
MTSeq: Multi-touch-enabled CHR-based Music
Generation and Manipulation

Florian Geiselhart1, Frank Raiser1, Jon Sneyers2, and Thom Frühwirth1

1 Faculty of Engineering and Computer Science, Ulm University, Germany
firstname.lastname@uni-ulm.de

2 Department of Computer Science, K.U.Leuven, Belgium
firstname.lastname@cs.kuleuven.be

Abstract. We present MTSeq, an application that combines GUI-driven
multi-touch input technology with the CHR-based music generation system
APOPCALEAPS and an advanced audio engine. This combination leads to
an extended user experience and an intuitive, playful access to the CHR
music generation system, and thus introduces CHR to musicians and other
non-computer-scientists in an appropriate way. The application is fully mod-
ularized and its parts are loosely interconnected through a standard IP net-
working layer, so it is optionally distributable across multiple machines.

1 Introduction and Goals

In our application, we show how the Constraint Handling Rules-based (CHR [3])
music generator APOPCALEAPS [8] is driven via a loose-coupled, modern, and
multi-touch-enabled GUI, which communicates with the CHR backend. An ex-
tended audio engine allows high-quality playback and real-time manipulation of
the generated music. In combination, these components form a highly interactive
music generation and manipulation environment called MTSeq (as an acronym of
Multi-Touch and Sequencer).

The most important goal of the MTSeq application is to make the APOP-
CALEAPS CHR application accessible to non-computer-scientists and musicians.
This creates interest in CHR in user groups who did not consider CHR as an appli-
cation language by now.

Another goal is to make use of new and innovative multi-touch technology for
usability improvements and a modern GUI. This technology is especially interesting
if an application demands lots of parallel manipulation actions, like it is common
in musical environments, e.g., for parallel effects parameter manipulation. Thus,
APOPCALEAPS is a suitable candidate for use with a multi-touch interface.

Given those preconditions, a GUI design goal is to resemble the look-and-feel of
common musical controllers, which are widely used among musicians. These con-
trollers heavily depend on hardware controllers, like rotary controller, sliders, and
buttons, which are good for quick and intuitive manipulation especially in live situ-
ations. They are already familiar as a control paradigm to the targeted user group
on the one hand, but on the other hand, the multi-touch hardware furthermore
promotes the realization of such GUI widgets.

Our paper first gives an overview of the underlying CHR music generation system
APOPCALEAPS in Section 2. Afterwards the GUI and audio extensions that were
made are described in detail in Section 3. In Section 4, we sum up the experiences
gained and lessons learned throughout the implementation.

In addition to this paper, a short demonstrational video is available3.

3 http://www.uni-ulm.de/in/pm/forschung/themen/chr/info/downloads.html

http://www.uni-ulm.de/in/pm/forschung/themen/chr/info/downloads.html


2 APOPCALEAPS

Human

APOPCALEAPS

GUI CHRiSM
program

Probability
parameters

LilyPond file

GNU LilyPond

Music
(MIDI file)

Score
(PDF file)

Human

Training set

Learning algorithm (PRISM)

manual 
parameter 

tuning 

qual i ty evaluation
(selection)

Outpu t

query

CHRiSM
observation

Fig. 1. An overview of the APOPCALEAPS system [8].

The core generation system of our application is formed by APOPCALEAPS[8]
(an acronym for “Automatic POP Composer And LEArner of ParameterS”, a music
generation application which is built upon CHR[3], the probabilistic logic language
PRISM[6] and its corresponding extension to CHR, called CHRiSM[9]. The remain-
der of this section is based on [8] and provides an overview of APOPCALEAPS.

Figure 1 gives a schematic overview of APOPCALEAPS. In the original APOP-
CALEAPS version, a minimal graphical user interface provides a front-end to the
underlying CHRiSM program. This interface essentially allows the user to tweak
an input query for the CHRiSM program, specifying some desired properties of the
generated music. The default query is as follows:

voice(melody), shortest duration(melody,16),
voice(bass), shortest duration(bass,8),
voice(chords), shortest duration(chords,8),
voice(drums), shortest duration(drums,16),
instrument(melody,’soprano sax’),
instrument(bass,’electric bass (pick)’),
instrument(chords,’electric guitar (jazz)’),
set range(melody,c,4,-5,16), max jump(melody,5),
set range(bass,c,3,-17,5), max jump(bass,17),
chord style(offbeat), max repeat(melody,2),
key(major), meter(2,4), tempo(120), measures(8)

The above query indicates that we want a piece with four voices: melody, bass,
chords and drums. The shortest possible note for the melody and drums is set to
a 16th note, while for the bass and chords it is set to an 8th note. Names of MIDI
instruments to be used to render the voices are given. The range of the melody is set
to the interval of 5 semitones below central C to 16 semitones above central C. The
biggest interval between two consecutive melody notes is set to 5 semitones. The
bass has a lower range and is allowed to make bigger jumps. Chords are preferably
on off-beats, and the melody should not have more than two consecutive repeated
notes. The piece should be in a major key. The meter is 2/4, the tempo is 120 bpm,
and the length of the piece to be generated is 8 measures.

2



Based on the query and probability parameters inside the CHRiSM program,
CHRiSM generates output, rendered by LilyPond [5] as both a score and a MIDI
file.

Additionally, the original APOPCALEAPS system in principle supports an it-
erative and interactive learning process, where users listen to the generated music
and select the good pieces according to their own taste. The selected pieces are
used as a training set for a learning algorithm that adjusts the probability parame-
ters. The idea is that this iterative interactive process leads to a personalized music
generation system.

However, due to CHRiSM not being able to deal efficiently with large output
spaces yet, the learning features are computationally too expensive to be tested in
practice on non-trivial examples. So for now, the CHRiSM program is driven by
manual-tuned probability parameters.

The core component of the APOPCALEAPS system is, as stated above, a
CHRiSM program. It consists of about 50 CHRiSM rules (about 150 lines of code).
Besides the actual program, there is some auxiliary code (about 100 lines of code)
and the code to write out the output in LilyPond syntax (about 150 lines of code).

The program uses 7 parametrized probabilistic experiments, which give rise to
92 probability distributions in total.

3 Multi-touch GUI and Audio Rendering

To extend the APOPCALEAPS system according to our goals, there were mainly
two work areas. The first is the development of a multi-touch-enabled GUI in a
suitable programming language, the second is the development of an extended audio
processing system.

3.1 GUI Basics and CHR Interfacing

For the sake of rapid multi-touch UI prototyping on a limited time budget, Adobe
Flash4 was chosen as a base for GUI development. It allows a rapid and easy way of
GUI widget design via vector based drawing and is suitable for multi-touch-enabled
GUIs because of its programming model. Thus it is being often used in multi-touch
applications (e.g.,[2,7,10] and numerous non-academic projects5).

The multi-touch tracking data used for control is encapsulated in Open Sound
Control [1] (OSC) UDP messages following the TUIO [4] standard, and made avail-
able via a small UDP-to-TCP gateway program that Flash can connect to. We
decided to re-use this existing way to communicate with the other components, as
the audio processing environment is already compatible to the OSC standard, and
the network-based architecture allows us to run APOPCALEAPS within a Linux
virtual machine, while the GUI is running on a Windows host.

The main task to be done beneath the GUI was to develop a proxy-like program
with the following features:

– Send and receive OSC messages via UDP/IP networking
– Keep a state model of all APOPCALEAPS parameters which is modifiable

through OSC
– Serialize its state to a textual goal file as an input to APOPCALEAPS
– Start and control the generation and signal its end through OSC to the GUI

4 http://www.adobe.com/products/flash/
5 http://www.nuigroup.com

3

http://www.adobe.com/products/flash/
http://www.nuigroup.com


The first and second features are handled by a small Java program and existing
OSC libraries. On generation, it serializes the parameter variables to a text file in
the appropriate format derived from the structure of the goal handler of APOP-
CALEAPS. To control the generation process, an already existing set of shell scripts
from the first minimal GUI is reused. These scripts are called directly from the Java
program, so it is always in control of the generation process.

This combination of components makes it possible to modify the parameters in
real-time when the GUI is changed. The actual generation is ran on demand, in
a synchronous way - that means the playback is stopped when the user triggers
generation, and he has to wait until the process finishes. This is primarily necessary
because the generation process is not done in real-time, but also because the audio
processing environment needs about 5 seconds to unload the old MIDI file and to
reload the new one.

3.2 GUI structure

Fig. 2. GUI Design and Sections

The basic sections of the GUI are pointed out in Figure 2. In the upper part
of the GUI, section (1) represents the generator controls. The parameter values are
sent to the generator proxy in real-time, but as described above, they do not come
into effect until the generation is triggered by the GO button on the right.

The lower part of the GUI allows real-time manipulation of playback and effects.
It consist of a tabbed group of effect controls (2), which can be wired to the X-Y-
controller pad on the right (3) in many ways. The controller pad therefore exposes
the number of fingers, the x and y value of fingers and the distance and angle
between certain fingers as a numeric controller value. In the very bottom part of
the GUI, the global transport controls can be found. They control basic playback
parameters like speed, play/stop, and volume.

4



Interaction Design The whole interface and interaction is designed in style of a
electronic musical device to allow quick access for unexperienced users. Especially
the software rotary controller in our GUI follows this paradigm through a 2-finger
control gesture, similar to the way a hardware rotary controller, e.g. on a mixing
desk, might be used in the real world. In addition, the X-Y-controller resembles a
real-world class of electronic musical devices, for example known as KORG Kaoss
Pad6. However, an advantage of our solution is multi-touch support, which allows
more parameters to be controlled at one time.

3.3 Advanced Audio and Effect Rendering

To improve the audio quality and to enable the use of effects, we integrated the
commercial audio processing application Bidule7. Bidule provides a graph-oriented
way of building audio processing chains and playing back audio data. Almost all of
its parameters are remote controllable via OSC. We designed a so-called patch, that
features a MIDI player and MIDI processing, a third-party software-based instru-
ment for playing back the MIDI data from APOPCALEAPS in high quality, and a
configurable set of effects that can be applied to the wave data before outputting
it to the sound card. These measures greatly improve the overall user experience,
especially when compared to the quality and possibilities of direct MIDI playback
through a regular computer on-board sound card.

4 Conclusion

With the MTSeq system, we created an appealing application which helps to attract
end users to APOPCALEAPS and thus, to CHR. We proposed and used a new
and simplistic approach to the communication with CHR through a special proxy-
like Java application, because this method allowed us to reuse wide parts of the
APOPCALEAPS handling and control mechanisms with minor changes.

Using Adobe Flash, we were able to rapidly create a rich graphical UI, but with
the consequence of having to communicate via a third party application (FLOSC8)
that helps bypassing the Flash sandbox, because Flash normally is not able to create
a listening network socket, which would be required for OSC communication.

Another problem we encountered resulted from the development process itself.
As we only were able to access real multi-touch hardware from time to time, the main
work had to be done via a TUIO simulator9 to emulate a real multi-touch table.
But the behaviour differences of real hardware compared to the simulator were
significant, so major parts of the interaction concept had to be altered to maintain
functionality on a real hardware table. This especially changed the way the wiring
area works, and introduced a de-bouncing routine for switches and buttons.

Besides this, the application still leaves room for improvements. With an exten-
sion of APOPCALEAPS as a pseudo-real-time MIDI generation engine, the cur-
rently blocking-mode generation part of our application could work in real-time.
This would enable the audio engine to play back a real-time MIDI data stream
coming from APOPCALEAPS instead of generated MIDI files. The stream itself
might be altered directly through the GUI parameters, which would result in a more
responsive user experience and less waiting time compared to our current approach.
However, this tends to lead to a complete rework of our CHR proxy application,
as the basic concept doesn’t support real-time parameter modification very well.
6 http://korg.com/product.aspx?&pd=269
7 http://www.plogue.com
8 See http://www.benchun.net/flosc/ and http://code.google.com/p/flosc/
9 A part of the Reactivision framework (http://reactivision.sourceforge.net/)

5

http://korg.com/product.aspx?&pd=269
http://www.plogue.com
http://www.benchun.net/flosc/
http://code.google.com/p/flosc/
http://reactivision.sourceforge.net/


This might, in turn, give rise to the (currently untested) direct Java interfacing
of CHRiSM and PRISM through the external language interface of the underlying
B-Prolog system.

Another feature that we did not implement to keep our GUI as simple as possi-
ble are controls for the probability parameters inside APOPCALEAPS. This might
be worked out in a future version of MTSeq, but as the modification requires re-
compilation of parts of APOPCALEAPS to come into effect, this may introduce an
additional waiting phase during music generation. Furthermore, a different GUI ex-
tension could be a direct and graphical manipulation of CHR rules and parameters
on a score, as they represent the relations between the notes.

A last possible extension point is the extension and generalization of the OSC
protocol subset between flash and APOPCALEAPS/CHR, as the current version
only features the most basic parameters for communication and control of the
APOPCALEAPS system. There are for example no error messages provided to
the GUI if something goes wrong during the generation process.

References

1. OpenSound Control: state of the art 2003. National University of Singapore, Singapore,
Singapore (2003)

2. Chen, C.H., Nien, K.H., Wu, F.G.: Design a multi-touch table and apply to interior
furniture allocation. In: Universal Access in Human-Computer Interaction. Intelligent
and Ubiquitous Interaction Environments. Lecture Notes in Computer Science, vol.
5615, pp. 13–19. Springer Berlin / Heidelberg (2009), http://www.springerlink.com/
content/4h97170251842644/

3. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)
4. Kaltenbrunner, M., Bovermann, T., Bencina, R., Costanza, E.: Tuio - a protocol for

table based tangible user interfaces. In: Proceedings of the 6th International Work-
shop on Gesture in Human-Computer Interaction and Simulation (GW 2005). Vannes,
France (2005)

5. Nienhuys, H.W., Nieuwenhuizen, J.: LilyPond, a system for automated music engrav-
ing. In: Proceedings of the XIV Colloquium on Musical Informatics (XIV CIM 2003).
Firenze, Italy (May 2003)

6. Sato, T.: A glimpse of symbolic-statistical modeling by prism. Journal of Intelligent
Information Systems 31, 161–176 (2008)

7. Simona Vlad, R.V.C., Nicu, A.I.: Optical multi-touch system for patient monitoring
and medical data analysis. In: International Conference on Advancements of Medicine
and Health Care through Technology. pp. 279–282. Springer-Verlag, Berlin, Heidelberg
(2009)

8. Sneyers, J., De Schreye, D.: APOPCALEAPS: Automatic music generation with
CHRiSM. In: Downie, J., Veltkamp, R. (eds.) 11th International Society for Music
Information Retrieval Conference (ISMIR 2010). Utrecht, The Netherlands (August
2010), submitted

9. Sneyers, J., Meert, W., Vennekens, J., Kameya, Y., Sato, T.: CHR(PRISM)-based
probabilistic logic learning. In: Hermenegildo, M., Niemelä, I., Schaub, T. (eds.) 26th
International Conference on Logic Programming. Edinburgh, UK (July 2010)

10. Strijkers, R., Muller, L., Cristea, M., Belleman, R., de Laat, C., Sloot, P., Meijer, R.:
Interactive control over a programmable computer network using a multi-touch sur-
face. In: Computational Science - ICCS 2009. Lecture Notes in Computer Science, vol.
5545, pp. 719–728. Springer Berlin / Heidelberg (2009), http://www.springerlink.
com/content/p2r7672p383gh124/

6

http://www.springerlink.com/content/4h97170251842644/
http://www.springerlink.com/content/4h97170251842644/
http://www.springerlink.com/content/p2r7672p383gh124/
http://www.springerlink.com/content/p2r7672p383gh124/

