. if there exist invalid constraints then

model is invalid

end if
: for all edge constraints do

search node constraints with the same identifier as source and target identifier
if node constraints could not be found then
model is invalid
end if
compare names of source and target constraints and the name of the edge constraint to the
identifiers of the nodes and edges in the type graph
if constraint names and type node identifiers are unequal then
model is invalid
end if
if the edge constraint’s source and target constraint are not in the correct list, according to
table 4.1 then
model is invalid
end if
if edge is in K and deletion term is ground then
model is invalid
else if edge is in R’ or L’ and the deletion term is not ground then
model is invalid
end if

end for

24: for all node constraints do

25: if identifier of node constraint is duplicate then

26: model is invalid

27: endif

28: if node constraint is in L’ (or R’) then

29: count number of edge constraints in L’ (or R') with the same source or target identifier as
the node identifier

30: if degree attribute of node constraint is unequal counted number then

31: model is invalid

32: end if

33: else if node constraint is in K then

34: count number of edge constraints in I’ and R’ with the same source or target identifier as
the node identifier and calculate their difference.

35: calculate the difference of the degree expressions from the head and body constraint

36: if the differences are unequal then

37: model is invalid

38: end if

39: endif

40: end for

Figure 4.30: Pseudo code for verifying a CHR model encoding a rule graph.

69

4 Realization

the same identifier have already been saved before). Then all constraints from the body
are processed: For every constraint, the L’-list it is checked whether it already contains the
same constraint. Same in this sense means, for node constraints, that the identifier term
and the constraint name must be identical. Furthermore, two node constraints must share
the same variable in the degree attribute (although the expression can be different on both
sides). For edge constraints, the node and target terms must be the same, as well as the name
for the deletion variable. If the same constraint is found in the L’-list, it is removed from
there and added to the corresponding K list. If it is not available in the L’ list, it is added
to the R’-list. When the constraints are separated, the validity of the edges is checked. For
that, the types of target and source nodes of the corresponding type edge (the type graph
model is used here, because the CHR encoding does not provide the typing information)
are compared to the names of the source and target node constraints. Additionally, it must
be verified that the edges are in the correct list according to their source and target node
constraints (see table 4.1 for the allowed combination of edges and nodes). The deletion
attributes of the edge constraints have to be checked, as well. For edges in L’ and R’, the
deletion attribute must be ground, i.e. it is a lower case identifier or a number. For edges in
K, the deletion attribute must be a variable (i.e. it starts with a capital letter). This variable
must be the same for the two constraints in the head and body of the rule. For the node
constraints, the degree variable has to be verified. For node constraints in L’ and R/, the
degree attribute must be an integer representing the number of edge constraints associated
to it (just as for host graphs). The degree attribute for node constraints in & must be verified
in the following way: counting the number of edge constraints in the L’ list and the number
of edge constraints in the R’ list that contain the same source or target attribute as the node
constraint, calculating the difference, and comparing it to the difference of the expressions
in the head and body constraints of the node constraint. If the differences are unequal then
the encoding is invalid.

Although the algorithms are similar in some parts, they still differ too much to reuse the
algorithm for host graphs in the algorithm for rule graphs. For example, the test whether
the degree attribute is correct for host graphs cannot be used for rule graphs, because rule
graphs can also contain variables as degree attributes.

If the encoding of a rule or host graph is valid, it has to be compared to the graph model of
the GTS. Changes that result from the CHR encoding must be applied to the graph model.
This algorithm is a little bit different for host and rule graphs, but both use the data gener-
ated by the previous algorithm, i.e. the separation of the constraints. As already mentioned
above, encoded type graphs cannot be decoded to a GTS, because they miss the informa-
tion how the edges are connected to the nodes. That is why type graphs cannot be edited
via CHR. Because of that, there is no need for an update of the GTS model. The update of
a host graph model works as follows: for each edge constraint, try to find a corresponding
edge in the graph model. Sort the edge constraints into two groups: The group of edge
constraints that cannot be found in the model and the group of edge constraints that are
already available in the graph. The edges in the model that could not be associated to a
constraint are marked for removal. The same is done for node constraints. At first, all
edges and nodes that are marked for removal are removed from the graph model. Then, for
each constraint that is in the set of node (edge) constraints and has no representation in the
model, a new node (edge) is added to the model.

The algorithm for updating a rule graph is similar, except that it has to check if the nodes
and edges have been moved between the graphs they belong to (L',R’, or K). In the case
of a move, commands to modify the corresponding edge or node must be created. In this
algorithm edges and nodes are first removed, then nodes and edges are modified, and at
last, new nodes and edges are added. It is important that elements are first removed, then
modified, and then added, because otherwise invalid model states can occur.

70

4.4 The textual editor

4.4.1.3 Editor

In this section, I want to describe the design of the text editor itself. The editor must give
the possibility to display a given type, host, or rule graph (encoded in CHR) and to allow
editing of these graphs. The algorithms in the previous section provide this functionality,
they only need a representation of the CHR source as a model that contains rules and goals
consisting of constraints. For generating a model from text, a parser is needed which reads
out the source, checks it for syntactical correctness, and generates a model from it. A
framework for generating models from a textual representation is TEF ([35]). For TEF, a
grammar must be created which describes the syntax of the text and associates elements of
the model to parts of the input text. TEF can then parse the text and return an EMF model
of the textual representation. Furthermore, TEF can create a textual representation from a
given model, what is called pretty printing. In the following, I describe the model used to
represent the CHR rules, goals, and constraints. After that, further features of the editor are
explained.

I do not model all the aspects of CHR, because a full featured CHR editor is not desired.
Only the aspects that are needed for representing constraint definitions, rules, and goals for
the encoding of a GTS are regarded. The model is shown in the UML class diagram in
figure 4.31. Constraint definitions consist of a name and a list of types for its terms. Con-
straints consist of a reference to a constraint definition and a list for the terms where each
term can be an expression. For the expressions, only addition and subtraction of numbers
and literals is modeled, because multiplication is not needed for encoding GTS. Numbers
are arbitrary integers while literals are strings. I do not make a distinction of ground and
variable terms in the model, because these properties are checked by the algorithms. Inputs
are a list of constraints while rules are modeled as two lists of constraints, one for the head
and one for the body of a rule. The corresponding grammar is a context free grammar that
combines the CHR model with the notation described in the beginning of section 4.4.1.
This grammar is further described in the implementation section.

The editor itself must be synchronized with the graphical editor. The model can be used
for this purpose. The CHR editor observes the model and updates the displayed text when
changes occur. When the currently displayed graph is changed in the graphical editor, it
notifies the platform about it. The platform then sends this notification to the textual editor.
After that, the editor creates a new CHR encoding of the new graph model and displays it.
This flow of information is visualized in figure 4.9. A possibility to select another graph
in the CHR editor is currently not realized, because the graphical editor can be used for
this. This could be realized in form of a context menu that shows all the available graphs.
However, the textual editor would then have to notify the platform about the change of the
active graph, so that the graphical editor can be synchronized accordingly.

The editor must provide information about errors in the CHR source. Syntactical errors are
automatically detected by the parsing functionality of TEF, as well as referencing errors
from constraints to constraint definitions. Other encoding errors which are discovered by
the algorithms described above must also be shown as error annotations in the text editor,
together with a message that describes the error. The screen-shot in figure 4.32 shows
how this annotation mechanism should look like. This example encodes a host graph for
the dining philosophers problem with two philosophers where one is eating and the other
is thinking. The degree attribute of one philosopher contains the wrong number. This
information is also shown in the pop-up.

In section 4.4.1.1, another simpler encoding is introduced, so an action is needed that
switches between the encodings. Figure 4.33 shows actions of the CHR editor embedded
in the action bar. The second action is for refreshing the encoding from the current graph
model. This is needed, when too many errors occur while modifying the CHR source and
when the user wants to start again with the original encoding.

71

4 Realization

P CHR -
+name: String

input
rule constraintDefinitionf
0..*
ConstraintDef 0..*/Input
+variableTypes: List<String3]
Rule 0..* +name: String ’
+name: String /\1
’ ’ body type
0..*
head 1..* . 0..*
= Constraint
Numeral
attributes -
6. * +value: int
<®| Expression <]
Literal
lhs +value: String
rhs
Minus
. -*
0..* Bi
maryq_
Plus

Figure 4.31: UML class diagram of the model for the CHR editor.

public Constraint philosopher(Logical,int), fork(Logical,int), think(Logica |~

© [the edge count is wrong [philosopher(platon,5)]] philosopher.(platon.5).
fork{f1,2), philosopher (aristotle, 47,
fork(fz,2), liesNextTo(del,fl,platon), eat(del,platon,platon),
TliesMextTo(del,fl,aristotle), think(del,aristotle,aristotle),
_liesNextTo(del, f2,platon), liesNextTo(del,f2,aristotle).

Figure 4.32: CHR editor error annotation mechanism.

72

4.4 The textual editor

< iy 3 iSelect atool; v|"'{*: :‘:

i philosopher 3

b Graphical
= CHR

public Constraint philosopher(Logical), fork(Logical)
:-philosopher(platon), fork(fl), philosopher(aristotls
fork (f2), liesNextTo(fl,platon), eat(platon,platon),
TiesNextTo(fl,aristotle), think(aristotle,aristotle),
_liesNextTo(f2,platon), liesNextTo(f2,aristotle).

]

Figure 4.33: Actions for refreshing and switching between the encodings in the CHR editor.

4.4.2 Implementation

In this section, I give implementation details for the CHR model, its corresponding gram-
mar, the algorithms for checking validity and updating the model, and the implementation
of the editor itself. The editor itself can be found in the project
org.uniulm.gts.chrtexteditor and the CHR model can be found in the project
org.uniulm.gts.chrtexteditor.model.

4.4.2.1 Grammar and model

The CHR model is created using the EMF, because TEF supports only EMF models. The
UML class diagram from figure 4.31 can be translated to an ecore model from which source
code for the model is produced. See section 4.1.2 for details about EMF and model gener-
ation.

The grammar that creates the model from a text is a context free grammar annotated with
information from the EMF model. Listing 4.8 shows a part of the grammar that creates a
CHR model from the syntax described in section 4.4.1.1. The grammar describes the syntax
of the constraints and constraint definitions. Each left side of a rule is a non-terminal. They
can be followed by an element annotation, that contains a class name from the EMF ecore
model. This means that this rule describes the content of an instance of the given class.
For example, the rule CHR (line 1) is annotated with the class of the same name, therefore,
this rule describes a CHR object. The right side may contain annotated non-terminals and
terminals. The keywords or non-terminals can be followed by a composite annotation. The
attribute of this annotation is a property of the class which is described by the keyword or
non-terminal. The right side of the rule CHR contains a non-terminal for constraint defini-
tions, one for the rule block, and an annotated non-terminal which describes an objects of
the class Input. For each non-terminal which is annotated with a composite, a rule must
be provided which describes the content of the annotated property. Non-terminals can also
be followed by a reference annotation. These annotations have also a property of the de-
scribed object as an argument. The rule for such a non non-terminal describes an object

73

16

4 Realization

CHR:element (CHR) —> (ConstraintDefs (RuleBlock)? (Input:composite(Inputs))?)?;
RuleBlock —> "rules{" Rule:composite (Rule) "}";
Rule:element (PropRule) —> (PropHead)? "<=>"

PropBody "."

PropHead —> Constraint:composite (head)
("," Constraint:composite (head)) *;

PropBody —> Constraint:composite (body)
("," Constraint:composite (body)) *;

PropBody —> "true";

ConstraintDefs — ("public")? "Constraint"
ConstraintDef:composite (constraintDef)
("," ConstraintDef:composite (constraintDef))* ";"

Input:element (Input) —> ":—" Constraints '

Constraints —> Constraint:composite(constraints)
("," Constraint:composite (constraints)) *;

ConstraintDef:element (ConstraintDef) —>

IDENTIFIER:composite (name) (" ("

IDENTIFIER:composite (variableTypes)

("," IDENTIFIER:composite(variableTypes))x*

)"

Constraint:element(Constraint) —>

ConstraintDefRef:reference (type) ("("

Expression:composite (variables)

("," Expression:composite(variables))x

"

ConstraintDefRef:element (ConstraintDef) —>

IDENTIFIER:composite (name) ;

Listing 4.8: Main part of the grammar for the CHR model and the constraints.

of the corresponding class, but only enough information has to be provided in the text to
identify one of the objects that has already been created of the same type. This object is
then referenced. For example, the rule Constraint (line 21) contains the non-terminal
ConstraintDefRef (line 22) which has a reference annotation. The rule for this non-
terminal describes an instance of the class ConstraintDef (compare line 16 ff.), but
only the name property of the constraint definition is parsed. This object is then compared
to the other ConstraintDef instances in order to find an object that contains the same
name property. Terminals are either strings enclosed by quotes or one of several keywords
written completely in capital letters (e.g. INTEGER or IDENTIFIER) which represent a
string or number in the parsed string (lines 17-19). If one of the keywords is followed by a
composite annotation, the described property is in general a string or an integer. This prop-
erty is then set to the value found in the input string. The rule ConstraintDef (line 16)
has on its right side the keyword IDENTIFIER followed by a composite annotation (line
17). For that reason, the next character sequence (consisting of alphanumeric symbols) in
the input string is used as value for the property name (which is of the type string).

The grammar in listing 4.8 shows the structure of the encoding for type, host, and rule
graphs. The type graph is always printed while the rule or the input can also be omit-
ted (line 1). The rules for the syntax of the input and the CHR rules correspond to the
notation described in section 4.4.1.1. The grammar shows the syntax of the constraints
and constraint definitions, as well. Constraints can contain expressions as its terms. The
grammar for terms is not further described here. The complete grammar can be found
in appendix C.6. The grammar in the appendix also contains white space tags, that are
only used for pretty printing, but they are left away here to improve the readability of the
grammar.

4.4.2.2 Encoding/decoding algorithms

This section describes the implementation of the algorithms for encoding a graph of a GTS
to the CHR model and for the validation of a CHR model. The implementation of the
algorithm to update the graph that corresponds to a valid CHR model is described, too.

74

4.4 The textual editor

The implementation for the model transformation from the GTS to the CHR model works
as follows: The algorithm takes each node and edge from the graph and creates a
Constraint object (for typed graphs) ora ConstraintDef object (for the type graph)
for it. The attribute lists of the ConstraintDef instances are filled with the according
names for the types where the name attribute is the identifier of the node or edge. The
type attribute of a Constraint instance references the according ConstraintDef
instance. Its attribute list is filled with the values described in section 2.3. Values that rep-
resent identifiers, i.e. the first argument for nodes and the second and third argument for
edges, are ground terms or variables. The second term of a node constraint is a Numeral
instance containing a number (for host encoded graphs) or a Binary instance (Minus or
Plus) which describes an expressions consisting of a Literal and a Numeral. These
model transformation algorithms are provided by the method get CHRModel (...) in
the class GTSTextEditor. This method has the corresponding graph model as attribute.
It is overloaded for type, host, and rule graphs.

The implementation of the algorithms for checking the validity of CHR models and updat-
ing the corresponding graph model are tied together for technical reasons, because much of
the information for the model update can be gathered during the validity check. If there are
errors in the CHR encoding, the graph is not updated, but error annotations are displayed in
the editor. The key part of the algorithm is to transform both, the GTS model and the CHR
model, to a similar form in order to compare them. Consequently, the nodes of the graph
and the node constraints of the CHR model are saved in java maps to compare them by their
node identifier. For edges, a Mult iHashMap that allows multiple keys has been created,
because an edge is identified by its source node identifier, its target node identifier, and its
type edge’s identifier. Both, the GTS model and the generated CHR model, are saved in
these maps. They are called CHR maps and GTS maps, respectively. These maps are the
lists needed by the algorithms described in figures 4.29 and 4.30. Maps were used, because
they allow a faster access to their elements when the identifier is known. The validity algo-
rithm is then applied to the CHR maps. If the model is valid, then GEF commands (see table
4.2) are created to update the corresponding graph model. The commands can be created
by comparing the GTS and CHR maps. In case of a rule graph, multiple maps are needed to
represent the three graphs I, R’, and K of a GTS rule. The algorithms to verify and update
rules can be found in the method updateRuleModel (). The algorithm to verify and
update host graphs can be found in the method updateHostmodel (). Both methods
receive the created CHR model as input and are located in the class GTSTextEditor.

The simpler encoding of constraints described in section 4.4.1.1 can also be encoded and
decoded with the given algorithm. The execution of the algorithms is controlled by a
boolean variable which skips the parts of the algorithms that are not needed by the sim-
pler encoding when set to true. When separating the constraints in the validation algo-
rithm, this boolean variable is also queried, because the sorting depends on the terms of the
constraints. The full source code of the method updateRuleModel () can be found in
appendix C.5.

4.4.2.3 Editor

The implementation of the CHR editor itself is bundled in the class GTSTextEditor
which is extended from the TextEditor base class provided by TEF. To synchronize
the editor with the model, the editor registers itself as listener to all elements of the cur-
rently displayed graph. This is done as soon as the currently displayed graph model is
set by the platform. When the notifyChanged () method is called by the model, the
method printNewCHRModel () is called which transforms the currently active graph
model to a CHR model (see section 4.4.2.2) and uses the pretty printing function of TEF
to display the new encoding. The Editor registers itself as a listener to the TEF parsing

75

4 Realization

mechanism. When a new model is parsed from the contents of the editor, the method
errorStatusChanged () is called. From this method, the algorithms for validating
the model are called (section 4.4.2.2). These algorithms also perform the update of the
currently encoded graph model. However, if the model is invalid, error annotations are
displayed in the text editor. Error annotations contain a message that describes the error.
These annotations are then added to the Annotat ionManager of the text editor together
with the position of the text part that is responsible for the error. For finding out the position
of the faulty constraints in the text, TEF saves the parsing tree of the last model creation.
This tree can be queried with model objects to receive the text parts corresponding to it.
From these text parts, the position in the editor can be determined.

Another important point is, that when updating the graph model from the CHR model,
notifications from the graph model must be ignored. Otherwise the text would be updated
continuously while typing, resulting in a rearrangement of the constraints. Furthermore, the
validation and update algorithms must be deactivated when the model has just been pretty
printed. The problem that would otherwise occur is, when removing multiple elements
in the graphical editor at once, the model gets pretty printed multiple times in the textual
editor. After each pretty printing, the model is parsed asynchronously in the background,
resulting in a new CHR model. As the parsing runs asynchronously, the generated model
might encode an older version of the graph model. Therefore, the validity and update
algorithms would produce further commands to change the model which is wrong in this
case.

The actions are added to the action bar of the platform as described in section 4.2.2.5. The
RefreshCHRAction justcalls the method refreshCHR () of the editor it is associated
with. This method resets the current graph model in the editor to force a refresh of the
encoding. The class SwitchCHRModeAction is the action for switching between the
encodings. It calls the method switchCHRMode () of the editor. This method switches
the value of the boolean variable that controls the execution of the encoding and decoding
algorithms described in section 4.4.2.2.

4.4.3 Sample computation

In this section, I describe how to use the textual editor to edit a rule, show how the validity
check works, and how the graph model is updated. Figure 4.34 shows the rule thinkToWait,
created in section 4.3.3, but with the green wait edge missing on the philosopher. The
encoding is displayed in the more complex version with deletion and degree attributes.
To add the wait edge, a wait (del, P, P) constraint must be added to the body of the
displayed rule. This constraint symbolizes a loop on the philosopher node, identified by
P. As the constraint is only in the body of the CHR rule, it is automatically in the graph
R’ of the GTS rule. Figure 4.35 shows that the encoding is invalid by highlighting the
philosopher constraint in the body of the rule. This is because the validation algorithm
found an error when it checked the degree attribute of the philosopher constraint. In this
example, the term has the value NC_0-2. That means the degree is smaller by two after
the rule application. However, because a new edge is added, the degree is unmodified. For
that reason, the subtraction of 2 must be removed in the degree attribute of the philosopher
constraint. Figure 4.36 shows the final rule with the green wait edge added.

76

4.4 The textual editor

Rt [~ % w3 &
i =08
= Graphical
b Type graph
= Rules
| Factte >

| thinkTowait

p
think philosopher

Type Graph Editor Host Graph Editer Rule Graph Editor
= CHR

public Constraint philosopheriLogical,int), fork(Logical,int), think(Logical,Logical,Logical
rules{
philosopher(P,NC_8), think(del,P,P)

<=>

philosopher(P,NC_0-2).
}

(KT |

Figure 4.34: thinkToWait rule displayed by both editors. The green wait edge is still miss-

mng.
R v =D 2
i =8
= Graphical
b Type graph
~ Rules
| Focte >

thinkTowait

p
think philosopher

Type Graph Editor Host Graph Editor Rule Graph Editor
< CHR

public Constraint philosopher(Logical,int), fork(Legical,int), think(Logical,Logical,Logical ~|m
rules{ [
philosopher(P,NC_0), think(del,P,P)

<=
@philosepher(R.NC 0:2) ,wait(del,P,P).
}

[|

Figure 4.35: Invalid encoding, the degree attribute of the philosopher constraint must be
updated, because of the added wait constraint.

77

4 Realization

U W K v|= =] 2
% philosopher 32 =0
= Graphical
b Type graph
~ Rules

R Focitc b

thinkTowait

—|P
thilnT?’ philosopher

Type Graph Editor Host Graph Editor | Rule Graph Editor
= CHR
public Constraint philosopher(Logical,int), fork(Logical,int), think(Logical,logical,lLogical
rules{
philosopher(P,NC_0), think(del,P,P)
<=>

philosopher(P,NC_0),wait(del,P,P).
}

Kl |

Figure 4.36: Final rule with the correct encoding.

4.5 How to create a tool: The termination analysis
tool

In this section, I describe explicitly the steps that are needed to create a GTS analysis
tool. The creation is shown with the help of an example tool that checks whether a GTS
terminates. A GTS terminates when a graph is reached during rule applications to which no
rules can be applied anymore. Of course, termination is an undecidable problem, because
of that, the method can only prove termination, but not non-termination. First, I describe
the theoretical background of this analysis and how the graphical user interface for this tool
can be designed. Then, I describe in detail how to implement this tool.

4.5.1 Design

The analysis method used here is based on a ranking function. Section 4.5.1.1 provides an
explanation of ranking functions. The GUI for entering the ranking function and displaying
the rules that might not lead to a terminating GTS is described in section 4.5.1.2

4.5.1.1 Ranking functions

Termination of CHR programs can be analyzed with a ranking function ([20]). A ranking
function fr : Constraints — R™T maps the set of constraints to the set of positive real
numbers, i.e. each constraint is assigned a value called its rank. These functions can be
defined for each type of constraint, e.g. it can be a constant or it may depend on the
length of a list in the constraint. The ranking function can be applied to a conjunction of
constraints fr(A.cconstraints ©) = 2ccConstraints J&(C)> then the value is the sum of
the ranks of the constraints. By choosing a good ranking function and calculating the rank
of the rule’s head and body, one can state if a rule leads to a terminating system. If the
rank of the head is higher than the rank of the body and this is valid for all rules, the CHR
program terminates, because the rank of the constraint store strictly decreases and reaches

78

4.5 How to create a tool: The termination analysis tool

£ Termination analysis & =0

Used gts: philosopher
» Ranking function

= Termination analysis

Refresh termination analysis

The following transformations won't
terminate according to the ranking function:

thinkToWait

eatToThink

=1 [+

Figure 4.37: Termination analysis of the dining philosophers problem, the ranking function
is collapsed.

a minimal value when no rule is applicable anymore. However, if for only one rule the rank
of the head is less than or equal to the rank of the body, no statement can be raised whether
the program is terminating or not.

The encoding of the examples for finding circular lists shown in section 2.3 can be an-
alyzed with a ranking function fr(c) = 1 for every constraint ¢. This function can be
used, because edge constraints are never modified, but only removed. The same statement
holds for node constraints, although they contain the number of connected edges which is
modified by rules. This number depends on the number of edge constraints. Therefore,
the rank of a node constraint can be set to one. The encoding for the circular list example
is terminating, because each rule removes more node or edge constraints than it adds. For
the dining philosophers problem’s encoding, no reasonable ranking function can be found,
because it is obviously not a terminating system.

This method can be adapted to rule graphs of a GTS: A ranking function is assigned to the
nodes and edges. Therefore, the ranking of a graph is the sum of the ranks of its nodes and

edges. The ranks of the R and L graph of a GTS rule p = (L LKL R) are calculated.
If the L graph has a higher rank than the R graph and this holds for all rules, then the GTS
is terminating.

As seen above, encoded GTS rules can be ranked by a function fr(c) = a., where a.
is a constant value for each constraint of type c. Applied to a GTS, a constant value is
associated with each type node and each type edge. As a consequence, the rule nodes and
rule edges are ranked by their type.

4.5.1.2 Graphical user interface

The GUI must show a table to enter the values a. for each type node and edge. Besides that,
a list must be displayed that shows the rules that might lead to a non-terminating system.
Figure 4.37 shows the analysis of the dining philosophers GTS. In this example, the ranks
for each type node and edge is set to one (the table to enter these values is collapsed in the
figure). The entered values can be arbitrary in this case, because there exists no ranking
function that can prove termination of this system, because it is non-terminating. The exam-
ple shows that the rules thinkToWait and eatToWait might lead to a non-terminating system.
When rules are selected from the list of the non-terminating rules, they are displayed in the
editors. Figure 4.38 shows the termination analysis of the circular list example. This sys-

79

O K N R W —

4 Realization

£ Termination analysis 3 =0

Used gts: cirularList
~ Ranking function

This ranking lets you define constants for the
nodes and edges. The ranking of a graph is
the weighted sum of the edges and nodes.

Nodes | weights |
node 1.0

Edges | weights |
edge 1.0

~ Termination analysis

Refresh termination analysis

The system is terminating according to the
ranking function.

Figure 4.38: Termination analysis of the circular list detection GTS.

<plugin>
<extension ...>
<gtsanalysistool
class="org.uniulm. gts.analysistools.termination. TerminationAnalysisTool"
name="Termination analysis">
</gtsanalysistool>
</extension>
</plugin>

Listing 4.9: snippet of the plugin.xml file for the termination analysis tool.

tem terminates according to the ranking function. As a result, no rules are displayed in
the list of rules, but a message is shown that all rules have strictly decreasing rank. When
selecting the node or edge identifiers in the table, the type graph must be displayed in the
editor with the according node or edge highlighted.

4.5.2 Implementation

In this section, I demonstrate in detail how an analysis tool is created in general by using the
termination analysis tool as an example. Creating a new analysis tool is usually started by
creating a new eclipse plug-in project. The name of this project is
org.uniulm.gts.analysistools.termination. The first thing is to add an
extension declaration to the plugin. xml file in the project. Listing 4.9 shows the content
of this file for this tool. An analysis tool extension is defined by a gt sanalysistool
tag that contains the attributes name, which is the human-readable name of the tool, and
class, which gives the location of the class that implements the interface
IGTSAnalysisTool. This class is loaded when the tool is started. Now, the class
TerminationAnalysisTool has to be created. First, I describe the methods that
must be implemented for the IGTSAnalysisTool interface. The methods for adding
and removing listeners are implemented in a standard way by using a list that saves the lis-
tener objects. Furthermore, the methods shown in listing 4.10 are implemented to simplify

80

16

O N R W —

4.5 How to create a tool: The termination analysis tool

public void selectedTransformation(String graph) ({
for (IGraphTransformation gt : this.m.getTransformations())
if (gt.getld().equals(graph)) {
notifyAll(gt);
break ;
}
}
public void selectedEdge (String edge) {
GTSElement el=new GTSElement(GTSElement.EDGE) ;
for (IAbstractEdge e:m.getTypeGraph().getEdges()){
if (((ITypeEdge)e).getID().equals(edge)){
el.setEdge(e);
notifyAll(el);
break ;
}
}
}
public void selectedNode (String node) {
GTSElement el=new GTSElement(GTSElement.NODE) ;
for (IAbstractNode e:m.getTypeGraph().getNodes()){
if (((ITypeNode)e).getID().equals(node)) {
el.setNode(e);
notifyAll(el);
break;
}
}
}

Listing 4.10: Helper methods for notifying listeners.

public void runAnalysis () {
IViewPart viewer = getPage ()
.getActivePage ()
.showView ("org.uniulm. gts.analysistools.termination. TerminationView");
if (viewer instanceof TerminationView) {
content = ((TerminationView) viewer).getContent();
content.setTool (this);
}
}

Listing 4.11: Implementation of the runAnalysis () method.

the communication with the listeners. These methods receive the identifier of the node,
edge, or rule graph that should be displayed by the editors, search the according object
in the model, and call a notifyAll () method. The notifyAll () method iterates
over the listeners and notifies them. The methods for setting and getting the currently dis-
played graph, nodes, or edges are not implemented, because this tool has no use for these
methods. The methods for setting the file and the command-stack also have no implemen-
tation, because they are not needed. The method setModel () saves the given model to
a variable and registers itself to it as a listener (the EMF Adapter interface has to be im-
plemented for this). If a model has been set before, the tool removes itself as listener from
the old model. The method runAnalysis () is implemented as shown in listing 4.11.
The method opens a view, receives its content, and adds itself to the content by using
the setTool () method. The content is an instance of TerminationViewContent,
which is a class that contains all the GUI elements and provides methods to set ranking
function entries and the list of rules that might lead to a non terminating system. This class
is not described in detail here. The important point is that this GUI class calls the methods
of the tool, shown in listing 4.10, when new elements in its lists are selected. Because
of that, the type edge, type node, or rule graph is displayed in the editor. The method
updatedWeights () is called by the content object when the user edits the table of the
ranking function values. When the updatedWeights () method is called by the content
object or the not i fyChanged () method is called upon a model change, the calculations
according to section 4.5.1.1 are computed and the content object is updated accordingly.
Additionally, when not i fyChanged () is called, the entries of the ranking function ta-

81

4 Realization

ble are updated, because a type node or type edge could have been added, which changes
the ranking function.

To conclude, the main points in creating an analysis tool are:

e Create a new eclipse plug-in project

e Implement the listener methods of the IGTSAnalysis analysis tool in order to
display nodes, edges, and graphs in the editors.

e Add the tool itself as a listener to the parts of the model that are analyzed to dynam-
ically update the analysis.

e The setModel (), setFile (), and setCommandStack () methods should
only save values, and not start the analysis itself. This should be done when the
runAnalysis () method is called.

e When a GUI is involved, start it in the runAnalysis () method.

4.6 The CHR based analysis tool

One of the main goals (section 3.2) is to develop a platform for the CHR-based analysis
of GTS. Therefore, a tool has to be created that allows the simple embedding of analysis
methods for CHR. This tool is an intermediate tool which itself defines an extension point
that offers the possibility to integrate available CHR analysis methods. This tool is called
CHR-based analysis tool or CHR-based tool in the remainder. The tools that are used by
the CHR-based tool are called CHR analysis tools or CHR tools if the context is clear. One
such CHR tool is given in the form of a compiler for the CHR source in order to create an
executable environment. The description of this tool is a tutorial for embedding other CHR
analysis methods and can be found in section 4.6.2.

No tools for analyzing JCHR programs have been available at the time of implementation.
For that reason, no further CHR tools are provided. Implementing analysis methods for
JCHR would have exceed the scope of this thesis.

4.6.1 Design

This analysis tool basically gives the possibility to launch tools for analyzing CHR pro-
grams. Therefore, a simple GUI must be created, as well as another extension point specif-
ically designed for CHR analysis tools. To create CHR source code files from the GTS
model, a method for code generation is required.

4.6.1.1 CHR analysis tools extension point

The extension point and its interface is designed similarly to the extension point for GTS
analysis tool defined in section 4.2.1.2. The plugin.xml contains the same entries: one
to define a class that should be loaded, one for setting the name of the tool and the identifier.
The interface is also designed similar. However, for this interface, no command stack is
needed. Furthermore, there is no model of the GTS but a file containing the corresponding
CHR program. JCHR is used as CHR implementation. That is why analysis tools must also
be based on JCHR. JCHR uses . jchr source files for its programs. For more information
on JCHR, see [43]. One problem with the JCHR source code files is, that goals are not
included in them. Therefore additional methods have to be provided by the interface in

82

4.6 The CHR based analysis tool

CHRTool ‘ CHRBasedTool ‘ Platform

| |
! constraint !
| _activation notification y 1

L4

convert constraints
and rules to nodes,

edges and rule graphs

node/edge/rule
activation notification !

Forward notification
to editors

om0 . .

CHRTool ‘ CHRBasedTool Platform

Figure 4.39: UML sequence diagram of the communication of CHR tools with the plat-
form.

order to add goals that should be analyzed. Just like the interface for the GTS analysis
tools, this interface has a method for starting the tool itself after setting the file and adding
the goals.

The interface must also contain methods for the listener pattern, so that a bidirectional com-
munication is possible between the CHR tools and the CHR-based tool. The bidirectional
communication informs the CHR-based tool which rules, goals, or constraints should be
displayed. Consequently, the CHR-based tool must transform these notifications for CHR
rules, goals, or constraints to notifications for rule, host, or type graphs and their nodes
and edges, respectively. These new notifications are then sent to the platform. Figure 4.39
shows a sequence diagram describing the flow of information between CHR tools and the
platform.

4.6.1.2 Graphical user interface

The GUI must display a list to choose which rules should be analyzed and to set their order.
There has to be a list to choose the CHR goals, i.e. the encoded host graphs that should be
analyzed. When selecting the elements of these lists, the according graphs are displayed in
the editor. Finally, a drop down menu has to be provided to select the CHR-based analysis
tool that should be started. The screen-shot in figure 4.40 shows how the GUI should look
like. This screen-shot shows the dining philosophers GTS. On the right, the CHR based
analysis tool is opened and the host graph with two philosophers is currently selected.
Because of that, it is displayed in the editor on the left. Also notice the two text fields on
the top of the tool in which the name of the generated handler and the package used for
it can be entered. The contents of these text fields are needed for the code generation as
described in section 4.6.1.3. Below the combo box for the selection of the CHR tool is a
hyperlink that must be clicked to start the tool that is currently shown in the combo box.

4.6.1.3 Code generation

CHR analysis tools need syntactically correct CHR source code for the analysis, therefore,
code generation mechanisms are needed. This generation is done by JET, the java emit-

83

4 Realization

(& *philosopher & = B F Task List| @ View for CHR b &2 =8
- Graphical Used gts: philosopher

+ Type graph

= Hosts Package |plainGTS

.: Palette I Handler |philosopher

''''' fourPhilos Please select the transformations
and their order for analysis

Rule order:
up
waltToEat down

eatToThinlk

twoPhilos

Please select the input hosts for analysis
fourPhilos

Type Graph Editor Host Graph Editor | Rule Graph Editor twoPhllos

~ CHR
public Constraint philosopher(Logical), fork(Logical), think(Logical,Logical .
:-philosopher(P2), fork(F1), fork(F2), philosopher(Pl), liesNextTo(F1,P2), 1 KU Leuven JCHR compiler |+
Execute CHR analysis tool

Figure 4.40: The GUI of the CHR based analysis tool together with the editor.

package examples. fib;
import java.math.Biglnteger;
import runtime.Logical;
import util.arithmetics.primitives.intUtil;
public handler fib {
solver runtime.EqualitySolver<Biglnteger>;
public constraint fib(int N, Logical<Biglnteger> M);
rules {
local Logical<Biglnteger> MIl, M2;
fib (0 M) <=> M 1;
fib (1. M) <=>M = 1I;
fib (N,M) <=>
fib(intUtil.dec(N), Ml),
fib (intUtil .sub(N, 2), M2),
M = Ml.add (M2) ;

Listing 4.12: JCHR program for calculating the Fibonacci numbers.

ter templates. Details about the code generation are given in the implementation section.
The generated code uses the syntax of JCHR. The syntax has some similarities to the java
syntax. Listing 4.12 shows a JCHR program for the calculation of the Fibonacci numbers.
At the beginning of a JCHR file, the package name, as well as imports are listed, which
describe the packages that are needed. JCHR needs special methods for doing basic nu-
merical operations. Therefore, the import of the intUtil class is listed in the example
above. The main part of the program is enclosed by a handler statement (lines 5 ff.) that
is similar to a class statement in java. The java class that is generated from this example
will have the name FibHandler. In the handler, the constraints are defined by giving
the keywords(s) (public/private) constraint, followed by the names of the con-
straints together with the types of their attributes. Furthermore, a solver is defined (line
6). Solvers are used to solve built-in constraints, i.e. they provide the functionality of a
Constraint Theory (section 2.1). In this example, a solver for the BigInteger class is
created. The next part is enclosed by a rules{ . ..} block (lines 8-16) in which all rules
are listed. The rules have a syntax similar to that described in section 2.1. However, vari-
ables that are only in the body of a rule but not in the head must be declared first by giving
the Local keyword, followed by the type and the name of the variable. In this example,
two variables of the type Logical<BigInteger> are defined (line 9). Logical is a

84

4.6 The CHR based analysis tool

special JCHR type that defines an arbitrary term of the given type (BigInteger in this
case) which can be compared and set equal to other terms without having a value.

As a result, the code generator must query the rules of the GTS and encode their nodes
an edges as constraints of a rule, which is described in section 2.3. In addition to that, all
variables that are in the body, but not in the head of a rule, must be declared at the beginning
by using a 1ocal statement. Variables are introduced when new nodes are added in a GTS
rule, because each added node contains a new unique identifier. The names for the package
and the handler must be provided for code generation. These values are queried in the GUI
(see figure 4.40).

4.6.1.4 Compiler tool

One vital part of several analysis methods for CHR is that an executable environment must
be present to test generated inputs (e.g. confluence analysis ([20])). Therefore, I provide
a CHR tool that calls the K.U. Leuven JCHR compiler that compiles the JCHR source to
java source which is then compiled to java byte-code by the eclipse platform. This CHR
analysis tool has no graphical user interface. Only when an error occurs, an error dialog is
shown that informs the user about the error.

4.6.2 Implementation

First, I describe the implementation of the extension point for CHR analysis tools, then the
intermediate analysis tool and the code generation using JET. At the end, I describe the
implementation of a CHR analysis tool in detail. I use the example of embedding the K.U.
Leuven compiler for this purpose. The extension point definition can be found in the project
org.uniulm.gts.chranalysistool, the CHR based tool in
org.uniulm.gts.analysistools.chrbasedanalysis,the compiler CHR tool
in org.uniulm.gts.chranalysistools.chrcompiler, and the JET template
for generating the source code is located in the project
org.uniulm.gts.chrexporter.plainchrexporter.

4.6.2.1 Extension point

The extension point definition is similar to the one from the GTS analysis tool. It ba-
sically consists of two interfaces, ICHRAnalyzer and ICHRListener, as well as a
class ConstraintNotification. The interface ICHRAnalyzer contains meth-
ods for setting the file with the JCHR source (setFile (IFile)) and adding goals
to the CHR analysis tool (addInput (List<ConstraintNotification>)). A
goal is represented as a list of ConstraintNotification instances. This class con-
sists of the constraint’s name and a list of strings representing the attributes of the con-
straint. Furthermore, methods for adding and removing listeners are provided. The method
runChrAnalysis () starts the according tool. The ICHRListener interface con-
tains methods to notify the listener about activated rules, constraints and constraint defi-
nitions. The methods contain either the rule name as string or a list of instances of the
ConstraintNotification class as its attribute.

4.6.2.2 Tool

The tool itself is realized by two classes, one providing the graphical front-end with meth-
ods to set and receive information and the other one providing the functionality of the tool.

85

4 Realization

public constraint
<c:iterate select="$gts/typeGraph/nodes" var="typenode" delimiter=", ">
n_<c:get select="translate ($typenode/@iD,” *,”_’)"/>(Logicallnt,int)
</c:iterate>
<c:if test="count($gts/typeGraph/nodes)>0">,</c:if>
<c:iterate select="$gts/typeGraph/edges" var="typeedge" delimiter=", ">
e_<c:get select="translate ($typeedge/@iD,” ~,”_")"/>(

int ,Logicallnt ,Logicallnt)
</c:iterate>;

Listing 4.13: Snippet of a template for creating the constraint definitions from a type graph
model.

The tool implements the interface for GTS analysis tools and the listener interface for CHR
analysis tools. First, I describe the interface for the GTS analysis tool. The setModel ()
method saves the given model as its current model and adds itself as listener to it, so that
the GUI can be updated when graphs are removed or added. The setFile () method is
used to set the name of the JCHR handler in the GUI (because of that, the default name for
the generated file is identical to the file name from which the model was loaded). When
runAnalysis () is called, a view is opened. The contents of this view are initialized
by filling the lists of rule and host graphs with the corresponding identifiers and register-
ing the tool itself as selection listeners to these lists. Furthermore, all CHR analysis tools
extensions are searched, their names are saved in a combo box in the GUI, and a selection
listener is added to a hyperlink that is used to start the currently selected tool. The selection
listeners for the lists check the currently selected element of the according list, search the
graph with the same identifier, and notify the listeners of this tool (i.e. the platform) that
this graph is currently selected. The listener for the hyperlink checks which tool is selected,
generates the source (which is described later), and calls the setFile () method of the
according tool followed by several calls of the addGoal () method for every activated
host graph in the list of host graphs. When all goals are added, runChrAnalysis () is
called which starts the functionality of the CHR analysis tool.

4.6.2.3 Code generation

The creation of the JCHR source is done with JET. A JET code generator is described
by a template file that contains the static parts of the target document together with XML
tags that describe the dynamic content. Listing 4.13 shows a snippet from the template
to create CHR source from a GTS model. The snippet shows how to generate the list of
constraint definitions at the beginning of the handler. It contains the <c:iterate ...>
tag (lines 2—4) which iterates over a number of objects defined by its select attribute.
The objects are selected by using XPath. XPath is a query language designed to select parts
of XML documents, but can also be used to query EMF models. For more information
about XPath, see [4]. Basically, the XPath expression provides a path to reach the desired
objects in the model. In the first iterate tag stated above, all nodes in the type graph model
are selected by giving the path $gts/typeGraph/nodes, which means that gts is
the root of the model from where the t ypeGraph attribute is selected. In there, all the
node attributes are chosen (also compare to the definition of the GTS model described in
section 4.2). The iterate tag iterates over all nodes. These nodes are represented by the vari-
able Stypenode. The delimiter attribute of the tag defines the string that separates
the elements of the iteration from each other. Values can be printed from the model with
the <c:get select=.../> tag. This tag also uses XPath to select a value from the
model. $typenode/@iD, for example, selects the 1D attribute of the object t ypenode.
Objects in the model that represent final values, i.e. strings, numbers, and boolean values,
are addressed in XPath with an @ sign. The function translate is an XPath function

86

S0 ®uoa v e w

4.6 The CHR based analysis tool

props=new HashMap<String , Object>();
props.put("org.eclipse.jet.resource.project.name", file.getProject().getFullPath().
toOSString ());
props.put("jchrpackage" , pkg);
props.put("jchrhandler" hndl);
props.put("order" ,content.getOrder());
IStatus res = JET2Platform.runTransformOnObject(
"org.uniulm. gts.chrexporter.plainchrexporter",
model ,
props,
new NullProgressMonitor());

Listing 4.14: Code snippet for starting a JET transformation with additional values from a
java program.

and replaces blanks by underscores in the first attribute. Another tag that is used here, is
the <c:if test=...> tag (line 5) which can be used to conditionally print values to
the target document. The test attribute contains a conditional in which comparison op-
erators (<, >, =, <=, >=) can be used together with XPath expressions. The conditional
count ($gts/typeGraph/nodes) >0 uses the XPath function count that returns
the number of elements in the given XPath expression. There are several XPath expres-
sions already available and JET provides the possibility to define new functions by creating
an extension to JET. These functions are implemented as java classes. The example listing
first prints the node and then the edge constraints, followed by a semi-colon.

The rules are printed by using an iterate tag. However, the iterate tag prints the rules in
the order they appear in the model. Therefore, an XPath function has been designed as
a JET extension that receives a list of objects and a list of integers. The list represents a
permutation of the elements in the list of objects. This function reorders the list of objects
and returns the new list. The function is called reorder. Certain elements can also be left
away by removing the according number from the list of integers. At the beginning of the
rules block in a JCHR file, all variables must be listed that appear in the body but not in the
head of the rules. To realize this, a second XPath function has been created that receives
a list of objects and returns a list of its distinct values, i.e. it removes duplicate entries.
This function is called distinct-values. To print all variable names contained in the
bodies of rules, all these variables are selected with an XPath expression and handed to
the new defined function. Generating the rules requires to introduce new variable names
for the deletion and degree attributes of the edge and node constraints. These variables
are named DEL_ or NC_, followed by an increasing number to uniquely identify them
within a rule. To avoid name clashes between the generated variable names and the variable
names introduced by the model, the names of the identifier variable in node constraints are
preceded by NN__ for variables introduced in the body of a rules or ON__ for variables that
appear in the head of a rule, too.

Furthermore, the template needs the information about the handler and the package name.
These values can be given to JET in form of a java map as shown in the code snippet in list-
ing 4.14. The snippet shows how a map is filled with values. The variables pkg and hnd1l
contain the name of the package and the handler. The property order that is put into the
map, is the list with integers that represents the permutation of the rules. The GTS model it-
self is saved in the variable model and is handed to the
runTransformationOnObject () method of the JET platform. This method re-
ceives the identifier of the transformation, the EMF model object, the properties, and an
instance of a progress monitor. Each JET transformation is an extension to JET which con-
tains the location of the template file. JET also provides tags to create files, folders, and
projects in the eclipse workspace. The complete JET template file can be found in appendix
C.4. The source in the appendix is trimmed for readability. That is why the generated code
is not formatted very nice in this form.

87

4 Realization

<plugin>

<extension

point="org.uniulm. gts.chranalysistool ">

<chranalysistool

class="org.uniulm. gts.chranalysistools.chrcompiler.ChrCompiler"

name="KU Leuven JCHR compiler">

</chranalysistool>

</extension>
</plugin>

Listing 4.15: plugin. xml file for the CHR compiler tool.

4.6.2.4 How to create a CHR tool: Compiler tool

In this section, I show a guide for the creation of a CHR analysis tool by using the example
of integrating the K.U. Leuven JCHR compiler as a CHR tool. This tool calls the K.U.
Leuven JCHR compiler with the generated JCHR file as input and raises an error message
when errors occur during execution.

At first, the project org.uniulm.gts.chranalysistools.chrcompiler must
be created as a plug-in project. In this project, an extension to the CHR analysis tool
extension point must be created in the plugin.xml file of the project. Listing 4.15
shows the file. The chranalysistool tag defines the name of the tool and the class
where it is implemented. In a next step, the java class referenced in the extension must
be created. This class must implement the IChrAnalysisTool interface described in
section 4.6.2.1. The interface is not directly implemented by the CHRCompiler class,
but it extends the class Abstract CHRAnalysisTool. This class basically implements
the methods for the listener pattern and provides two methods, notifyRule (...) and
notifyConstraintDef (...), in order to notify the listeners about a rule or a con-
straint that should be displayed. The ChrCompiler class must still implement the re-
maining methods setFile (...) (fileis copied to a variable file), addGoal (...),
and startAnalysis (). The method for adding goals can be left unimplemented, be-
cause the goals are not needed by the compiler. runChrAnalysis () is the interesting
method. CHR analysis tools in general start their calculations or display further dialogs,
like views or wizards, in this method. In this example, the K.U. Leuven JCHR compiler is
started. Listing 4.16 shows the source code of the method. This method checks whether
the source file exists and creates a new Job object for compiling the source code (lines
2-5). The tool adds itself as listener to the job and schedules it for execution (lines 17
and 18). If the source file does not exist, an error message is displayed. When the job
is finished, it returns a status code to the tool by calling one of the methods from the
IJobChangeLlistener interface (this is not shown in the listing). If an error is re-
turned, an error dialog is displayed. For the Job itself, the run () method must be imple-
mented. In this method, a Compi ler instance is created (line 7). This class also provides
a method run () that starts the K.U. Leuven JCHR compiler. The K.U. Leuven JCHR
compiler does not provide a documented method to call it from other java classes. There-
fore, the Compi ler class creates a new process for launching the K.U. Leuven compiler.
The compiler can only be started when the binaries of the java run-time environment are
in a folder that is searched by the system. The jar file of the K.U. Leuven JCHR compiler
must be in the java class-path, so that it can be found by the run-time environment. The
standard and error output is returned as a string. These functions are not described any
further, because they are only a work-around for a lack of functionality of the JCHR com-
piler. The Compiler class returns a status code that signals whether the execution was
successful. Additionally, the error output is checked for errors of the JCHR compiler. Then
a corresponding status code is returned.

Now the new CHR tool is listed in the combo box of the CHR based analysis tool with the
name specified in the plugin.xml (see figure 4.41). When the link under it is clicked,

88

4.6 The CHR based analysis tool

public void runChrAnalysis () {

boolean success=true;

status=Status .OK_STATUS;

if (file!=null&& file.exists ()){

Job generateCode=new Job("Generate Code"){
protected IStatus run(IProgressMonitor monitor) {
cmp=new Compile(file);
cmp.run(null);

if (cmp. getStatus () !=Status .OK_STATUS)

return cmp. getStatus () ;

if (!cmp. getErrorOutput().equals(""))

return new Status(Status.ERROR,
"org.uniulm. gts.chranalysistools",
"KULeuven JCHR Compiler produced errors");

return Status .OK _STATUS;

1

generateCode .addJobChangeListener (this);

generateCode . schedule () ;

Yelse {
success=false ;
status = new Status(Status.ERROR,

"org.uniulm. gts.analysistools.chranalyzer",
"Source file does not exist");

if (!'success){
ErrorDialog err=new ErrorDialog(null,

"Error compiling file",

"The jchr file could not be opened",status ,0);
err.open();

Listing 4.16: startAnalysis () method of the ChrCompiler class.

waitToEat down
eatToThink

Please select the input hosts for analysis
fourPhilos
twoPhilos

(KU Telven JCHR compller [+

Execute CHR analysls tool

Figure 4.41: CHR compile tool, listed in the combo box of the CHR based tool.

[ETl

&9

4 Realization

the generated code will be compiled to a java source file that can be embedded into other
projects or used by further analysis tools.

4.7 The graphical analysis tool

When analyzing a GTS, an important requirement is to have the possibility to apply the
rules to a host graph. The computation of the transformations can be done by CHR (sec-
tion 2.3). However, methods must be developed to apply rules step by step and to manually
define to which nodes and edges the rule should be applied.

4.7.1 Design

In this section, I develop a method that realizes a step-by-step-application of CHR rules
and describe how to define the next match of a CHR rule manually. Furthermore, I design
the graphical user interface of the tool. To create an executable environment for a GTS,
JCHR code has to be generated similar to the method described in the section 4.6.1.3.
Additionally, a possibility is required to load and access the generated JCHR handler.

4.7.1.1 Interactive CHR environment

Usually, CHR does not provide the possibility to activate and deactivate rules, apply them
step by step, or manually select to which constraints a rule is applied. In the following, I
describe approaches to solve each of the three problems.

I found two approaches for the step-by-step-application of rules. The first approach is very
specific to JCHR handlers: They offer the possibility to register a listener to them, so that
the handler notifies its listeners before a rule application. To use this feature, the debug
mode has to be activated in the compiler. However, the listener only gets notified that a
rule is going to be applied, but this cannot be canceled. The other approach is to modify
the rules of the original CHR program by adding a new constraint to each rule. Therefore,
the rule
rQHyep\Hyem < G|B.

is transformed to the rule
rl@erp\start, Hyem < G|B.

The start/0 constraint is a special constraint that is added to the constraint definitions
of the program. This constraint must be added to the CHR goal store if a rule should be
applied. When the start constraint is added, the goal stack of the current state is empty,
because all its constraints are already in the CHR store. When the new constraint is added to
the goal stack, it becomes an active constraint and is associated with its occurrences. When
an occurrence is found, all numbered constraints are searched to find a set of constraints that
match to the head of this rule (see section 2.1 for a description of the operational semantics
of CHR). Take, for example, the greatest common divisor program from section 2.1 with
the modified rules
ged1t @ start, ged(0) < true.

ged2' @ ged(I)\start, ged(J) < J > 1,1 > 0|K is J — I, gcd(K).

When adding the constraints ged(6) and ged(9), no rules can be applied and the constraints
are moved to the CHR store. The according state is:

([, {gcd(6)#1, ged(9)#2})3

90

4.7 The graphical analysis tool

When a start constraint is added

([start],{gcd(6)#1, ged(9)#2})s

it becomes the active constraint resulting in the state:

([start#3 : 1], start#3, gcd(6)#1, ged(9)#2})4

When the occurrence matches the start constraint of the second rule

([start#3 : 2], {start#3, gcd(6)#1, gcd(9)#2})4

a match is found and the rule is applied resulting in the state

(lged(3)],{ged(6)#1})a

No rule of the CHR program is applied and the gcd(3) constraint is moved into the CHR
store, therefore, the final state is

([, {ged(6)#1, ged(3)#4})s

where no transition rule can be applied anymore. Furthermore, a noprocess constraint is
added to the program together with the rule

start < noprocess.

at the very end of the CHR program, so that start constraints are replaced by noprocess
constraints when no rule has been applied. This constraint can be looked up by the user
to check whether a rule could be applied or not. However, these constraints have to be
removed from the CHR store when a new start constraint is added, because otherwise, it
cannot be determined whether a rule has been applied or not. For this reason, the rule

start\noprocess < true.

is added at the beginning of the program. This rule removes all noprocess constraints that
are currently in the store before attempting to apply any of the other rules when a new start
constraint is added.

The second approach is used, because it is portable to other CHR implementations and
the listener feature of JCHR is still in experimental state and might be removed in further
versions ([43]).

Activating and deactivating rules is also done by modifying a given CHR program. Each
rule
T Q@ erp\Hre’m <~ G|B

has to be modified in the following form:
r? @ rule_activate(i), Hiep\Hrem < G|B.

rule_activate/1 is here a new constraint and i is a unique number which is assigned to
each rule. As a consequence, only when a rule_activate(i) constraint is in the CHR store,
the rule can be applied. The greatest common divisor program is used as an example. The
rules must be modified in the following form:

ged1? @ rule_activate(1)\ged(0) < true.

ged2? @ rule_activate(2), ged(I)\ged(J) < J > 1,1 > 0|K is J — I, gcd(K).

91

4 Realization

When adding the constraint ged(9) and ged(6) no rule of the CHR program can be applied
resulting in the state

([, {gcd(6)#1, ged(9)#2})3

When a rule_activate(2) constraint is added

([rule_activate(2)], {ged(6)#1, ged(9)#2})3
it becomes the active constraint, resulting in the state:
([rule_activate(2)#3 : 1], {rule_activate(2)#3, ged(6)#1, ged(9)#2}) 4
When the occurrence matches the rule_activate(2) constraint of the second rule
([rule_activate(2)#3 : 2], {rule_activate(2)#3, ged(6)#1, ged(9)#2})3
a match can be found and the second rule is applied, resulting in the state

([ged(3)], {rule_activate(2)#3, ged(6)#1})3

The rule can be applied two further times, to reach the state

([], {rule_activate(2)#3, gcd(3)#5, ged(0)#6 })7

in which no transition rule can be applied anymore. In order to apply the first CHR rule to
remove the gcd(0) constraint, a rule_activate(1) constraint must be added. To deactivate
an activated rule, another rule is added:

rule_activate(N), rule_deactivate(N) < true.

This rule removes pairs of rule_activate(N) and rule_deactivate(N) constraints. In
order to deactivate a rule, the user has to add a rule_deactivate constraint with the ac-
cording rule number to the store. In order to activate a rule a rule_activate constraint with
the according rule number must be added. This is especially useful if the user wants to see
the intermediate state that is reached when only a set of rules is applied. If a final state
is reached the rules can be deactivated and other rules can be activated to reach another
intermediate state.

There are also two approaches for the manual selection of CHR matches. The first approach
is specific to the JCHR K.U. Leuven compiler: Each constraint’s arity is increased by one to
hold a boolean value which is true when a constraint can be used for a rule application, and
false otherwise. The user has to manage these variables and set them true or false, depend-
ing on whether the constraint should be used in a match, or not. The rules must be changed
accordingly, so that only selected constraints are used. The problem arising from this is the
modified problem ([43]), i.e. how does the JCHR handler know when a constraint’s term
is changed and must be revised for rule application. The K.U. Leuven compiler provides
a solution in the form of observable variables which notify the JCHR handler when their
value changes. Then JCHR reconsiders the constraints of these variables for rule appli-
cation. However, this feature is work in progress, has changed in the newer versions of
JCHR, and is not documented very well in the current version. The second approach is to
modify the CHR program itself: different CHR constraints are used to represent selected
and deselected states of constraints. For every constraint type c, two other constraint types
are defined: c_sel and c¢_desel with the same signature as c. For each constraint ¢, two new
rules of the form
Csel @ c_sel(N)\c(N) < true.

92

4.7 The graphical analysis tool

and
Cesel @ c_sel(N), c_desel(N) < ¢(N).

are introduced where the N symbolizes that all terms of the constraints must be identical.
These rules are added at the top of the CHR program. Now, the user can add c_sel con-
straints with the attributes of the according c constraint to select a certain constraint. A
c_desel constraint is added to the goal stack in order to revert the constraint to the nor-
mal, deselected status. The ged/1 constraint of the ged example, therefore, results in the
constraint definitions

ged /1, ged_sel /1, ged_desel /1

the rules
gcdsei@Qged_sel(N)\ged(N) < true.

and
gcdgese1@ged_sel(N), ged_desel(N) < ged(N).

To make sure that the rules only work on selected constraints, all constraints in a rule’s
head have to be replaced by the corresponding sel version of the constraint. So, every rule

r Q Hyep\Hyem < G|B

is replaced by a rule
3 Q H' < G|B, Hyep

where for all constraints ¢ € Hyep U Hyep, a c_sel constraint in H " is added. As you
can see, simpagation rules are replaced by simplification rules, because the constraints
are deselected after rule application. The main problem with this approach is that CHR
cannot find matches on its own anymore. Because of that, another modification to the CHR
program is added. For each rule

1@ Hyep\Hyem < G|B

anew rule
rf"ind « flnda erp; Heem & G‘H/

is added which replaces the constraints from an original rule’s head. That is done by the
corresponding selected constraints that are needed by the modified rule 3. find/0 is a new
constraint, which must be added manually. This constraint signals the handler to search for
a new match. The rules from the gcd example are modified to

gcdlfcmd Q@ find, gcd(0) < ged_sel(0).
ged1® @ ged_sel(0) < true.
gcd2§ind Q find, ged(I),gcd(J) < J > 1,1 > 0|ged_sel(I), ged_sel(J).
ged2® @ ged_sel(I), ged_sel(J) < J > I,1 > 0|K is J — I, gcd(K), ged(I).

A further rule
find & nofind.

is added to the end of the CHR program and
find\nofind < true.

to its beginning. The first rule gives the user the possibility to see that no match was found
and the second one removes the nofind constraints when a new find constraint is added,
so that old no find constraints cannot be looked up when a new find constraint is added. I
present the gcd example and start with a state where the two constraints ged(9) and ged(6)

93

4 Realization

are in the CHR store:
([, {gcd(6)#1, ged(9)#2}) 3

Now the constraint gcd_sel(6) is added to the goal stack. Therefore, the rule gedge is
triggered, resulting in the state

([, {gcd_sel(6)#3, ged(9)#2}) 4

No rule can be applied from this state, but when adding another ged_sel(9) constraint, the
rule gcd; is applied again to form the state

([ged_sel(9)7#4], {gcd_sel(6)#3})s

The ged_sel(9) constraint in the goal stack is compared to the occurrences of the remaining
rules. Finally, the rule gcd2? is applied to form the final state

([, {9cd(3)#5, ged(6)#6})7

When a find constraint is added

([find],{gcd(3)#5, gcd(6)#6})7

a match is found with the occurrence of find in rule gcd2§m 4» Which results in the state

([ged_sel(3), ged_sel(6)],{})s

The gcd_sel(3) constraint is moved to the CHR store, because no rule can be applied. Then
the rule gcd2? can be applied which yields the final state

([, {ged(3)#11, ged(3)#10}) 12

After adding two more find constraints, the goal store only contains one gcd(3) constraint.

The second approach is chosen with the same arguments mentioned before: It is portable
to other CHR implementations and the documentation of the K.U. Leuven system is not
very detailed on this topic and the features required could also be removed or changed in
future versions.

By using the modifications described above, a CHR program can be created that can be
executed step by step with selected rules and only with the selected constraints. Given a
CHR program p = (C, R) consisting of a set of constraint definitions C' and a list of rules
R, the new CHR program p;pteractive = (C', R’) can be created as follows:

C' = {find, nofind, start, noprocess, rule_activate(int), rule_deactivate(int) }U
{{c_sel, c_desel, c}|c € C}

R =
[(c_sel(N)\e(N) < true), (c_sel(N),c_desel(N) < ¢)] VeeC
[r?ind,r‘l] Vr € R
[(find < nofind), (start < noprocess)]

[
I
|

(find\nofind < true), (start\noprocess < true))
|
|
|

where 74, ; is a combination of the rule 7%, ; and 7% where an additional rule_activate(i)
constraint is added to Hp,,, of T?md and where ¢ is the number of rule r of the original
program p. 74 is a combination of the rules r*, 72, and r3 where an additional start
constraint is added to H,.,,, of 73, so that the rule is applied only when a start constraint
is added by the user. Furthermore, an additional rule_activate(i) is added to H, kep Where
i is the number of the rule r of the original program p. The operator || is the concatenation

94

4.7 The graphical analysis tool

operator for lists. The order of the rules is important, because of the operational semantics
described in section 2.1.

The rules of the CHR program for the gcd example would, therefore, be
find\nofind < true.

start\noprocess < true
gcdse; @ ged_sel(N)\c(N) < true
gCdgeser @ ged_desel(N), c_sel(N) < ¢(N).
gcdl‘}md Q@ rule_activate(1)\ find, gcd(0) < ged_sel(0).
ged1* @ rule_activate(1)\start, ged_sel(0) < true.
gcd2‘}md Q rule_activate(2)\ find, ged(I), ged(J) < J > I, I > 0|ged_sel(I), ged_sel(J).
ged2* @ rule_activate(2)\start, ged_sel(I), ged_sel(J) < J > 1,1 > 0|K is J—I, gcd(K), ged(I).
find & nofind.
start < noprocess.

For a CHR program of this form, a rule can only be applied if it is activated and a start
constraint is added. Furthermore, the activated rules are only applied to the selected con-
straints. These constraints can be manually selected or by adding a find constraint. When
adding a find constraint, only the rules are used that have been activated by the user.
The rules can be activated and deactivated by adding rule_activate and rule_deactivate
constraints.

The following list provides the instructions on how to use a program of the form above:

activation and deactivation of rules Add the according rule_activate(i) or
rule_deactivate(i) constraint to the store. Only the activated rules are used for
rule application or for automatically selecting constraints.

find constraints that match to the activated rules Adda c_desel constraint for ev-
ery c_sel constraint in the CHR store to remove the current selection. Then add a
find constraint. The activated rules are then used to find constraints that match to
a head. These constraints are then present as selected constraints in the CHR store.
The according rule can be applied to them by adding a start constraint. Before
constraints can be selected manually, rules have to be activated.

automatic rule application First, add a find and then a start constraint to the CHR
store until a noprocess constraint can be looked up in the CHR store. When only
a fixed number of steps should be executed, £ind and noprocess constraints are
added alternately to the CHR store the according number of times. This procedure
can also be used to execute one step of the program automatically. Only the activated
rules are used for finding and applying constraints. Therefore, these rules must be
activated prior to adding find and start constraints.

manual step by step rule application To select constraints, the available constraints
must be visible to the user. New c_sel constraints must be added with the terms from
the chosen ¢ constraint. For deactivation, c¢_desel constraints with the same terms
as the c_sel constraints are added to the store. To apply one of the activated rules
to the selection, a start constraint must be added. When no rule could be applied,
a noprocess constraint is found in the CHR store. The rules have to be activated by
the user prior to adding a start constraint.

95

4 Realization
4.7.1.2 Code generation

With the methods described in the previous section, the CHR encoding of a GTS can be
modified in a way that it can be executed step by step and that the nodes and edges can be
selected which are matched by the next rule application. The code for realizing this will be
generated in the JCHR syntax, just as described in section 4.6.1.3. But in order to use the
generated handler, it has to be compiled to a java class (section 4.6.2.4). This class contains
methods that depend on the constraint definitions in the JCHR program. Two methods are
provided for each constraint type: one to receive a list of the constraints in the CHR store
and one to add the constraint to the CHR store. Therefore, loading the generated class
dynamically is difficult, because the methods would have to be determined dynamically.
A solution to this problem is to generate another java source file which implements a java
interface that provides methods to access node or edge constraints of a JCHR handler more
generically.

In more detail, this interface must provide methods to return all the information contained
in the JCHR program plus the information about host graphs which are not encoded in the
JCHR program. For that reason, the interface provides methods to return all rule and host
graphs’ names, to activate and deactivate rules by giving their name, to restart the CHR
program with a new host graph (by giving its name), to read all node and edge constraints,
to (de)select node and edge constraints, to add start and find constraints, and to check
whether a rule has been applied or if a match was found. Node and edge constraints need
a representation that is independent from the underlying CHR handler, hiding the differ-
ent constraints for nodes and edges. Therefore, two wrapper classes for these constraint
types must be provided. The methods for activating and deactivating constraints receive
an instance of one of the wrapper classes and add new constraints to the CHR handler.
This generated java class can then be dynamically loaded from the tool to access the JCHR
handler in a generic way.

4.7.1.3 Graphical user interface

The graphical user interface consists of two parts: The part where settings are made for
generating the CHR code and the part where the generated handler is displayed. Figure 4.43
shows the first part. The settings that can be made here are similar to the ones described
in section 4.6.1.2. Only the list for selecting host graphs for export is missing, because
they are all available for selection. When activating and deactivating rules, they should
be displayed in the editors. When the CHR handler is created and loaded, the second
part of the GUI becomes visible which is shown in figure 4.44. A list for activating and
deactivating rules is provided together with a combo box that lists the available host graphs.
When rules are (de)activated they should also be displayed in the editors of the platform.
The main element is, however, the graphical representation of the current host graph. As the
rules of the GTS are applied to a host graph by using CHR, automated layout for the graph
is needed, because the constraints do not contain information about their position. The
nodes and edges can be selected by double clicking on them, so that rules can be applied
to them. For that reason, the displayed graph must highlight which nodes and edges are
currently selected. Additionally, hyperlinks are available that enable the user to apply the
currently activated rules to the currently selected constraints, to select constraints that can
be matched by one of the activated rules, and to apply the rules several times in a row or
until a final state can be reached. When running the GTS to a final state, another button
must be displayed to cancel the calculations in case a non-terminating GTS was designed.
Furthermore, a hyperlink is provided to deselect all nodes and edges. The use case diagram
in figure 4.42 shows the interaction between the user and the tool.

96

4.7 The graphical analysis tool

GraphDisplay

De/Select edge
Graphical Execution Tool
De/Select node \ Create CHR
— environment
Apply rule) \i | —»

/

/
e

| —
>
usef Find match / \ Change Rule
User \ Order
<<usgpes>> /
De/Activate Rule

run to a final state
Platform <<uses>>
De/Select rule
<Jses>>
> Notify platform)<}—

<<usps>>

Iy

Figure 4.42: UML use case diagram for the interaction between the user and the graphical
simulation tool.

#® Graphical GTS Diagnostics £ =0

Used gts: My

» Compile Configurations

Package |myGTS Rule order: R

twoloop

Handler |My

Create GTS and execute it

Figure 4.43: Selection and order of the rules for graphical simulation.
Used gts: philosopher
» Compile Configurations

New host graph: | Reload...

O thinkTowait

L Rwaikgeat find morphism apply rule Run [to a fix point -

wait
philosopher

lie o]

lie To fork

fork

philosopher

Bemove Selection

Figure 4.44: Running simulation of a GTS with selected edges and nodes.

97

4 Realization

4.7.1.4 Synchronization of display and handler

To represent the graph in a diagram, it has to be synchronized with the constraint store
of the underlying CHR handler. An algorithm is provided that checks for removal and
addition of constraints. The CHR rules that are generated for the selection and deselection
of constraints in fact remove and add constraints to the store. The graphical representation,
however, should not remove and re-add the according nodes, because this would result in
laying out the graph again. The algorithm maintains mappings from node constraints to the
displayed nodes (node mapping) and from edge constraints to the displayed edges (edge
mapping). In fact, the node mapping does not map the constraints to the displayed nodes,
but the identifier attribute (that is the first attribute of the constraint, see section 2.3) is
mapped to the displayed node. That is done to overcome the problem that two different
constraint types encode the same node which would otherwise lead to a re-layout of the
displayed graph when a node becomes (de)selected. When the view of the displayed graph
is updated, the node constraints are all stored in a new mapping that also links the first
identifier attribute of the node constraints to nodes in the diagram. If the node attribute is
not available in the node map, a new node for the diagram is added otherwise the old node
from the diagram is taken from the old node mapping. The same procedure is repeated for
the selected nodes. After that, the identifier attributes that are in the old node map, but not
in the new node map, are searched and their nodes in the graph display are disposed. The
same procedure is repeated for edge constraints, as well. The difference is that the mapping
goes directly from the constraints to the displayed edges. Because of that, edges that are
(de)selected are removed and added again, but this does not impose any problems. This
will not lead to a re-layout, because the position of the edge is determined by the positions
of the source and target node. This synchronization has to be done each time the CHR store
is changed in the handler.

4.7.2 Implementation

In this section, I give some details about the generation of the JCHR handler and the corre-
sponding interface to access it. Then I describe the implementation of the GUI where I pay
special attention to the graphical representation of the constraints as a graph. This tool can
be found in the project org.uniulm.gts.analystools.graphicalsimulation.

4.7.2.1 Generation of the JCHR handler and its interface

The generation of the CHR source is similar to the method described in 4.6, but the already
developed template is not reused, because the generated code is no regular CHR encoding
(section 2.3). The CHR encoding is modified according to the rules in section 4.7.1.1 and
this modified encoding is generated directly from the GTS model without generating the
regular encoding first. However, additionally to the CHR source, a java source file has to
be generated which implements the interface IGTSFacade which contains methods to
generically access the JCHR handler. For a list of the provided methods, please see table
4.5. The generated code for the java interface does not implement the interface directly,
but an abstract base class Abstract Gt sFacade. This class implements some methods
of the interface and provides further methods to simplify generated code. Table 4.6 shows
the methods of the abstract base class, that need to be implemented. All these methods are
implemented in a way that they query the CHR store or add a CHR constraint to it. The
code generation is done by JET, just like for the JCHR file. The activation of rules, for
example, is generated by the template in listing 4.17. This template iterates over the rules
and prints if statements that add rule_activate constraints to the handler. The dining
philosophers problem would, consequently, produce the code shown in listing 4.18. The

98

4.7 The graphical analysis tool

Read Handler returns. . .

List<String> getHosts () list of host identifiers
List<String> getRules () list of rule identifiers
List<String> getTypeNodes () list of type node identifiers
List<String> getTypeEdges () list of type edge identifiers
List<GtsChrNode> getNodes () list of nodes
List<GtsChrEdge> getEdges () list of edges
List<GtsChrNode> getSelectedNodes () list of selected nodes
List<GtsChrEdge> getSelectedEdges () list of selected edges

boolean nothingFound ()

boolean nothingProcessed()

Modify Handler
putStart ()
findMatchMorphism()

void
void
void
void
activateAllRules ()
deactivateAllRules ()
setHost (String host)
select (GtsChrNode n)
select (GtsChrEdge e)
deselect (GtsChrNode n)
deselect (GtsChrEdge e)

void
void
void
void
void
void
void

activateRule (String rule)
deactivateRule (String rule)

whether match was found
whether rule was applied

apply rule

find match
activate rule
deactivate rule
activate all rules
deactivate all rules
put new host encoding in goal store
select node

select edge
deselect node
deselect edge

Table 4.5: List of methods provided by the IGTSFacade interface.

Method

Description

activateRule (String rule)
deactivateRule (String rule)a
deselect (GtsChrNode n)
deselect (GtsChrEdge e)
select (GtsChrNode n)

void select (GtsChrEdge e)
putStart ()
findMatchMorphism()
setHost (String host)
getNodes (String type)
getEdges (String type)
getSelectedEdges (String s)
getSelectedNodes (String s)
boolean nothingFound/()
boolean nothingProcessed()

Activate the rule with the given id

Deactivate the rule with the given id

Deselect the given node constraint

Deselect the given edge constraint

Select the given node constraint

Select the given edge constraint

Do a transformation step

Find a match morphism

Start program with the host of the given id

Return all node constraints of the given type
Return edge constraints of the given name

Return selected edge constraints of the given name
Return selected nodeconstraints of the given name
Returns if a rule could be applied

Returns if a match could be found

Table 4.6: List of methods that need to be implemented by classes implementing the base

class AbstractGTSFacade.

public void activateRule (String rule)

<c:setVariable var="ruleCnt"

<c:iterate
else ">

<c:setVariable var="ruleCnt"

select="0"/>
select="reorder($ gts/transformations/@id,$ order)" var="rule"

delimiter="

select="$ruleCnt+1"/>

if (rule.equals("<c:get select="$rule"/>")){

handler.tellRule_activate (<c:get
}</c:iterate>

select="$ruleCnt"/>);

Listing 4.17: JET template for generating the act ivateRule () method.

99

16

4 Realization

public void activateRule(String rule) {
if (rule.equals ("thinkToWait")) {
handler.tellRule_deactivate (1);
telse if(rule.equals("waitToEat")){
handler.tellRule_deactivate (2);
}else if(rule.equals("eatToThink")){
handler. tellRule_deactivate (3);

}

}

Listing 4.18: Generated code from the template shown in listing 4.17.

if (host.equals("twoPhilos")){
handler=new PhilosopherHandler () ;
HashMap<String , Logicallnt> nodes=new HashMap<String ,Logicallnt>();
nodes . put("P2" ,new Logicallnt());
handler.telIN_philosopher (nodes. get("P2") ,3);
nodes.put("F1" ,new Logicallnt());

handler. telIN_fork (nodes.get("F1"),2);
nodes.put("F2" ,new Logicallnt());

handler.telIN_fork (nodes.get("F2") ,2);
nodes . put("P1" ,new Logicallnt());
handler.telIN_philosopher(nodes.get("P1"),3);
handler.tellE_liestNextTo (nodes. get("F1") ,nodes.get("P
handler.tellE_liestNextTo (nodes.get("F2") ,nodes.get("P
handler.tellE_eat (nodes.get("P2") ,nodes.get("P2"));
handler.tellE_wait(nodes.get("P1") ,nodes.get("P1"));
handler.tellE_liestNextTo (nodes.get("F1") ,nodes.get("P1"
handler.tellE_liestNextTo (nodes. get("F2") ,nodes.get("P1"

}

NN
NN
NN

Listing 4.19: Generated code to add the constraints of the encoded host graph twoPhilos of
the dining philosophers example.

other methods for (de)selecting nodes and edges are implemented similarly. The method
setHost (String) creates a new handler and adds the constraints of the encoding of
the host graph which is identified by the given string. Listing 4.19 shows the code that
is generated for the rwoPhilos host graph of the dining philosophers example. First, new
LogicalInt values are created and saved in a map, identified by the node identifier of
the host. These values are then added to the handler as new fork or philosopher constraints
together with the number of adjacent edges.

Both files are generated when the user has set the order of the rules and given the name for
the package and the handler in part one of the GUI described in section 4.6.1.2. The JCHR
program must then be compiled by the K.U. Leuven JCHR compiler, just as described in
section 4.6.2.4.

4.7.2.2 Loading of the generated files

The result of the code generation and JCHR compilation are two java classes that are com-
piled by the eclipse platform to java byte-code. These classes can be loaded by the java
class loader. The problem is that the generated implementation of the interface depends
on the plug-in created for this GTS analysis tool, because it contains the interface defi-
nition. Therefore, the tool must register itself on start-up as a dependency in the project
where the generated files are placed in. That is why new GTS projects are eclipse plug-
in projects (see section 4.2.1.1), because plug-ins can only be added as dependencies to
plug-in projects and not to common java projects. Listing 4.20 shows how a plug-in is pro-
grammatically added as a dependency. As described in section 2.4, the dependencies of a
project are saved in the MANIFEST . MF file of the project. Eclipse offers a set of classes to
query and edit elements of the current plug-in project. The BundlePluginModelBase

100

16

4.7 The graphical analysis tool

//the current project is saved in curProject

BundlePluginModelBase pm=(BundlePluginModelBase)PluginRegistry.findModel(curProject);

IPluginBase pb=pm.getPluginBase () ;

String pluginld = GraphicalExecutionDiagnosticToolPlugin.PLUGIN_ID;

PluginIlmport plugin = new Pluginlmport();

ManifestElement element =
ManifestElement. parseHeader (Constants .REQUIRE_BUNDLE, pluginld);

plugin.load(element, 1);

plugin.setModel (pb. getModel ());

//set the model editable

((WorkspaceBundleModel) ((BundlePluginModelBase) pb. getModel ()).
getBundleModel ()).setEditable (true);

//add the plugin as a dependency

pb.add(plugin);

//save the made changes

pm.save () ;

Listing 4.20: Adding a plug-in as dependency of a project.

can be received from the current project to get a IPluginBase instance which manages
the dependencies of a project. A new PluginImport instance can be added to it that
contains the plug-in id of the graphical analysis tool plug-in (lines 2-9). In order to save
these changes to the MANIFEST . MF file, the model has to be set editable (lines 11,12).
When the tool has added itself as dependency to the current project, the interface and the
JCHR can be loaded dynamically by the class loader.

4.7.2.3 Using the generated handler

The JCHR handler is not used directly, but via the interface that is also generated. To repre-
sent the constraints contained in the handler, Zest is used. Zest is a tool for displaying and
laying out graphs. It is based on draw2d (see section 4.4) for drawing the nodes and edges.
Zest provides a Graph widget to which GraphNode and GraphConnection widgets
can be added. Widgets are elements of the GUI provided by the SWT. The elements can
then be laid out automatically. The graph widget is updated every time a constraint is added
to the JCHR handler. Therefore, edge constraints are represented by GraphConnection
widgets and node constraints are represented as GraphNode widgets. The algorithm de-
scribed in section 4.7.1.4 is used to synchronize the contents of the JCHR handler with the
graph widget. To allow the (de)selection of constraints, a MouseListener is added to
the Graph instance. When a double click occurs, the constraint linked to the currently
selected GraphNode or GraphConnection will be selected in the handler by calling
the select (GtsChrNode) method of the generated interface class. All the communi-
cation with the handler is done via the generated implementation of the IGTSFacade, as
described in the sequence diagrams in figure 4.45. When the user clicks on a rule in the list
of rules or double clicks an edge or node, an according method in the interface is activated
which adds a new constraint to the CHR handler.

The option to simulate the GTS until a final state is reached must run in an own thread,
because this can be a very long running task which would otherwise block the whole sys-
tem. Eclipse provides this functionality in the form of a Job object which has further
benefits: It is shown in the eclipse job view and can also be stopped from there. The Job
itself repeatedly calls the methods put Start () and findMatchMorphism() of the
interface (see also section 4.7.1.1) and stops when no rule can be applied anymore (done by
calling the method nothingProcessed ()) or when the user requests to stop the job.
The tool adds itself as listener to the Job, so that it gets notified when the CHR program
has finished to synchronize the graphical representation with the state of the CHR handler.
Figure 4.46 shows how morphisms are found and how rules are applied by using the gen-
erated implementation of the interface. Finding a new match morphism is done by adding
a find constraint which selects the constraints that can be matched by a rule. But before

101

4 Realization

User GraphDisplay IGTSFacade GTSHandler

(de)select rule entry i

alt] [select]

activateRule(ruleName)

get rule number 4_—|

tellRule_activate(number)

woid L

woid

[deselect]

deactivateRule(ruleName)

get rule number 4_—|

tellRule_deactivate(number) o

woid
L

woid

-

User GraphDisplay IGTSFacade GTSHandler
GraphDisplay | IGTSFacade GTSHandler

Double click |
node or edge |

| |
| |
| |
' :
| |
! check if !
! active !
| |
| |
|
|
|
|
|

|
]
I
|
]
I
|
]
I
|
]
I
H
]
I
|
]
I
|
]
I
|
]
I
|
]
I
|

alt [active
deselect(constraint)
L4
switch to correct
tell-method]
tellConstraint(new Constraint) y
woid
wid
[inactive]

select(constraint)
switch to correct
tell-method]

tellConstraint(new Constraint)

I
|
]
I
|
T
I
|
]
I
|
]
I
|
]
I
|
]
I
|
L

wid

wid

|

i

]

update display !
- |

-
H

| User | GraphDisplay | IGTSFacade GTSHandler |

]
I
|
]
I
L

Figure 4.45: UML sequence diagram for the activation or deactivation of rules (upper) and
node or edge constraints (lower).

102

4.7 The graphical analysis tool

| User | GraphDisplay IGTSFacade GTSHandler |

i find match i

|
i getSelectedNodes()

|
]
I
|
]
L

]
|
|
]
!
loo| [for 4I| active constraint typds] :
]
|
|

getAct_type(); N
constraint IistJ

constraint list

Ioog J [-for @dch constraint in list]

deselect(constraint)

]
L
|
]
I
|
I
|
]
I
|
]
I
1

telleDeact_type(constraint) o

woid
wid |
| |
1 1
I I
| |
| |
tellFind(); N

void

woid

|
|
|
|
|
|
|
|
|
|
|
|
|
|
t
i findMatchMorphism()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

update |
display] i
I
|

L

| User | GraphDisplay | IGTSFacade GTSHandler |

IGTSFacade ‘ GTSHandler

‘ User ‘ GraphDisplay

apply rule 1

putStart() N

tellStart(); o

|
update !
display !
|
|

-
H

‘ User ‘ GraphDisplay ‘ IGTSFacade ‘ GTSHandler

Figure 4.46: UML sequence diagram for finding matches (upper) and applying rules
(lower).

103

4 Realization

Used gts: philosopher 1=

~ Compile Configurations

Package |myGTS Rule order:

thinkToWait

[
waitToEat down
Handler |philosopher eatToThink

Create GTS and execute it

Figure 4.47: Dialog to adjust code generation.

Used gts: philosopher

» Compile Configurations

New host graph: twoPhilos |+ | Reload...

O thinkTowait

L waitToEat find morphism apply rule Run |to a fix point -

wait
philosopher
lig o]
lie To
fork
fork eat ‘
lie To
ThestedTo |, O
philosopher

Bemove Selection

Figure 4.48: Interface that shows a host graph after the generation of the handler.

adding the find constraint, all selected constraints are deselected first, so that the rule is
applied to the constraints that are selected by the find constraint. Applying a rule is done
by adding a start constraint to the store, so that rules can be applied.

4.7.3 Sample computation

In this section, I want to present the simulation of the dining philosophers example. Fig-
ure 4.47 shows the dialog which allows to select the rules and set their order. Furthermore,
a package and a handler name can be entered, but the default values are used just as the
default ordering of the rules. After a click on the Create GTS and execute it hyperlink, a
message will appear at the bottom and the scheduled job will be shown in the bottom right
corner of the workbench. After the compilation of the JCHR program is finished (this takes
about five to ten seconds) the second part of the GUI will open. Figure 4.48 shows this
GUI with the upper dialog collapsed. The host graph with the two philosophers is selected
showing the corresponding host graph. When activating constraints in a way that none of
the selected rules can match it like in figure 4.49 and the apply rule hyperlink is clicked, a
message will be shown which informs the user that no rule could be applied. With a click
on find morphisms and only the rule eating activated, the next match will be highlighted in
the graph as shown in figure 4.50. After clicking on apply rule, the rule is applied, resulting
in the graph shown in figure 4.51. Every time when a rule is selected in the list, it is also

104

4.8 Further analysis tools

Used gts: philosopher
» Compile Configurations

New host graph: twoPhilos |+ | Reload...

thinkToWait

W) elireEe find morphism g@_@_“p__|}“1__r_l_.l_|§ Run [to a fix point j

walt

philosopher
e M EEniatTn
Irivalie] szlzction

Mo transformation could be applied to the current selection

Figure 4.49: Message that is displayed when no rule can be applied.

displayed in the editor.

4.8 Further analysis tools

In this section, I present another analysis tool and give an idea how a CHR analysis tool
could be realized that checks confluence of GTS.

4.8.1 Random host generation tool

An analysis tool has been developed for the easy generation of random host graphs. This
tool provides a view where the numbers of type nodes and type edges can be entered. When
all numbers are entered, a graph with the selected amount of nodes of each type is created.
The nodes are randomly connected by the selected number of edges. It is taken care of, that
the edges are connected to nodes of the correct type. Furthermore, if there are no nodes of
the correct type for a given edge, the edges are not added, of course. This tool implements
the analysis tool interface, so that the model and the command-stack can be provided.
When the tool is started, it launches an eclipse wizard that contains two tables which let
you enter the numbers of the type nodes and type edges. The names of the nodes in the
host graph are increasing numbers. The graph is created using the command stack, but
the nodes and edges are created without the command-stack, so that undoing the creation
directly removes the graph and not every node or edge separately. Figure 4.52 shows the
GUI of the graph generation wizard. The default values are five nodes and edges per type.

4.8.2 Confluence analysis

As already mentioned in section 4.6, there is no tool available for analyzing confluence of
JCHR programs. Confluence means that the order of the rule application a CHR program
does not influence its final state. Confluence for CHR programs is covered in [20]. Basi-
cally, a confluence tester creates an input I from the heads of two rules r; and ro, applies

105

4 Realization

Used gts: philosopher
» Compile Configurations

New host graph: {twoPhilos |+ Reload...

O thinkTowait

L Rucijosat find morphism apply rule Run [to a fix point -

wait

O

philosopher

i 0 lie o]
= ° forle

fork

philosopher

Bemove Selection

Figure 4.50: Highlighted match morphism for the activated rules.

r1 to I, resulting in I; and applies 7o to I, resulting in /5. Then, two runs of the CHR
program are done, one with input /; and one with input /5. If the constraint and the built-in
stores of the two final states are equal' and this holds for all pairs of rules, then the CHR
program is confluent.

This test can also be used to test confluence for CHR encoded GTS ([32]). However, when
creating Inputs from heads of the rules, further attention must be paid. The inputs might
not always be an encoding of a correct graph. Therefore, these inputs do not need to be
tested.

A CHR tool would need to create an executable version of the CHR program by using
the CHR tool from section 4.6.2.4 and create inputs according to the description above.
These inputs are then used as goals for the generated JCHR handler. The resulting final
states of the JCHR handler are then compared to decide whether the CHR program is
confluent. Pairs of rules that might lead to a non-confluent system can be listed in the tool
and displayed in the editors.

'In fact they do not have to be equal, but they must be variants of each other. This described in [20].

106

4.8 Further analysis tools

Used gts: philosopher

» Compile Configurations

New host graph: twoPhilos |« | Reload..,

O thinkTowait
[waitToEat

find morphism apply rule Run |to a fix point ﬂ
eatToThink

walit
philosapher onTable
onTable W
lie To ' 2 D
D farl
fark think :
lie To
Tiesvedo | (O
philosopher

Remove Selection

Figure 4.51: New host graph after a rule has been applied.

Random host graph generation

Please enter the needed information to create a new random host graph|

Enter a unigue identifier for the new host graph
MyHost

enter the number of nodes and edges you
want to produce, for the given types

Node [Number | Edge | Number
7 edge pi]

Einish | Cancel

Figure 4.52: GUI of the wizard for creating a random host graph.

107

4 Realization

108

5 Conclusion

In this final chapter, the results of the thesis are summarized and possible future projects
based on it are presented. Furthermore, some application areas of the developed platform
are listed.

5.1 Summary of results

During this thesis, an extensible platform, based on eclipse, for editing and analyzing
Graph Transformation Systems (GTS) has been developed. This platform allows the editing
of GTS not only with a graphical, but also with a textual editor. The textual representation
is based on Constraint Handling Rules (CHR). Raiser describes in [32] how GTS can be
encoded in a CHR program. The editing can be done simultaneously by the two editors.
The benefit of encoding GTS in CHR is that the rule applications in GTS correspond to rule
applications in CHR. Therefore, CHR can be used to simulate GTS. Another advantage of
using the CHR encoding is, that analysis methods that can be applied to CHR can now also
be applied to GTS, e.g. confluence analysis and operational equivalence analysis.

The platform’s functionality can be extended by further tools. For that reason, an eclipse
extension point has been provided that can be used to add analysis and editing features to
the platform. A few prototypical tools are already provided. One tool offers the possibility
to apply the rules of a GTS to a host graph interactively by choosing the nodes and edges
to which a selected rule can be applied. This tool is based on the encoding of GTS in CHR
and offers a graphical front-end in order to display the modified graph. A similar feature
can be found in the already available programs for GTS, AGG (section 3.1.1) and Groove
(section 3.1.2). The other two exemplary tools are for creating random host graphs and
termination analysis based on a ranking function. More sophisticated tools like the critical
pair analysis that can be found in AGG would not have been in the scope of this thesis and
are not provided.

To give the possibility to add analysis methods that are available for K.U. Leuven JCHR
(the CHR implementation based on java, used by the platform), another tool has been
provided. This tool defines another eclipse extension point, so that analysis methods for
JCHR can easily be added to the platform. One such CHR tool is provided in form of the
K.U. Leuven JCHR compiler to create an executable environment of a GTS encoded in
CHR. More sophisticated CHR analysis methods like confluence analysis are not provided,
because no implementations have been available and it would have been not in the scope
of this thesis to implement them.

The platform can be used for various purposes. It provides the possibility to create ex-
ecutable JCHR handlers based on the GTS, so that they can be used in other projects.
Furthermore, the platform can be used in lectures about CHR, GTS, or rule based program-
ming languages in general to demonstrate application areas and show how rule application
is done in CHR and GTS. Rudimentary analysis methods are already provided to make this
platform an alternative to the already available programs (AGG and Groove) for designing
GTS.

To conclude, the platform provides new and interesting features. Two editing possibilities
for GTS are available, that can be used in parallel. The platform is not a monolithic block

109

5 Conclusion

of functionality, but it can be extended by further tools to analyze and edit GTS. Due to
the possibilities of encoding a GTS in CHR, analysis methods developed for CHR can be
applied to GTS. These analysis methods can easily be embedded in the platform as further
tools. Guides on how to create those tools are given in section 4.5.2 and section 4.6.2.4.
An installation guide for the platform can be found in appendix A.

5.2 Future work

The developed platform is a basis for future work, because new analysis tools for GTS and
for CHR can be added to it. Projects for lab courses could include analysis tools for the
calculation of metrics for the GTS. Other interesting features to raise the versatility of the
platform would be import tools that give the possibility to import GTS created in Groove or
AGG. Projects for further master or bachelor thesis could include the realization of (semi-)
automatic analysis methods for JCHR that can be integrated into the platform, e.g. the
already described confluence test (section 4.8.2). Another improvement of the platform
would be to add support for attributed GTS ([18]). This additional feature could either be
implemented as a further tool or by modifying the editors themselves to integrate it more
tightly into the platform.

110

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

ABDENNADHER, S., AND FAWZY, S. Jchride: An integrated development environ-
ment for jchr. 22nd Workshop on (Constraint) Logic Programming (2008).

ABDENNADHER, S., KRAMER, E., SAFT, M., AND SCHMAUSS, M. Jack: A

java constraint kit. Electronic Notes in Theoretical Computer Science 64 (Septem-
ber 2002), 1-17.

ANISZCZYK, C., AND HUDSON, R. Create an eclipse-based application using the
graphical editing framework. World Wide Web electronic publication, 2007. http:
//www.ibm.com/developerworks/library/os—eclipse-gefll/.

BOAG, S., BERGLUND, A., CHAMBERLIN, D., SIMEON, J., KAY, M., ROBIE, J.,
AND FERNANDEZ, M. F. XML path language (XPath) 2.0. W3C Recommenda-
tion xpath20-20070123, W3C, January 2007. http://www.w3.0rg/TR/2007/
REC-xpath20-20070123/.

BOESPFLUG, M. TaiChi:how to check your types with serenity. The Monad.Reader
9 (Nov. 2007), 17-31.

BUDINSKY, F., MERKS, E., AND STEINBERG, D. Eclipse Modeling Framework 2.0
(2nd Edition). Addison-Wesley Professional, 2006.

CORRADINI, A., EHRIG, H., MONTANARI, U., RIBEIRO, L., AND ROZENBERG,
G., Eds. Graph Transformations, Third International Conference, ICGT 2006, Natal,
Rio Grande do Norte, Brazil, September 17-23, 2006, Proceedings (2006), vol. 4178
of Lecture Notes in Computer Science, Springer.

DUKSTRA, E. W. Hierarchical ordering of sequential processes. Acta Informatica 1
(1971), 115-138.

DIELLOUL, K., DUCK, G. J., AND SULZMANN, M., Eds. CHR ’07: Proc. 4th
Workshop on Constraint Handling Rules (Porto, Portugal, Sept. 2007).

ECLIPSE FOUNDATION, INC. Eclipse modeling framework overview. World Wide
Web electronic publication, 2008. http://help.eclipse.org/stable/
topic/org.eclipse.emf.doc/references/overview/EMF.html.

ECLIPSE FOUNDATION, INC. Java emitter templates (jet). World Wide Web
electronic publication, 2008. http://www.eclipse.org/modeling/m2t/
?project=ijet.

ECLIPSE FOUNDATION, INC. Jet developer guide. World Wide Web electronic pub-
lication, 2008. http://help.eclipse.org/stable/index. jsp?nav=
/27.

EcCLIPSE FOUNDATION, INC. Textual modeling framework (tmf): Xtext. World Wide
Web electronic publication, 2008. http://www.eclipse.org/modeling/
tmf/.

ECLIPSE FOUNDATION, INC. Zest: The eclipse visualization toolkit. World Wide
Web electronic publication, 2008. http://www.eclipse.org/gef/zest/.

111

http://www.ibm.com/developerworks/library/os-eclipse-gef11/
http://www.ibm.com/developerworks/library/os-eclipse-gef11/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://help.eclipse.org/stable/topic/org.eclipse.emf.doc/references/overview/EMF.html
http://help.eclipse.org/stable/topic/org.eclipse.emf.doc/references/overview/EMF.html
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=jet
http://help.eclipse.org/stable/index.jsp?nav=/27
http://help.eclipse.org/stable/index.jsp?nav=/27
http://www.eclipse.org/modeling/tmf/
http://www.eclipse.org/modeling/tmf/
http://www.eclipse.org/gef/zest/

Bibliography

[15] EcLIPSE FOUNDATION, INC. Eclipse modeling framework (emf). World Wide Web
electronic publication, 2009. http://www.eclipse.org/modeling/emf/.

[16] EcLIPSE FOUNDATION, INC. Graphical editing framework (gef). World Wide Web
electronic publication, 2009. http://www.eclipse.org/gef/.

[17] ECLIPSE FOUNDATION, INC. Graphical modeling framework (gmf). World Wide
Web electronic publication, 2009. http://www.eclipse.org/gmf/.

[18] EHRIG, H., EHRIG, K., PRANGE, U., AND TAENTZER, G. Fundamentals of Al-
gebraic Graph Transformation (Monographs in Theoretical Computer Science. An
EATCS Series). Springer, March 2006.

[19] EHRIG, H., HECKEL, R., KORFF, M., LOWE, M., RIBEIRO, L., WAGNER, A.,
AND CORRADINI, A. Algebraic approaches to graph transformation. part ii: single
pushout approach and comparison with double pushout approach. 247-312.

[20] FRUHWIRTH, T. Constraint Handling Rules. Cambridge University Press, June 2009.
to appear.

[21] FRUHWIRTH, T., AND ABDENNADHER, S. Essentials of Constraint Programming.
Springer, 2003.

[22] GAMMA, E., AND BECK, K. Contributing to Eclipse: Principles, Patterns, and
Plugins. Addison-Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
2003.

[23] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley Professional, 1995.

[24] HOLZBAUR, C., AND FRUHWIRTH, T. A Prolog Constraint Handling Rules compiler
and runtime system. [25], pp. 369-388.

[25] HOLZBAUR, C., AND FRUHWIRTH, T., Eds. Special Issue on Constraint Handling
Rules, vol. 14(4) of Journal of Applied Artificial Intelligence. Taylor & Francis, Apr.
2000.

[26] KAY, M. Xsl transformations (xslt) version 2.0. Tech. Rep. xslt20-20070123,
World Wide Web Consortium, 2007. http://www.w3.0rg/TR/2007/
REC-xs1t20-20070123/.

[27] KRASNER, G. E., AND POPE, S. T. A cookbook for using the model-view controller
user interface paradigm in smalltalk-80. J. Object Oriented Program. 1, 3 (1988),
26-49.

[28] LAaM, E. S. L., AND SULZMANN, M. A concurrent constraint handling rules imple-
mentation in haskell with software transactional memory. In DAMP ’07: Proceedings

of the 2007 workshop on Declarative aspects of multicore programming (New York,
NY, USA, 2007), ACM Press, pp. 19-24.

[29] MOORE, W., DEAN, D., GERBER, A., WAGENKNECHT, G., AND VANDERHEY-
DEN, P. Eclipse Development using the Graphical Editing Framework and the Eclipse
Modeling Framework. IBM redbooks. IBM International Technical Support Organi-
zation, Boca Raton, FL, USA, 2004.

[30] OPENARCHITECTUREWARE.ORG. openarchitectureware (oaw) home-
page. World Wide Web electronic publication, 2008. http://www.
openarchitectureware.org/.

112

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gef/
http://www.eclipse.org/gmf/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.openarchitectureware.org/
http://www.openarchitectureware.org/

Bibliography

[31] RAISER, F. Graph Transformation Systems in CHR. In Logic Programming, 23rd
International Conference, ICLP 2007 (Porto, Portugal, September 2007), V. Dahl and
I. Niemeld, Eds., vol. 4670 of Lecture Notes in Computer Science, Springer, pp. 240—
254.

[32] RAISER, F., AND FRUHWIRTH, T. Strong joinability analysis for graph transforma-
tion systems in CHR. In 5th International Workshop on Computing with Terms and
Graphs, TERMGRAPH 2009 (2009). accepted.

[33] RENSINK, A. Graphs for object-oriented verification (groove). World Wide Web
electronic publication, 2003. http://groove.cs.utwente.nl/.

[34] RENSINK, A. The GROOVE simulator: A tool for state space generation. In Ap-
plications of Graph Transformations with Industrial Relevance (AGTIVE) (2004),
J. Pfalz, M. Nagl, and B. Bohlen, Eds., vol. 3062 of Lecture Notes in Computer Sci-
ence, Springer, pp. 479-485.

[35] SCHIEDGEN, M. Textual editing framework (tef). World Wide Web elec-
tronic publication, 2008. http://www2.informatik.hu-berlin.de/
sam/meta-tools/tef/index.html.

[36] SCHRUJVERS, T., AND DEMOEN, B. The K.U.Leuven CHR system: Implementation
and application. In First workshop on constraint handling rules: selected contribu-
tions (2004), pp. 1-5. Published as technical report: Ulmer Informatik-Berichte Nr.
2004-01, http://www/informatik.uni-ulm.de/epin/pw/10481.

[37] SCHRIJVERS, T., AND FRUHWIRTH, T., Eds. CHR ’05: Proc. 2nd Workshop on Con-
straint Handling Rules (Sitges, Spain, 2005), K.U.Leuven, Dept. Comp. Sc., Techni-
cal report CW 421.

[38] SCHRIJVERS, T., WIELEMAKER, J., AND DEMOEN, B. Poster: Constraint Han-
dling Rules for SWI-Prolog. In Wolf et al. [44]. http://www.informatik.
uni-ulm.de/epin/pw/11541.

[39] SNEYERS, J., WEERT, P. V., SCHRUJVERS, T., AND KONINCK, L. D. As time goes
by: Constraint Handling Rules — A survey of CHR research between 1998 and 2007.
submitted to Journal of Theory and Practice of Logic Programming, 2009.

[40] VAN WEERT, P., SCHRIJVERS, T., AND DEMOEN, B. K.U.Leuven JCHR: a user-
friendly, flexible and efficient CHR system for Java. In Schrijvers and Frithwirth [37],
pp. 47-62. http://www.cs.kuleuven.be/~petervw/JCHR/.

[41] VELAScO, P. P. P., AND DE LARA, J. Matrix approach to graph transformation:
Matching and sequences. In Corradini et al. [7], pp. 122—-137.

[42] WEERT, P. V. The k.u.leuven jchr system homepage. World Wide Web electronic
publication, 2008. http://www.cs.kuleuven.be/~petervw/JCHR/.

[43] WEERT, P. V. K.u.leuven jchr user’s manual. World Wide Web electronic publication,
2008. Available at [42].

[44] WOLF, A., FRUHWIRTH, T., AND MEISTER, M., Eds. W(C)LP ’05: Proc. 19th
Workshop on (Constraint) Logic Programming (Universitit Ulm, Germany, Feb.
2005), vol. 2005-01 of Ulmer Informatik-Berichte. http://www.informatik.
uni-ulm.de/epin/pw/11541.

[45] WUILLE, P., SCHRIJVERS, T., AND DEMOEN, B. CCHR: the fastest CHR im-
plementation, in C. In Djelloul et al. [9], pp. 123-137. http://www.cs.
kuleuven.be/~pieterw/CCHR/.

113

http://groove.cs.utwente.nl/
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/index.html
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/index.html
http://www/informatik.uni-ulm.de/epin/pw/10481
http://www.informatik.uni-ulm.de/epin/pw/11541
http://www.informatik.uni-ulm.de/epin/pw/11541
http://www.cs.kuleuven.be/~petervw/JCHR/
http://www.cs.kuleuven.be/~petervw/JCHR/
http://www.informatik.uni-ulm.de/epin/pw/11541
http://www.informatik.uni-ulm.de/epin/pw/11541
http://www.cs.kuleuven.be/~pieterw/CCHR/
http://www.cs.kuleuven.be/~pieterw/CCHR/

Bibliography

114

A Installation guide and CD content

This chapter explains how to install the GTS Editor and its tools in the eclipse platform. A
list of the files and folders on the accompanying Compact Disc (CD) is provided, as well.

A.1 CD content

e src/ —contains the source files of the platform and the plug-ins

e bin/ —contains the binary distribution of the projects that can be installed to eclipse
e 1ib/ —contains the libraries that are needed to run the K.U. Leuven JCHR compiler
e doc/ — contains the JavaDoc of all the projects

e dist/ — contains a complete eclipse distribution with the platform already inte-
grated

e thesis/ — contains this thesis in Portable Document Format (PDF)

A.2 Installation Guide

The installation guide will cover the installation on Linux systems. The installation for
Microsoft Windows based systems is similar, differences are mentioned. Several libraries
and plug-ins must be available on the system and in eclipse in order to run the platform.
The files that are found in the 1ib/ folder on the CD must be added to the CLASSPATH
system variable. Copy all the files to the directory ~/jchrlib/. Now add the command

export CLASSPATH=~/jchrlib/antlr —2.7.5.jar:\
~/jchrlib/args4j —2.0.5.jar:\
~/jchrlib /KULeuven_JCHR. jar

to your .bashrc and log in to the system again. The libraries can now be accessed
by java. On Microsoft Windows-based systems, the CLASSPATH can be changed in the
system properties. Now add the KULeuven_JCHR. jar file to the root of the eclipse
folder, so that it is accessible by the eclipse platform.

The dependencies for the GTS platform are GEF, JET, EMF, and TEF. The GEF, EMF,
and JET run-time plug-ins can be installed via the update mechanism of eclipse. TEF can
be obtained at [35]. Furthermore, the Plug-in Development Environment (PDE) is needed
to create GTS projects. To install the platform with all its tools, copy all Java Archive
(JAR) files from the bin/ directory of the CD into the plugins folder of your eclipse
installation.

When starting eclipse, the new project and file wizards for GTS are available and you can
start creating GTS. Have fun!

For those who do not want to integrate the platform in their eclipse distribution, a distribu-
tion for Linux containing all the dependencies can be found in the dist/ folder. Unpack
the file dist .tar to your hard disk and start the eclipse executable. The K.U. Leu-
ven JCHR compiler and its dependencies must, of course, still be added to the systems
classpath.

115

A Installation guide and CD content

116

B Introduction to category Theory

In this appendix, I want to give a short introduction to category theory, because it provides
the theoretical basis for algebraic graph transformation systems. I want to present the basic
definitions of categories and pushouts and how to construct them. Furthermore, I give some
examples to ease the understanding of category theory when applied to GTS. This appendix
is based on [18] which also gives a more detailed explanation of the topic.

B.1 Categories

A category C' = (Objc, Morg, o,id) is a tuple and its elements have the following mean-
ing: Objc is a class of objects. For each tuple A, B € Morc there is aset Morc (A, B) of
morphisms. o is the concatenation of morphisms in Morc. It has the form Morqc (B, D) x
More(A,B) — Morc(A, D). ida € Morc(A, A) is the identity morphism for every
A € Obje.

For morphisms f € Morc(A, B) the notation f : A — B is used. Furthermore, A is
called the domain and B the codomain of f. An example of a category would be Sets. The
objects are sets and functions f : A — B are morphisms. The concatenation (g o f)(z)
is given by g(f(z)) and the identity id4 : A — A : z — . The category Graphs can
be constructed component-wise from Sets categories for the nodes and edges of a graph.
The morphisms are graph morphisms (see 2.2). The concatenation is the concatenation of
graph morphisms. The identities are the pairwise identities for nodes and edges.

In addition to that, I want to describe the construction of categories from already existing
ones. The product category C' x D from two categories C' and D is given by

e Objoxp = Objc x Objp
e Morcyxp((A,A"),(B,B’")) = Morc(A,B) x Morp(A’, B)

e for morphisms f : A — B,g: B— C,and f': A’ — B, ¢’ : B’ — C' we define
(9:9") o (f; f') = (9o frg" 0 [)

o id(A,A’) = (idA,idA/)

Another way of creating a category is (co)slicing. A (co)slice category C\ X (X\C) of a
given category C' consists of the morphisms to (from) a distinguished object X € Objc
as the Objects. The morphisms in the slice category are morphisms that connect the object
morphisms. In more detail for slice categories:

o Objc\x = {f A — X‘A S Objc,f S MorC(A,X)}
e Morex(f:A—X,g:B—X)=m:A— Blgom=f
e The concatenation for two morphisms is defined as in the category C'

o idpax =1ids € Morc

Similarly for coslice categories:

117

B Introduction to category Theory

Oij\C = {f X — A‘A € Objo, f € MorC(X, A)}

Morx\c(f: X - A,g: X - B)=m:A— Blgom = f

The concatenation for two morphisms for three objects is defined as in C'

o idpax =ida € Morc

An example for a slice category is GraphsTG which can be seen as Graphs\T'G. Each
typed graph is presented by its typing morphism and the typed graph morphisms (sec-
tion 2.2) are exactly the morphisms in the slice category.

The last category I would like to describe is the dual category C'°P. It is given by reversing
all morphisms, so Morc(A, B) = Morcer(B, A). For the concatenation, the order of
execution is reversed in the dual category (because the morphisms are reversed, too). The
identity morphisms are the same as in C.

B.2 Morphisms

Morphisms in a category C' can be of three types: mono-, epi-, and isomorphisms. A
morphism m : B — C is a monomorphism, if for morphisms f,g : A - B € Morg,
it holds that mo f = mog < f = ¢g. A morphism e : A — B is an epimorphism,
if for morphisms f,g : B — C' € Morg, it holds that foe = goe < f = ¢. Epi-
and monomorphisms are dual notions in the respective dual category of each other. A
morphism i : A — B is called an isomorphism if there exists a morphism i~ : B — A
such that i~! o ¢ = id 4. Two objects are called isomorphic to each other (A = B), if there
exists an isomorphism between them. If ¢ is an isomorphism, then it is also a mono- and an
epimorphism and the inverse morphism of ¢ is unique.

For example in the category Sets the mono- and epimorphisms are the injective and surjec-
tive mappings. Therefore, in Graphs and GraphsTG mono- and epimorphisms are those
morphisms that are injective and surjective, respectively.

B.3 Pushouts

Intuitively, a pushout in category theory is the gluing of two objects along a common object.
Here, I want to present the definitions and construction of such pushouts (POs) in specific
categories.

Given f : A — Bandg: A — C € Morg, then a pushout (D, f’,g’) is defined by a
pushout object D and morphisms f' : C' — D, ¢’ : B — D with f' o g = ¢’ o f such that
the following universal property is fulfilled: For all objects X € Objc with morphisms
h:B— Xandk:C — X with ko g = ho f there is a unique morphism z : D — X
suchthatzog’ = handxzo f' = k.

A
f
|s
fl
C

_ >

A

\

118

B.3 Pushouts

In Sets, the pushout over the moprhisms f : A — B and g : A — C can be constructed
as follows: Define the relation f(a) ~ g(a) for all @ € A and let = be the reflexive,
symmetric and transitive closure of ~. [z] = {y € BW C|z = y} are the equivalence
classes of the elements in the disjoint union of B and C. Define D = {[z]|z € BwW C}
as the set of all equivalence classes of B w C. Now the pushout can be constructed with
f'(c) = [c] for all ¢ € C and ¢'(b) = [b] for all b € B. The proof that this is a valid
pushout can be found in [18]. This pushout construction works analogously for Graphs
and GraphsTG for the sets of nodes and edges of the pushout graph. The source and
target functions of the pushout graph are uniquely determined by the pushout properties
of the node set. To ease the understanding, I give a short example for the construction
of a pushout in Sets. Given A = {a,b,¢,d}, B = {1,2,3,4}, and C = {5,6,7,8}
with morphisms f : A — B, f(a) = 1,f(b) = f(¢) = 2,f(d) =3 andg : A —
C,g(a) = g(b) = 5,g9(c) = 6,9(d) = 7, the relation ~ yields 1 ~ 5,2 ~ 5,2 ~ 6 and
3 ~ 7. Creating the transitive closure leadsto 1 = 2 = 5 = 6 and 3 = 7. Therefore,
1 =12 = [5] = 6 = {1,2,5,6}, 3| = [7] = {3,7}. [4] = {4} and [§] = {8}. The
resulting pushout object is then D = {[1], [3], [4], [8]}.

119

B Introduction to category Theory

120

1
2
3
4
5
6
7
8
9

C Source Code

C.1 Example commands

This class implements the command for removing a node from a graph, while keeping the

model consistent.

package org.uniulm. gts.model.commands;

public class NodeDeleteCommand extends Command {
private IGraphModel parent;
private IAbstractNode child;
private List<EdgeDeleteCommand> removedEdges;
private List<NodeDeleteCommand> removedTypedNodes;
private ITypeNode typeNode;

public NodeDeleteCommand (IAbstractNode child){
this . parent=child . getGraph () ;
this.child=child;

setLabel ("Delete node");

}

public boolean canExecute () {

return parent != null &% child!= null ;

}

// further commands are generated for deleting adjacent edges

public void execute () {
removedEdges=new LinkedList<EdgeDeleteCommand >() ;

removedTypedNodes=new LinkedList <NodeDeleteCommand >();

//if the deleted node is a type node,

//create delete commands for all typed nodes from it

if (child instanceof ITypeNode) {

for (IAbstractNode n:((ITypeNode)child).getTypes()){
removedTypedNodes . add (new NodeDeleteCommand(n)) ;

}

if (child instanceof INode) {

typeNode = ((INode)child).getType():;

}

//create delete commands for the edges connected to
for (IAbstractEdge e:child.getSrcEdg()){
removedEdges . add (new EdgeDeleteCommand(e));

}
for (IAbstractEdge e:child.getTgtEdg ()){

removedEdges . add (new EdgeDeleteCommand(e));
}
// execute the commands
redo () ;
}

public void redo () f{
// first the adjacent edges are removed
for (EdgeDeleteCommand e:removedEdges) {
if (e.canExecute()) e.execute();
}
//then the typed nodes (which are now not connected
//to edges anymore)
if (child instanceof ITypeNode){
for (NodeDeleteCommand n:removedTypedNodes) {

the node

121

54
55
56
57
58
59
60

62
63
64

66
67

69
70
71
72
73
74
75
76
77
78
79
80
81

C Source Code

if (n.canExecute()) n.execute () ;
}

}

//If it is a typed node, remove its connection to

//its type node

if (child instanceof INode) {
((INode) child).setType (null);

}

//remove it from the graph

child .setGraph (null);

}

public void undo() {
//all the commands from redo are undone in reverse
//order
child .setGraph(parent);
if (child instanceof INode) {
((INode) child).setType (typeNode) ;
}
if (child instanceof ITypeNode){
for (NodeDeleteCommand n:removedTypedNodes) {
n.undo () ;

}

for (EdgeDeleteCommand e:removedEdges) {
e.undo () ;
}
}
}

Listing C.1: The NodeDeleteCommand class

C.2 GTS analysis tool extension point

This appendix contains the definition of the extension point and its interface for GTS anal-

ysis tools.

Listing C.2: Definition for the entries in the plugin.xml

<!ELEMENT extension (gtsanalysistool)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT gtsanalysistool EMPTY>

<!ATTLIST gtsanalysistool

class CDATA #IMPLIED

name CDATA #REQUIRED>

* class — The class that is loaded when invoking

the plug—in, should implement IGTSAnalysisTool

* name — the name displayed by plug—in selectors

Listing C.3: Source code of the interface

package org.uniulm.gts.diagnostictools;

/% %

* This interface is used for tools that analyze
* graph transformation systems. It lets set model,
* command stack and file being worked on, as well
* as add listeners. Furthermore there are methods
* that lets you set set active graphs or graph.

x elements for display purposes

*/

public interface IGTSAnalysisTool{

VEE:

122

C.3 CHR analysis tool extension point

* sets the IGraphTransformationSystem model for this
* diagnostictool
* @param model the GTS model used
*/
public void setModel (IGraphTranformationSystem model);
/% %
* sets the file which contains the model that is
* used by the editor
* @param file the file used
*/
public void setFile (IFile file);
VEE:
* add a listener for this tool
* @param a the listener to be added
*/
public void addChangeListener (IGTSAnalysisToolListener a);
VEE:
* removes the given listener from this tool
* @param a the listener to be removed
*/
public void removeChangeListener (IGTSAnalysisToolListener a);
VEE:
* remove all listeners
*/
public void removeAllListeners () ;
VEE:
*x starts the tool, this method should start views,
* editors and so on. When calling a tool, make sure
* to call all the set methods first
*/
public void runAnalysis();
VER:
* thats the commandstack that should be used when
* modifying the model
* @param c¢s the commandstack to be used
*/
public void setCommandStack (CommandStack cs);
VEE:
* returns the currently selected Graph
* @return currently selected graph
*/
public IGraphModel getActiveGraph ();
/% %
* return the currently selected elements of the
* currently active graph in this tool
* @return currently selected elements
*/
public List<GTSElement> getActiveSelection ();
VEE:
* Set the selected elements in the given graph
* @return currently selected elements
*/
public void setActiveSelection (IGraphModel m, List <GTSElement> 1);
VEE:
* activate the given graph in this tool
* @param m the graph to be shown
*/
public void setActiveGraph (IGraphModel m);
}

C.3 CHR analysis tool extension point

This appendix contains the definition of the extension point and its interface for CHR anal-
ysis tools.

123

S

31

32
33
34
35

C Source Code

Listing C.4: Definition for the entries in the plugin.xml

<!ELEMENT extension (diagnostictool)>
<!ATTLIST extension
point CDATA #REQUIRED

id
name

CDATA #IMPLIED
CDATA #IMPLIED>

<!ELEMENT chranalysistool EMPTY>
<!ATTLIST chranalysistool
class CDATA #IMPLIED

name

CDATA #REQUIRED>

* class — The class that is loaded when invoking
the plugin, should implement IChrAnalysisTool
* name — the name displayed by plugin selectors

Listing C.5: Source code of the interface

import java.util.List;
import org.eclipse.core.resources.IFile;

/* *

* IChrAnalyzer lets you start analysis of jchr files. It provides the

additional capability of adding inputs to the
* file for additional analysis. Furthermore listeners can be added.
* @author Mathias Wasserthal

*
*/
public interface IChrAnalysisTool {
/% %
* Set the file which contains the jchr source
* @param file
*/
public void setFile (IFile file);
/% %
* Command used to start the analysis.
*/
public void runChrAnalysis();
/% %
* Add a listener that is notified about selected constraints
* @param listener
*/
public void addChrListener(IChrListener listener);
/% %
* Removes the given listener
* @param listener
*/
public void removeChrListener (IChrListener listener);
/% %
* method to add input to the chr analysis. Input is given as alist
of {@link ConstraintNotification}s,
% containing the constraint name, its arity and the contents of
the variables.
* @param list
*/
public void addInput(List<ConstraintNotification> list);
}

C.4 JET Template for JCHR code generation

This appendix lists the JET template for generating JCHR source files from a GTS model.
Listing C.6 shows the generation of plain JCHR source. This is used by the CHR based
analysis tool (section 4.6). This template is trimmed for readability. Therefore, the gener-
ated source code is not formattet very nice.

Listing C.6: JET temmplate for JCHR code generation.

package <c:get select="$jchrpackage"/>;

124

24
25
26
27
28
29

30
31
32
33
34
35

36
37

38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

70
71
72
73
74
75

import
import
import
public

<f:indent text="

public

n_<c:

<c:if

C.4 JET Template for JCHR code generation

runtime . *;

runtime . primitive .x*;

util. ArithmeticsUtils ;

handler <c:get select="lowercaseFirst(removeWhitespace($jchrhandler))"/> {
">

constraint

<c:iterate select="$gts/typeGraph/nodes" var="typenode" delimiter=", ">
get select="$typenode/@iD"/>

(<c:get select="$variabletype"/>,int)

</c:iterate >
test="count($gts/typeGraph/nodes)>0">,</c:if>

<c:iterate select="$gts/typeGraph/edges" var="typeedge" delimiter=", ">

e_<c:

get select="$typeedge/@iD"/>

(int ,<c:get select="$variabletype"/>,<c:get select="$variabletype"/>)
</c:iterate >

<c:if

test="count($gts/typeGraph/nodes)>0">,</c:if>

empty_head () ;

rules

<f:indent text="
<c:if

{

"

>
test="count($gts/transformations/nodes[@trans="R’]/@iD)>0">

local <c:get select="$variabletype"/>
<c:iterate select="distinct—values($gts/transformations/nodes[@trans="R’]/@iD)" var

"

="ids" delimiter=", ">

NN_<c:get select="$ids"/>

</c:iterate >;

</c:if>

<c:iterate select="reorder($gts/transformations ,$order)" var="trans">
rule_<c:get select="translate ($trans/@id,” *,”_")"/> @

<c:if test="count(S$trans/edges[@trans="L° or @trans="K’]l $trans/nodes[@trans="L’ or

@trans="K’])=0">

empty_head ()

</c:
<c:iterate select="$trans/nodes[@trans="L"]

if >

var="node" delimiter=",">

n_<c:get select="$node/type/@iD"/>

5

</c

(ON_<c:get select="translate ($node/@iD,” ’,”_’")"/>
<c:get select="count($node/srcEdg[@trans="L’])+count($node/tgtEdg[@trans="L"])"
/>)
riterate >
<c:if test="count($trans/nodes[@trans="L’])>0 and count($trans/nodes[@trans="K’])>0
"
Cif >

</c

<c:iterate select="$trans/nodes[@trans="K"]

"

var="node" delimiter=",">

n_<c:get select="$node/type/@iD"/>
(ON_<c:get select="translate ($node/@iD,” ’,’_")"/>
, NC_<c:get select="$node/@iD"/>)

</c

riterate >

<c:if test="count($trans/nodes[@trans="K ']l $trans/nodes[@trans="L’])>0 and count(

$trans/edges[@trans="L’])>0">

</c:if>

<c:iterate select="$trans/edges[@trans="L"]

" "

var="edge" delimiter=",">

e_<c:get select="$edge/type/@iD"/>

(0, ON_<c:get select="translate ($edge/src/@iD,” *,’_")"/>

, ON_<c:get select="translate ($edge/tgt/@iD,” ’,”_’)"/>)

</c:iterate >

<c:if test="count(S$trans/nodes[@trans="K ']l $trans/nodes[@trans="L "]l $trans/edges|[

@trans="L ’])>0 and count($trans/edges[@trans="K’])>0">

</c:if>
<c:setVariable var="delCnt" select="0"/>

<c:iterate select="$trans/edges[@trans="K’]" var="edge" delimiter=",">
e_<c:get select="$edge/type/@D"/>

(DEL_<c: get select="$delCnt"/>

, ON_<c:get select="translate ($edge/src/@iD,” ’,”_")"/>

, ON_<c:get select="translate ($Sedge/tgt/@iD,” °,”_")"/>)
</c:iterate >

<=>

<c:iterate select="$trans/nodes[@trans="K’]" var="node" delimiter=",">

<c:setVariable var="diff"
select="0—(

<c

count($node/srcEdg[@trans="L "]l $node/srcEdg[@trans="K’])+
count($node/tgtEdg[@trans="L "]l $node/tgtEdg[@trans="K’]))+
(count($node/srcEdg[@trans="R ’]l $node/srcEdg[@trans="K])+
count ($node/tgtEdg [@trans="R]I $node/tgtEdg [@trans="K']))"/>

Cif test="$diff <0">

n_<c:get select="$node/type/@iD"/>
(ON_<c:get select="translate ($node/@iD,” ’,”_")"/>

B

ArithmeticsUtils .sub(NC_<c: get select="$node/@iD"/>,<c:get select="0—$diff"/>))

</c:if>

125

76
77
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93

94
95

96
97
98
99
100
101
102
103

105
106
107

108
109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

C Source Code

<c:if test="$diff >0">
n_<c:get select="$node/type/@iD"/>

(ON_<c:get select="translate ($node/@iD,” *,”_")"/>
, ArithmeticsUtils.add(NC_<c:get select="$node/@iD"/>,<c:get select="$diff"/>))
</c:if>

<c:if test="$diff=0">
n_<c:get select="$node/type/@iD"/>

(ON_<c:get select="translate ($node/@iD,” *,”_")"/>
, NC_<c:get select="$node/@iD"/>)
</c:if>

</c:iterate >
<c:if test="count($trans/nodes[@trans="K’])>0 and count($trans/nodes[@trans="R’])>0

"

>
</c:if>
<c:iterate select="$trans/nodes[@trans="R’]" var="node" delimiter=",">
n_<c:get select="$node/type/@iD"/>
(NN _<c:get select="translate ($node/@iD,” ’,’_")"/>
,<c:get select="count($node/srcEdg[@trans="R’])+count($node/tgtEdg[@trans="R’])"
/>)

</c:iterate >
<c:if test="count(S$trans/nodes[@trans="R’ or @trans="K’])>0 and count($trans/edges|
@trans="R’])>0">

</c:if>
<c:iterate select="$trans/edges[@trans="R’]" var="edge" delimiter=","
e_<c:get select="$edge/type/@D"/>
(0, <c:if test="$edge/src/ @trans="R’">NN_</c:if>
<c:if test="$edge/src/ @trans="K’">ON_</c:if>
<c:get select="translate ($edge/src/@iD,” *,”_")"/>
, <c:if test="S$edge/tgt/ @trans="R’">NN_</c:if>
<c:if test="$edge/tgt/ @trans="K’">ON_</c:if>
<c:get select="translate ($edge/tgt/@D,” *,”_’)"/>)
</c:iterate >
<c:if test="count($trans/nodes[@trans="K]l $trans/nodes[@trans="R]l $trans/edges|[
@trans="R’])>0 and count($trans/edges[@trans="K’])>0">

>

</c:if>

<c:setVariable var="delCnt" select="0"/>

<c:iterate select="$trans/edges[@trans="K’]" var="edge" delimiter=","

e_<c:get select="$edge/type/@D"/>

(DEL_<c: get select="$delCnt"/>

, ON_<c:get select="translate ($edge/src/@iD,” ’,”_’)"/>

, ON_<c:get select="translate ($edge/tgt/@iD,” *,”_")"/>)

</c:iterate >

<c:if test="count(S$trans/edges[@trans="R’ or @trans="K]I
$trans/nodes[@trans="R’ or @trans="K’])>0

and count(S$trans/edges[@trans="L° or @trans="K]I

$trans/nodes[@trans="L’ or @trans="K’])=0">

>

</c:if>

<c:if test="count(S$trans/edges[@trans="L’ or @trans="K]I
$trans/nodes[@trans="L’ or @trans="K’])=0">

empty_head ()

</c:if>

<c:if test="count(S$trans/edges[@trans="L’ or @trans="K]I
$trans/nodes[@trans="L’ or @trans="K’])>0

and count($trans/edges[@trans="R’ or @trans="K]Il

$trans/nodes[@trans="R’ or @trans="K’])=0">

true

</c:if>

</c:iterate >
</f:indent>

}

</f:indent>

}

C.5 CHR editor validity and update algorithm

This Appendix lists the algorithm for updating a rule graph from a given CHR model. The
first part checks the validity of the encoding, the second part updates the rule graph model.

126

30

31

32
33
34
35
36
37

38

39

40
41

42
43
44

C.5 CHR editor validity and update algorithm

Listing C.7: Algorithm for checking the validity of rules and applying the corresponding

updates to the rule graph.

protected boolean updateTransformationModel (CHR chr){

notify=false ;
// first the type graph and rule graph model are put into hash maps
// hashmaps for typenodes and typeedges
HashMap<String ,IAbstractNode > typenodes =
new HashMap<String ,[AbstractNode >();
HashMap<String ,IAbstractEdge > typeedges =
new HashMap<String ,TAbstractEdge >();
ITypeGraphModel tg=((ITypedGraphModel)model).getTypeGraph();
for (IAbstractEdge e:tg.getEdges())
if (e instanceof ITypeEdge)
typeedges.put (((ITypeEdge)e).getID(), e);
for (IAbstractNode n:tg.getNodes())
if (n instanceof ITypeNode)
typenodes . put (((ITypeNode)n).getID(), n);

IGraphTransformation gt = (IGraphTransformation)model;
//hashmaps for nodes and egges of the model
//nodes
HashMap<String , ITransformNode> nodesL = new HashMap<String ,[TransformNode >();
HashMap<String ,ITransformNode> nodesK = new HashMap<String ,ITransformNode >() ;
HashMap<String ,ITransformNode> nodesR = new HashMap<String ,ITransformNode >();
HashMap<String ,ITypeNode> nodeTypes = new HashMap<String ,ITypeNode >();
HashMap<String , TransformElementType> nodeTrans = new HashMap<String ,
TransformElementType >() ;

HashMap<String , Integer > nodeDegreeExpr=new HashMap<String , Integer >();
for (IAbstractNode tn:gt.getNodes()){

if (tn instanceof ITransformNode)

switch (((ITransformNode)tn). getTrans () .getValue ()){

case TransformElementType .K VALUE: nodesK.put(tn.getID () ,(ITransformNode)tn); break

case TransformElementType.L_VALUE: nodesL.put(tn.getID () ,(ITransformNode)tn); break

case TransformElementType .R_VALUE: nodesR.put(tn.getID () ,(ITransformNode)tn); break

5

}
nodeTypes.put (((ITransformNode)tn).getID () ,((ITransformNode)tn).getType());
nodeTrans . put (((ITransformNode)tn).getID () ,((ITransformNode)tn).getTrans ());

}

//edges

MultiHashMap3 <ITransformNode , ITransformNode , ITypeEdge , LinkedList <ITransformEdge >>
edgesL = new MultiHashMap3 <ITransformNode ,ITransformNode ,ITypeEdge , LinkedList <
ITransformEdge >>();

MultiHashMap3 <ITransformNode , ITransformNode ,ITypeEdge , LinkedList <ITransformEdge >>
edgesK = new MultiHashMap3 <ITransformNode ,ITransformNode ,ITypeEdge , LinkedList<
ITransformEdge >>();

MultiHashMap3 <ITransformNode , ITransformNode ,ITypeEdge , LinkedList <ITransformEdge >>
edgesR = new MultiHashMap3<ITransformNode , ITransformNode ,ITypeEdge , LinkedList <
ITransformEdge >>();

HashMap<ITransformEdge ,ITypeEdge> edgeTypes = new HashMap<ITransformEdge ,ITypeEdge
>0

HashMap<ITransformEdge , String > edgeSrc = new HashMap<ITransformEdge , String >();

HashMap<ITransformEdge , String > edgeTgt = new HashMap<ITransformEdge , String >();

HashMap<ITransformEdge , TransformElementType> edgeTrans = new HashMap<ITransformEdge ,
TransformElementType >() ;

for (IAbstractEdge e:gt.getEdges ()){
if (e instanceof ITransformEdge){
ITransformNode src=(ITransformNode)e.getSrc (), tgt=(ITransformNode)e.getTgt();
ITypeEdge type = ((ITransformEdge)e).getType();
switch (((ITransformEdge)e).getTrans (). getValue ()){
case TransformElementType.K VALUE:
if (!edgesK.containsKey (src,tgt,type))
edgesK.put(src,tgt,type ,new LinkedList<ITransformEdge >());
edgesK . get(src,tgt,type).add ((ITransformEdge)e);
break ;
case TransformElementType.L _VALUE:
if (!edgesL.containsKey (src,tgt, type))
edgesL . put(src,tgt,type ,new LinkedList<ITransformEdge >());
edgesL . get(src,tgt,type).add((ITransformEdge)e);
break ;
case TransformElementType .R_VALUE:
if (!edgesR.containsKey (src,tgt, type))
edgesR.put(src,tgt,type ,new LinkedList<ITransformEdge >());
edgesR. get(src,tgt,type).add((ITransformEdge)e);

127

C Source Code

65 break;

66 }

67 edgeSrc.put ((ITransformEdge)e,e.getSrc().getID());

68 edgeTgt. put ((ITransformEdge)e,e.getTgt().getID());

69 edgeTypes.put ((ITransformEdge)e,((ITransformEdge)e).getType());

70 }

71 }

72

73 if (chr.getRule().size()!=1) return false;

74 //CHR program is encoded in hashmaps

75 HashMap<Constraint , String > errors=new HashMap<Constraint , String >();

76

77 //save all constraints in a set

78 Set<Constraint> constraintSet = new HashSet<Constraint >();

79 for (Constraint c:((PropRule)chr.getRule().get(0)).getHead()) constraintSet.add(c);

80 for (Constraint c:((PropRule)chr.getRule().get(0)).getBody()) constraintSet.add(c);

81 HashMap<String , Constraint> nodeConstraintsL. = new HashMap<String , Constraint >();

82 HashMap<String , Constraint> nodeConstraintsK = new HashMap<String , Constraint >();

83 HashMap<String , Constraint> nodeConstraintsR = new HashMap<String , Constraint >();

84 HashMap<String , Integer > nodeEdgeCount=new HashMap<String , Integer >();

85

86 //MultiHashMaps for the edge constraints

87 MultiHashMap3 <String , String , String , List<Constraint>> edgeConstraintsL = new
MultiHashMap3 <String , String , String , List<Constraint >>() ;

88 MultiHashMap3<String , String , String , List<Constraint >> edgeConstraintsK = new
MultiHashMap3<String , String , String , List<Constraint >>();

89 MultiHashMap3<String , String , String , List<Constraint >> edgeConstraintsR = new
MultiHashMap3<String , String , String , List <Constraint >>() ;

90 Set<String > edgeDelVars=new HashSet<String >();

91 //put the constraints into the groups L,R and K

92 //process headconstraints first

93 for (Constraint c:((PropRule)chr.getRule().get(0)).getHead()){

94 // filter errors in constraints (e.g. multiple identifiers)

95 //node constraints

96 if ((simple && c.getVariables ().size ()==

97 && c.getVariables().get(0) instanceof Literal

98 Il !'simple && c.getVariables ().size ()==

99 && c.getVariables ().get(0) instanceof Literal)

100 && c.getType () !=null

101 && typenodes.containsKey (c.getType () .getName())){

102 String id=((Literal)c.getVariables().get(0)).getValue();

103 if (! nodeConstraintsL .containsKey (id)){

104 nodeConstraintsL . put(id, c);

105 if (!nodeEdgeCount. containsKey (id))

106 nodeEdgeCount.put(id, 0);

107 constraintSet.remove(c);

108 }else{

109 errors.put(c, "duplicate node identifier");

110 continue;

111 }

112 //edge constraints

113 }else if(simple && c.getVariables().size ()==

114 && c.getVariables ().get(0) instanceof Literal

115 && c.getVariables().get(1) instanceof Literal

116 && c.getType () !=null

117 && typeedges.containsKey (c.getType () .getName())

118 Il !'simple && c.getVariables ().size ()==3

119 && c.getVariables ().get(0) instanceof Literal

120 && c.getVariables().get(1l) instanceof Literal

121 && c.getVariables().get(2) instanceof Literal && c.getType()!=null

122 && typeedges.containsKey (c.getType () .getName())){

123 String src,tgt;

124 int shift=simple?0:1; //different positions when in simple mode

125 src=((Literal)c.getVariables ().get(0+shift)).getValue();

126 tgt=((Literal)c.getVariables ().get(l+shift)).getValue();

127 String type=c.getType () .getName() ;

128 if (! simple &% Character.isUpperCase (((Literal)c.getVariables ().get(0)).getValue().

charAt(0))){

129 if (! edgeConstraintsL . containsKey (src,tgt , type))

130 edgeConstraintsL . put(src,tgt ,type, new LinkedList<Constraint >());

131 edgeConstraintsL . get(src,tgt ,type).add(c);

132 }else {

133 if (!edgeConstraintsL .containsKey (src,tgt,type))

134 edgeConstraintsL . put(src,tgt ,type, new LinkedList<Constraint >());

135 edgeConstraintsL . get(src,tgt ,type).add(c);

136 }

137 if (nodeEdgeCount. containsKey (src)) nodeEdgeCount.put(src, nodeEdgeCount. get(src)

-3
138 else nodeEdgeCount.put(src, —1);

128

C.5 CHR editor validity and update algorithm

139 if (nodeEdgeCount. containsKey (tgt)) nodeEdgeCount.put(tgt, nodeEdgeCount.get(tgt)
—-1);
140 else nodeEdgeCount.put(tgt, —1);
141 constraintSet.remove(c);
142 }else {
143 errors.put(c, "Invalid Constraint");
144 continue ;
145 }
146 }
147
148 //process body constraints
149 for (Constraint c:((PropRule)chr.getRule().get(0)).getBody()){
150 // filter errors (wrong variable names for attributes , duplicate entries, occurence
of variables that should not be there,
151 // multiple deletion variables)
152 //node constraints
153 if (simple && c.getVariables () .size()==
154 && c.getVariables().get(0) instanceof Literal
155 && c.getType () !=null
156 && typenodes.containsKey (c.getType () .getName())
157 Il !'simple && c.getVariables ().size ()==2
158 && c.getVariables().get(0) instanceof Literal
159 && c.getType () !=null && typenodes.containsKey (c.getType ().getName())){
160 String id=((Literal)c.getVariables().get(0)).getValue();
161 if (nodeConstraintsL.containsKey (id)) {
162 if (!'simple){
163 List<Literal > lL=new LinkedList<Literal >(), 1R=new LinkedList<Literal >();
164 getLiteral (nodeConstraintsL . get(id). getVariables ().get(1),IL);
165 getLiteral (c.getVariables ().get(1),IR);
166 if (IR.size()!=1 Il IL.size()!=1 Il !IR.get(0).getValue().equals(IL.get(0).
getValue ())){
167 errors.put(c, "Constraints in head and body must share the same Variable in the
second attribute");
168 continue ;
169 }
170 nodeDegreeExpr.put(id, evalExpression(c.getVariables().get(1)));
171 }
172 nodeConstraintsK.put(id, nodeConstraintsL .remove(id));
173 constraintSet.remove(c);
174 }else {
175 if (nodeConstraintsR .containsKey (id)){
176 errors.put(c, "Duplicate node entry in body");
177 continue
178
179 if (!simple){
180 List<Literal > lit=new LinkedList<Literal >();
181 getLiteral (c. getVariables ().get(l),lit);
182 if (lit.size ()!=0){
183 errors.put(c,"Second attribute must not contain variables");
184 continue ;
185 }
186 }
187 nodeConstraintsR . put(id, c);
188 if (! nodeEdgeCount. containsKey (id))
189 nodeEdgeCount . put(id, 0);
190 constraintSet.remove(c);
191 }
192 }
193 //edge constraints
194 else if (simple && c.getVariables().size ()==2 && c.getVariables().get(0) instanceof
Literal
195 && c.getVariables ().get(l) instanceof Literal && c.getType()!=null
196 && typeedges.containsKey (c.getType () .getName())
197 Il !'simple && c.getVariables ().size ()==3 && c.getVariables().get(0) instanceof
Literal
198 && c.getVariables ().get(1l) instanceof Literal && c.getVariables().get(2)
instanceof Literal && c.getType()!=null
199 && typeedges.containsKey (c.getType () .getName())){
200 int shift=simple?0:1;
201 String src=((Literal)c.getVariables().get(0+shift)).getValue();
202 String tgt=((Literal)c.getVariables().get(l+shift)).getValue();
203 String type=c.getType () .getName () ;
204
205 if (edgeConstraintsL . containsKey (src,tgt ,type) && edgeConstraintsL . get(src,tgt, type
).size () >0){
206
207 int edg=0;
208 if (!simple){
209
210 String del=((Literal)c.getVariables().get(0)).getValue();

129

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229
230
231
232
233
234
235
236

237

238
239

240
241
242
243
244
245
246

247
248

249
250
251
252
253
254
255
256
257
258

259
260
261
262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
271
278
279
280
281
282

C Source Code

if (edgeDelVars.contains (del)){

errors.put(c, "Delete variable was used already");
continue ;

}

if (del.length ()==0 |l Character.isLowerCase(del.charAt(0))){
errors.put(c, "First attribute must not be a ground term");
continue ;

}

edg=—1;

int cnt=—1;
for (Constraint ch:edgeConstraintsL . get(src,tgt,type)){
cnt++;
if (((Literal)ch.getVariables().get(0)).getValue().equals(del)){
edg=cnt;
}
}
if (edg==—1){
errors.put(c, "There is no edge constraint in the head with the same del
variable");
continue ;
}
edgeDelVars.add(del);
}
if (!edgeConstraintsK.containsKey (src,tgt,type)){
edgeConstraintsK.put(src,tgt,type ,new LinkedList<Constraint >());

}

edgeConstraintsK. get(src,tgt ,type).add(edgeConstraintsL . get(src,tgt,type).remove(
edg));

if (nodeEdgeCount.containsKey (src)) nodeEdgeCount.put(src, nodeEdgeCount.get(src)
+1);

else nodeEdgeCount.put(src, 1);
if (nodeEdgeCount.containsKey (tgt)) nodeEdgeCount.put(tgt, nodeEdgeCount.get(tgt)
+1);
else nodeEdgeCount.put(tgt, 1);
constraintSet.remove(c);
}else {
if (! edgeConstraintsR .containsKey (src,tgt ,type))
edgeConstraintsR . put(src,tgt ,type, new LinkedList<Constraint >());
edgeConstraintsR . get(src,tgt ,type).add(c);
if (nodeEdgeCount.containsKey (src)) nodeEdgeCount.put(src, nodeEdgeCount. get(src)
+1);
else nodeEdgeCount.put(src, +1);
if (nodeEdgeCount.containsKey (tgt)) nodeEdgeCount.put(tgt, nodeEdgeCount.get(tgt)
+1);
else nodeEdgeCount.put(tgt, +1);
constraintSet.remove(c);
}
}else {
errors.put(c, "Invalid Constraint");
continue ;
}
}

//in complex mode edge constraints must not contain variables if they are in L\K or
R\K
if (! simple && constraintSet.size ()==0)
for (Constraint c:nodeConstraintsL . values ()){
List<Literal > lit=new LinkedList<Literal >();
getLiteral (c. getVariables ().get(l),lit);
if (lit.size ()!=0){
errors.put(c,"Second attribute must not contain variable");
constraintSet.add(c);
continue
}
}

//check if edges are connected to the correct nodes (according to their type edge),
and the correct group (L,K or R)

for(int i=0;i<3;i++){

if (constraintSet.size () >0) break;

HashMap<String , HashMap<String ,HashMap<String ,List<Constraint >>>> map=null;

switch (i) {

case 0: map=edgeConstraintsL .getMap(); break;

case 1: map=edgeConstraintsK.getMap () ;break;

case 2: map=edgeConstraintsR.getMap () ;break;

}

for (String src:map.keySet())
for (String tgt:map.get(src).keySet())
for (String type:map.get(src).get(tgt).keySet())

130

C.5 CHR editor validity and update algorithm

283 for (Constraint c:map.get(src).get(tgt).get(type)){

284 //check to which group it belongs (L,R,K)

285 Constraint srcc=null, tgtc=null;

286 if (i==0 && nodeConstraintsL .containsKey (src))

287 srcc=nodeConstraintsL . get(src);

288 if (nodeConstraintsK.containsKey (src))

289 srcc=nodeConstraintsK . get(src);

290 if (i==2 && nodeConstraintsR.containsKey (src))

291 srcc=nodeConstraintsR . get(src);

292 if (i==0 &% nodeConstraintsL .containsKey (tgt))

293 tgtc=nodeConstraintsL .get(tgt);

294 if (nodeConstraintsK.containsKey (tgt))

295 tgtc=nodeConstraintsK.get(tgt);

296 if (i==2 &% nodeConstraintsR.containsKey (tgt))

297 tgtc=nodeConstraintsR . get(tgt);

298 if (srcc==null){

299 errors.put(c,"could not find a valid source node constraint");

300 constraintSet.add(c);

301 continue

302 }

303 if (tgtc==null){

304 errors.put(c,"could not find a valid target node constraint");

305 constraintSet.add(c);

306 continue

307 }

308 ITypeEdge te = (ITypeEdge)typeedges.get(c.getType().getName());

309 ITypeNode tnsrc = (ITypeNode)typenodes.get(srcc.getType().getName());

310 ITypeNode tntgt = (ITypeNode)typenodes.get(tgtc.getType().getName());

311 if (tnsrc!=te.getSrc()){

312 errors.put(c, "Type of source node incorrect");

313 constraintSet.add(c);

314 continue ;

315 }

316 if (tntgt!=te.getTgt()){

317 errors.put(c, "Type of target node incorrect");

318 constraintSet.add(c);

319 continue ;

320 }

321

322 }

323 }

324 //complex mode: check if the del and count attribute is correctly set ground or
variable

325 if (!simple && constraintSet.size ()==0){

326 //check host nodes (here the attribute must be ground)

327 for(int i=0;i<2;i++){

328 //check edges (del)

329 MultiHashMap3<String , String , String , List<Constraint >> map=null ;

330 switch (i) {

331 case 0: map=edgeConstraintsL; break;

332 case 1: map=edgeConstraintsR ;break;

333 }

334 for (List<Constraint> l:map.values())

335 for (Constraint c:1){

336 String del=((Literal)c.getVariables().get(0)).getValue();

337 if (del.length ()==0 || Character.isUpperCase(del.charAt(0))){

338 errors . put(c,"Deletion argument must be ground");

339 constraintSet.add(c);

340 continue ;

341 }

342

343 }

344

345 //check nodes (count)

346 HashMap<String , Constraint > nmap=null;

347 switch (i) {

348 case 0: nmap=nodeConstraintsL ;break;

349 case 1: nmap=nodeConstraintsR ;break;

350 }

351 for (Constraint c:nmap.values ()){

352 if (c.getVariables ().get(1l) instanceof Numeral){

353 int cnt=((Numeral)c.getVariables ().get(1)).getValue();

354 String id=((Literal)c.getVariables().get(0)).getValue();

355

356 if (! nodeEdgeCount.containsKey (id) |l Math.abs(nodeEdgeCount. get(id))!=cnt){

357 errors .put(c, "second attribute must be a number and represent the number of

edges on this node");

358 constraintSet.add(c);

359 continue ;

360 }

131

361
362
363
364

365
366
367
368
369
370
371
372
373
374
375

376
377
378

379
380
381
382
383

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

411
412

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

432
433
434

C Source Code

}
}
}
//check the edge constraints that are kept (in group K), here the del attribute
must be variable
for (List<Constraint> 1:edgeConstraintsK.values ()){
for (Constraint c:1){
String del=((Literal)c.getVariables().get(0)).getValue();
if (del.length ()==0 |l Character.isLowerCase(del.charAt(0))){
errors.put(c,"Deletion argument must be a variable");
constraintSet.add(c);
continue ;
}
}
}
//check the node constraints that are kept (in group K), here the count attribute
must contain a variable
for (Constraint c:nodeConstraintsK . values ()){

int cnt=nodeDegreeExpr.get (((Literal)c.getVariables().get(0)).getValue())—
evalExpression(c. getVariables ().get(1));

String id=((Literal)c.getVariables().get(0)).getValue():

int cnt2=0;//=1000;

if (nodeEdgeCount.containsKey (id)) cnt2=nodeEdgeCount. get(id);

if (!nodeEdgeCount.containsKey (id) Il cnt2!=cnt){

errors.put(c, "second attribute must be a Expression with one Variable and
represent the different number of edges");

constraintSet.add(c);

continue

}

//remove all old annotations

IAnnotationModel am=this. getSourceViewer ().getAnnotationModel () ;
for (Annotation a:alTrans){

am.removeAnnotation(a);

}

//if there are still unprocessed Constraints print error annotations
if (constraintSet.size ()>0){

alTrans=new LinkedList<Annotation >();

IModelCreatingContext mcc= this.getLastModelCreatingContext () ;

for (Constraint c:constraintSet) {
Position p=mcc. getTreeNodeForObject(c).getPosition ();
Annotation a;
if (errors.containsKey (c))
a=new ErrorAnnotation(errors.get(c)+" ["+mcc.getTreeNodeForObject(c).getNodeText
O+"1"):
else
a=new ErrorAnnotation("Error in Constraint "+mcc. getTreeNodeForObject(c).
getNodeText ());
am.addAnnotation ((org.eclipse.jface.text.source.Annotation) a,p);
alTrans.add(a);
}

return false;

}

//modify, add or delete nodes and edges

//new and modified nodes
HashMap<String , ITransformNode> newNodes = new HashMap<String ,ITransformNode >();

List<ITransformNode> nodeModify = new LinkedList<ITransformNode >();
List<ITransformNode> nodeAdd=new LinkedList<ITransformNode >();
List<ITransformNode> nodeDelete=new LinkedList<ITransformNode >();
List<ITransformEdge> edgeModify = new LinkedList<ITransformEdge >();
List<ITransformEdge> edgeAdd=new LinkedList<ITransformEdge >();
List<ITransformEdge> edgeDelete=new LinkedList<ITransformEdge >();
//adjust the group of the nodes

for (TransformElementType i:TransformElementType. values ()){
HashMap<String , Constraint> cons=null;

132

435
436
437
438
439
440

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

470
471
472
473
474
475
476
471
478
479
480
481
482
483
484
485
486
487
488
489

491
492
493
494
495
496
497
498
499
500
501
502
503

505
506
507
508
509
510
511
512
513

C.5 CHR editor validity and update algorithm

switch (i.getValue ()){
case TransformElementType .K VALUE:{ cons=nodeConstraintsK ;break;}
case TransformElementType.L_VALUE:{ cons=nodeConstraintsL ;break;}
case TransformElementType .R_VALUE:{ cons=nodeConstraintsR ;break;}
}
for (String id: cons.keySet()){
if (nodesR.containsKey (id)){
if (!i.equals(TransformElementType.R)){
nodeModify .add (nodesR. get(id));
}

nodeTrans.put(id, i);

newNodes. put (id, nodesR.get(id));
nodesR .remove (id);

}else

if (nodesK.containsKey (id)){

if (!i.equals(TransformElementType .K))
nodeModify .add (nodesK . get(id));
newNodes . put(id, nodesK.get(id));
nodeTrans.put(id, i);

nodesK .remove (id);

}else

if (nodesL.containsKey (id)){

if (!i.equals(TransformElementType.L))
nodeModify .add (nodesL . get(id));
newNodes. put (id, nodesL.get(id));
nodeTrans.put(id, i);

nodesL .remove (id) ;

}else {

//new nodes

ITransformNode nn=new ITransformNodelmpl();
nn.setID (((Literal)cons.get(id).getVariables ().get(0)).getValue());
newNodes. put(nn.getID (), nn);
nodeAdd.add(nn);

nodeTypes.put(nn.getID (), (ITypeNode)typenodes.get(cons.get(id).getType().getName

0)):
nodeTrans . put(nn.getID(), i);
}
}
}

//removed nodes

nodeDelete . addAll (nodesR . values ());
nodeDelete .addAll (nodesL . values());
nodeDelete . addAll (nodesK. values ());

//new and modified edges

//adjust group of edge

for (TransformElementType i:TransformElementType. values ()){
MultiHashMap3<String , String , String , List<Constraint>> cons=null;
switch (i.getValue ()){
case TransformElementType .K VALUE:{ cons=edgeConstraintsK ;break;}
case TransformElementType .L_VALUE:{ cons=edgeConstraintsL ;break;}
case TransformElementType .R_VALUE:{ cons=edgeConstraintsR ;break;}

HashMap<String ,HashMap<String ,HashMap<String , List<Constraint >>>> map=cons . getMap () ;

for (String src: map.keySet()){
for (String tgt: map.get(src).keySet())
for (String type:map.get(src).get(tgt).keySet())
for (Constraint c:map.get(src).get(tgt).get(type)){
ITransformNode nsrc=newNodes. get(src), ntgt=newNodes.get(tgt);
ITypeEdge etype=(ITypeEdge)typeedges.get(type);
if (edgesR.containsKey (nsrc,ntgt,etype) &&
ledgesR . get(nsrc,ntgt ,etype).isEmpty ()){
ITransformEdge foundEdge=edgesR. get(nsrc,ntgt,etype).remove(0);
if (!i.equals(TransformElementType.R)){
edgeModify . add (foundEdge) ;
}
edgeTrans. put(foundEdge, i);

}else if(edgesK.containsKey (nsrc,ntgt,etype) &&
ledgesK . get(nsrc,ntgt,etype).isEmpty ()){
ITransformEdge foundEdge=edgesK.get(nsrc,ntgt,etype).remove(0);
if (!i.equals(TransformElementType.K)) {
edgeModify . add (foundEdge) ;
}
edgeTrans . put (foundEdge, i);

}else
if (edgesL.containsKey (nsrc,ntgt,etype) &&
ledgesL .get(nsrc,ntgt,etype).isEmpty ()){

133

C Source Code

514 ITransformEdge foundEdge=edgesL . get(nsrc,ntgt,etype).remove(0);

515 if (!i.equals(TransformElementType.L)){

516 edgeModify . add (foundEdge) ;

517 }

518 edgeTrans . put (foundEdge, i);

519

520 }else {

521 //new edges

522 ITransformEdge ne=new ITransformEdgelmpl();

523 edgeAdd.add(ne);

524 edgeTypes.put(ne, (ITypeEdge)typeedges.get(c.getType().getName()));

525 edgeSrc.put(ne, src);

526 edgeTgt.put(ne, tgt);

527 edgeTrans . put(ne, i);

528 }

529

530 }

531

532 }

533 }

534 //removed edges

535 for (TransformElementType i:TransformElementType. values ()){

536 MultiHashMap3 <ITransformNode , ITransformNode , ITypeEdge , LinkedList <ITransformEdge >>
cons=null;

537 switch (i.getValue ()){

538 case TransformElementType .K VALUE:{ cons=edgesK;break;}

539 case TransformElementType.L_VALUE:{ cons=edgesL ;break;}

540 case TransformElementType .R_VALUE:{ cons=edgesR ;break;}

541 }

542 HashMap<ITransformNode , HashMap<ITransformNode ,HashMap<ITypeEdge , LinkedList <
ITransformEdge >>>> map=cons.getMap () ;

543 for (ITransformNode src:map.keySet())

544 for (ITransformNode tgt:map.get(src).keySet())

545 for (ITypeEdge type:map.get(src).get(tgt).keySet())

546 edgeDelete . addAll (map. get(src).get(tgt).get(type));

547 }

548

549 //execute the changes: in this order: delete edges, delete nodes, modify nodes,

modify edges, add nodes, add edges

550 for (ITransformEdge e:edgeDelete){

551 EdgeDeleteCommand cmd=new EdgeDeleteCommand(e);

552 commandStack . execute (cmd) ;

553 }

554 for (ITransformNode n:nodeDelete){

555 NodeDeleteCommand cmd=new NodeDeleteCommand(n) ;

556 commandStack . execute (cmd) ;

557 }

558 for (ITransformEdge e:edgeModify) {

559 TransformTypeChangeCommand cmd=new TransformTypeChangeCommand () ;

560 cmd. setModel(e);

561 cmd. setNewType (edgeTrans . get(e));

562 commandStack . execute (cmd) ;

563 }

564 for (ITransformNode n:nodeModify) {

565 TransformTypeChangeCommand cmd=new TransformTypeChangeCommand () ;

566 cmd. setModel (n) ;

567 cmd. setNewType (nodeTrans . get(n.getID()));

568 commandStack . execute (cmd) ;

569 }

570 for (ITransformNode n:nodeAdd){

571 NodeCreateCommand cmd=new NodeCreateCommand (gt ,new Rectangle(0,0,—1,—1),nodeTypes.
get(n.getID()),n.getID());

572 commandStack . execute (cmd) ;

573 cmd. getCreatedNode () . eAdapters () .add(this);

574 newNodes. put(n.getID (), (ITransformNode) cmd. getCreatedNode ());

575 TransformTypeChangeCommand cmd2= new TransformTypeChangeCommand () ;

576 cmd2. setModel (cmd. getCreatedNode ()) ;

577 cmd2 . setNewType (nodeTrans . get(n.getID()));

578 commandStack . execute (cmd2) ;

579 }

580 for (ITransformEdge e:edgeAdd) {

581 EdgeCreateCommand cmd=new EdgeCreateCommand(newNodes. get(edgeSrc.get(e)) ,edgeTypes.
get(e));

582 cmd. setTarget (newNodes . get (edgeTgt. get(e)));

583 commandStack . execute (cmd) ;

584 cmd. getCreatedEdge () . eAdapters () .add (this);

585 TransformTypeChangeCommand cmd2= new TransformTypeChangeCommand () ;

586 cmd2. setModel (cmd. getCreatedEdge ()) ;

587

588 cmd2 . setNewType (edgeTrans . get(e));

134

589
590
591
592
593
594

C.6 Full TEF grammar

commandStack . execute (cmd2) ;

}

return true;

}

C.6 Full TEF grammar

This appendix lists the full TEF grammar used for CHR programs.

Listing C.8: TEF grammar for CHR.

syntax (CHR) "resources/chrtypegraph.ecore" {
CHR: element (CHR) —> (ConstraintDefs (RuleBlock)?
(Input:composite (Inputs))?)?;
RuleBlock —> "rules{" ws(statement)
ws(indent) Rule:composite (Rule) ws(statement)
//(ws(indent) Rule:composite(Rule))x*
"
Rule:element(PropRule) —> (PropHead)? ws(statement)
"<=>" ws(statement) PropBody ".";
PropHead —> Constraint:composite (head)

("," ws(space) Constraint:composite(head))x*;
PropBody —> Constraint:composite (body)
("," ws(space) Constraint:composite (body))x*;

PropBody —> "true";
ConstraintDefs —> ("public" ws(space))? "Constraint"
ws(space) ConstraintDef:composite(constraintDef)

("," ws(space) ConstraintDef:composite(constraintDef))x
";" ws(statement);
Input:element(Input) —> ":—" Constraints "." ws(statement);

ConstraintDef:element(ConstraintDef) —>
IDENTIFIER : composite (name) (" ("
IDENTIFIER : composite (variableTypes) (","
IDENTIFIER : composite (variableTypes))*")")?;

Constraints —> Constraint:composite(constraints)

("," ws(space) Constraint:composite(constraints))*;

Constraint:element(Constraint) —>
ConstraintDefRef:reference (type) ("("
Expression:composite(variables) (","
Expression:composite(variables))*")")?;

ConstraintDefRef:element(ConstraintDef) —>
IDENTIFIER : composite (name) ;

Expression —> Literal;

Expression —> Numeral;

Expression —> Minus;

Expression —> Plus;

Literal :element(Literal) —> IDENTIFIER: composite(value);

Numeral: element (Numeral) —> INTEGER: composite (value);

Minus: element (Minus) —> Expression:composite(lhs)

"—" Expression:composite (rhs);

Plus:element (Plus) —> Expression:composite(lhs)
"+" Expression:composite (rhs);

135

Name: Mathias Wasserthal Matrikelnummer: 541501

Erklarung

Ich erklare, dass ich die Arbeit selbstindig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel verwendet habe.

Mathias Wasserthal

	Introduction
	State of the art
	Motivation
	Examples
	Finding circular lists
	Dining philosophers

	Organization of the thesis

	Preliminaries
	Constraint Handling Rules (CHR)
	Syntax
	Operational semantics
	Example

	Graph Transformation Systems (GTS)
	Definitions: Graphs
	Definitions: Graph transformation system
	Double pushout as a gluing construction
	Example
	Notation

	CHR encoding of GTS
	Encoding
	Examples

	Eclipse
	The platform
	Plug-ins and extension points

	Conception
	Available GTS tools
	AGG
	Groove
	Conclusion

	Goals
	Requirements analysis
	Finding the right tools
	Model creation
	JGraphT
	JGraph
	EMF

	Graphical editors
	Graphical Editing Framework (GEF)
	Graphical Modeling Framework (GMF)
	JGraph
	yFile

	Textual editors
	JCHRIDE
	XText
	Textual Editing Framework (TEF)

	CHR environments
	Java Constraint Kit (JaCK)
	K.U. Leuven JCHR

	Code generation
	XSLT
	Java Emitter Templates (JET)

	Graph layout and visualization
	JGraph, yFiles
	Zest

	Suitability of the tools

	Realization
	GTS model
	Design
	Model
	Editing commands

	Implementation
	Model
	Editing commands

	The platform
	Design
	Graphical user interface
	Extendability

	Implementation
	Multi-bar editor
	Saving/Loading GTS models
	Wizards
	Extension point
	Action bar

	The graphical editor
	Design
	Implementation
	Model View Controller (MVC)
	Edit policies
	Editor
	Tools and actions in the editors

	Sample computation

	The textual editor
	Design
	Notation
	Encoding/decoding algorithms
	Editor

	Implementation
	Grammar and model
	Encoding/decoding algorithms
	Editor

	Sample computation

	How to create a tool: The termination analysis tool
	Design
	Ranking functions
	Graphical user interface

	Implementation

	The CHR based analysis tool
	Design
	CHR analysis tools extension point
	Graphical user interface
	Code generation
	Compiler tool

	Implementation
	Extension point
	Tool
	Code generation
	How to create a CHR tool: Compiler tool

	The graphical analysis tool
	Design
	Interactive CHR environment
	Code generation
	Graphical user interface
	Synchronization of display and handler

	Implementation
	Generation of the JCHR handler and its interface
	Loading of the generated files
	Using the generated handler

	Sample computation

	Further analysis tools
	Random host generation tool
	Confluence analysis

	Conclusion
	Summary of results
	Future work

	Bibliography
	Installation guide and CD content
	CD content
	Installation Guide

	Introduction to category Theory
	Categories
	Morphisms
	Pushouts

	Source Code
	Example commands
	GTS analysis tool extension point
	CHR analysis tool extension point
	JET Template for JCHR code generation
	CHR editor validity and update algorithm
	Full TEF grammar

