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Abstract. Dynamic Programming (DP) is an important technique used
in solving optimization problems. A close correspondence between DP
recurrences and Constraint Handling Rules with rule priorities (CHRrp)
yields natural implementations of DP problems in CHRrp. In this work,
we evaluate different implementation techniques with respect to their
runtime. From our results we derive a set of guidelines for implementing
arbitrary DP problems in CHRrp.

1 Introduction

Constraint Handling Rules (CHR) ([1]) is a simple high-level programming lan-
guage that is embedded in a host language. It combines the elements of Con-
straint (Logic) Programming and rule-based languages ([2]). It was found for
the purpose of embedding user-defined constraint solvers in the host language.
It evolved through the years to become a more powerful general-purpose pro-
gramming language ([1]).

An extension of CHR was introduced called Constraint Handling Rules with
Rule Priorities (CHRrp) ([3]). It gives CHR rules priorities to control the ex-
ecution order. It simplifies implementing rule-based algorithms because these
algorithms often require some rules to be tried before others for efficiency or
correctness reasons ([4]).

An important conclusion, reached by [5], implies that “every algorithm can be
implemented in CHR with the best-known time and space complexity”. Another
conclusion, reached by [6], states that the efficiency of the CHRrp implementation
comes close to the state-of-the-art K.U.Leuven CHR system (and sometimes even
surpasses it).

Dynamic Programming (DP) is an important technique used in solving op-
timization problems. DP follows the optimal substructure property where a so-
lution of a large problem contains within it optimal solutions to smaller sub-
problems. There is correspondence between Dynamic Programming recurrences
and CHRrp rules that we will exploit in this paper.



In this paper, an implementation to Matrix Chain Multiplication DP prob-
lem is introduced and evaluated. Different modifications to the previous problem
are proposed and evaluated in order to improve the runtime. Other modifications
are tested on four DP problems which are Knapsack ([7]), Edit Distance ([8]),
Viterbi ([9]), CYK ([10]). Then guidelines are proposed that help in implement-
ing DP problems in CHRrp. These guidelines are formulated based on the eval-
uations done on the five DP problems.

2 Preliminaries

This section reviews CHRrp syntax and semantics. For a more thorough intro-
duction, see [3] or [6]. This section also reviews dynamic programming. For a
more thorough introduction, see [11].

2.1 Constraint Handling Rules with Rule Priorities

Syntax. A constraint is of the form c(t1, ..., tn) with arity n. Each tk is a
value defined by the host language. There are two types of constraints: built-
in constraints and CHR constraints. The host language provides data types and
pre-defined constraints which are called the built-in constraints. CHR constraints
are also called user-defined constraints and are solved by the CHRrp program.

CHRrp programs consist of three types of rules shown below.

Simplification r @ Hr <=> g | B pragma priority(p).
Propagation r @ Hk ==> g | B pragma priority(p).
Simpagation r @ Hk \ Hr <=> g | B pragma priority(p).

where r represents an optional rule name. Hr and Hk are called heads of the
rule and represent one or more CHR constraints. g is called the guard of the
rule and it is zero or more built-in constraints that must be satisfied to apply
the rule. B is the body of the rule. It’s a sequence of CHR constraints and
built-in constraints. p can be a static number or an arithmetic expression. The
variables in the arithmetic expression can only be from the variables in the head
constraints of the corresponding rule.

Semantics. A constraint store is a multiset of constraints. Initially, the store
starts with the constraints of the initial query. Then, the rules of the CHRrp

program are applied, which manipulates the contents of the constraint store. A
rule is applied if its head constraints are in the constraint store and the rule’s
guard holds. The body of the applied rule is added to the constraint store.

The difference between the three rules is in the way the program deals with
the head constraints if the rule fires. In simplification rules, head constraints are
removed from the constraint store. In propagation rules, head constraints are
kept in the constraint store. Simpagation rules combine the actions of propaga-
tion and simplification rules: head constraints before the backslash are kept in
the constraint store, and head constraints after the backslash are removed from
the constraint store ([1]).



Join Ordering and Indexing. Finding partner constraints to match a rule
is crucial in CHR. Join ordering is the order in which these partner constraints
are looked up. The time complexity for that operation should be minimized
to obtain the optimal complexity. The time complexity of a program depends
on the join ordering ([1]). Therefore, the lookup of partner constraints should
be efficient. Indexing is an important approach that decrease the lookup time.
There are several approaches for indexing. The traditional one uses attributed
variables for constant lookup time ([1]).

2.2 Dynamic Programming

Dynamic programming (DP) is an important technique used in solving many op-
timization problems. Optimization problems are the kind of problems that have
several solutions but one of them is better than the others. The idea of dynamic
programming is that some intermediate computation may be repeated due to
overlapping sub-problems. Therefore, intermediate results are stored and reused
when necessary. DP exhibits the optimal substructure property. A problem ex-
hibits this property when the optimal solution of the large problem contains
within it optimal solutions of its smaller sub-problems ([11]).

Matrix Chain Multiplication. It is the problem of multiplying n matri-
ces. The order by which matrices are multiplied affects the number of scalar
multiplications. To multiply three matrices, there are two ways: (A1A2)A3 and
A1(A2A3).

Assume A1 has dimensions 10×100, A2 has dimensions 100×5, and A3 has di-
mensions 5×50. The first option will result in 10× 100× 5︸ ︷︷ ︸

A1×A2

+10× 5× 50︸ ︷︷ ︸
(A1A2)×A3

= 7500

multiplications. The second option will result in 100× 5× 50︸ ︷︷ ︸
A2×A3

+10× 100× 50︸ ︷︷ ︸
A1×(A2A3)

=

75000.
DP can be used to find the optimal number of scalar multiplications to mul-

tiply a chain of matrices. Then the optimal order can be calculated. The number
of scalar multiplications can be computed using (1).

m(i, j) =

{
0 i = j
mini<k≤j{m(i, k) +m(k + 1, j) + pi−1pkpj} i < j

(1)

where m(i, j) represents the cost of multiplying matrices from matrix i to matrix
j, pi the second dimension of matrix i, and p0 the first dimension of the first
matrix3.

The optimal number of scalar multiplications can be computed by calculating
m(1, n), where n is the number of matrices to multiply. The DP algorithm runs
in O(n3) time complexity and O(n2) space complexity ([11]).

3 The first dimension of matrix i must be equal to the second dimension of matrix
i− 1



3 Implementation

In this section, an implementation of the Matrix Chain Multiplication is intro-
duced.

Constraint p/2 represents the matrices dimensions. The first attribute is the
index, and the second one is the dimension. It resembles the pi in (1). The number
of matrices is stored in numOfMatrices/1 constraint as its only attribute.

The constraint that holds intermediate calculated values is called cell/3.
The first and second attributes are the same as the first and second arguments
of (1). The third one represents the value calculated.

The recursive part in the recurrence is represented as a propagation rule at
priority two.

cell(I,K,C1) , cell(K1,J,C2) , p(I0,P1) , p(K,P2) , p(J,P3) ,

currentSize(D) ==> K1=:=K+1 , D=:=J-I , I0=:=I-1 |

R is C1+C2+P1*P2*P3 , cell(I,J,R) pragma priority(2).

The head constraints of the rule (without currentsize(D) constraint) re-
sembles the right hand side of (1). The body of the rule resembles the left hand
side of (1).

Constraints matched with the propagation rules that represent the recur-
rence should contain optimal values. Using a non-optimal value will add to the
runtime. Therefore, a new constraint (currentSize/1) is defined to ensure that
the constraints matched are optimal. The attribute of the constraint represents
the size of sub-problems that can be solved by the propagation rule. The at-
tribute starts with the smallest possible sub-problem and is incremented until
the whole problem is solved.

m(i, j) calculates the number of scalar multiplications to multiply matrix i
to matrix j which are j−i matrices. This difference is an indication to the size of
the problem. The problem m(i, j) depends on sub-problems m(i, k), m(k+1, j),
where k varies from i+ 1 to j. This implies that both sub-problems are smaller
in size than the m(i, j) problem since k − i ≤ j − i and j − k + 1 ≤ j − i.

The attribute of the currentSize constraint is incremented at priority three
after all cell constraints from the propagation rules are generated.

Initially, currentSize’s attribute is set to zero. This satisfies the base case of
the recurrence when j− i = 0. At the base case, m(i, j) is set to zero. Therefore,
cell(I,I,0) constraints are added to the store.

Selecting the optimal choice (minimum number of scalar multiplications) is
done by a simpagation rule at the highest priority. After the program finishes
computations, the result will be C in the constraint cell(1,X,C), where X is the
number of matrices.

4 Evaluation

In this section, the initial implementation of the Matrix Chain Multiplication
is evaluated. Furthermore, two modifications to the initial implementation are



proposed to improve the runtime. These modifications are then evaluated to de-
termine their effect. Two other modifications are evaluated on Knapsack’s prob-
lem implementation. The evaluations are performed on a Dual-Core processor
2.0 GHz machine using SWI-Prolog 5.6.55.

4.1 Initial Implementation

Hypothesis. The Matrix Chain Multiplication implementation runs in O(n3)

Test. The implementation is tested on 20 sizes of the problem. For each size, ten
trials are randomly generated. Average time between the ten trials is calculated
and plotted. Smallest test case is two matrices and the increment between each
set and the next is one matrix. The generated graph is shown in Fig.1.
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Fig. 1. Matrix Chain Multiplication in CHRrp.

Result. The generated graph can be approximated by a polynomial of 5th order.
Therefore, a factor of n2 is added to the runtime.

4.2 Replacing Guards with Constraints

Guards are not indexed. Replacing the guards of the form A=:="arithmetic

expression" with constraints can lead to indexing of these constraints and
improving the runtime in finding the matching partner constraints.

Hypothesis. Replacing guards from the propagation rules that corresponds to
the recurrence with constraints improves the runtime.



Test. Test cases from the previous benchmark are used in this test case to
compare the results. The generated graph is plotted against the previous graph
in Fig.2
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Fig. 2. Guards vs. Guard constraints.

Result. Runtime increased by a factor ranging from 1.1 to 1.2. Therefore, the
hypothesis is not true.

4.3 Editing Order of Constraints

The order of occurrence of constraints in a rule can influence the order of match-
ing partner constraints. If the compiler matches partner constraints in the order
as they appear in the rule, then there will be more than a constant factor in the
complexity to find the matching constraints. Consider the following example:

x(I) , y(J) , z(I,J) <=> ...

where the number of y constraints is big relative to x and z constraints.
If x(I) is the constraint that tries to find partner constraints, then it will

try to match y(J). Therefore, it will try several y(J) till it reaches the one that
matches with z(I,J). Therefore, in the worst case, the number of y constraints
will be added to runtime.

The factor that increased in the runtime in the previous implementation can
be because of the join ordering where the number of head constraints increased
and they are not ordered. Therefore, the order of constraints in the recurrence
rules is edited so that the rule starts with the currentSize constraint, followed
by a constraint that has the same attribute of the currentSize constraint, fol-
lowed by a constraint that have common attributes with the previous constraints
and so on.



Hypothesis. Ordering constraints in the recurrence rules improves the runtime.

Test. This modification is tested on the implementation introduced in sub-
section 4.2 because this implementation contains constraints that share many
attributes where indexing will be applied. Therefore, by applying this modifica-
tion to that implementation, the difference in runtime will be observable. The
generated graph is plotted in Fig.3
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Fig. 3. Ordered constraints in Matrix Chain Multiplication.

Results. The runtime is improved by a factor of n2. Therefore, the hypothesis
is true.

4.4 Other Evaluations

Two modifications are evaluated on the Knapsack problem. The first one is
typing constraints’ attributes to ground. This modification improved the runtime
by a factor nearly equal to 1.2. The second modification is typing constraints’
attribute to integer. This modification resulted in the same runtime as typing
constraints to ground.4

5 Implementing DP problems in CHRrp

In this section, guidelines are introduced that help in implementing DP recur-
rences in CHRrp.

4 Generated graphs are shown in Appendix A.



Guideline 1. DP depends on reusing previously calculated values. Therefore,
constraint cell(+,+,+) is defined to store these values. The first two attributes
represent the arguments of the DP recurrence. The last attribute represents the
value calculated. Typing constraint’s attribute to ground improved runtime as
observed in subsection 4.4

Guideline 2. Optimization Rule is defined to make the optimal choice and
remove the non-optimal constraint from the constraint store.

It is defined at priority one with a simpagation rule to drop the non-optimal
constraint. Some DP problems do not have an optimization rule. The CYK ([10])
problem is such an example. The optimization rule looks like :

optimizationRule @ cell(X,Y,Z1) \ cell(X,Y,Z2) <=>

"optimization choice" | true pragma priority(1).

Guideline 3. Recurrence Rules are defined to perform the actual computation
of the DP recurrence and generate cell constraints.

The recurrence rules are propagation rules. This ensures that previously calcu-
lated results remain in the store to be further used. They are defined at priority
two. Their head constraints represent the right hand side of the recurrence, while
their body represent the left hand side of the recurrence.

Due to the uncertainty of the order of application of the recurrence rules (since
all recurrence rules have the same priority), a non-optimal constraint of a smaller
sub-problem could be used to solve a bigger one before optimizing the smaller
sub-problem. That would cause to use non-optimal values which would lead to
unnecessary computations and adds to the runtime.

Hence, explicit control of the order in which rules are fired is used to ensure
that the values used are optimal.

Guideline 4. A currentSize(+) constraint is defined to enforce explicit con-
trol of the order in which rules are fired.

Its attribute represents the size of the sub-problems that can be solved by the
recurrence rules and hence, is problem specific. Not all problems require that
kind of control. For a problem like the CYK ([10]) problem, there is no opti-
mal choice made. Therefore, currentSize constraint is not used for the CYK
implementation.

The attribute of the currentSize constraint is incremented when all the sub-
problems of that size are solved. It is incremented at priority 3 with a simpagation
rule of the form :

expand @ maximum(X) \ currentSize(Y) <=> Y<=X |

NextY is Y+1 , currentSize(NextY) pragma priority(3).

where maximum’s attribute represents the maximum size of the problem.



Guideline 5. If the recurrence rule requires a guard of the form A=:="arithmetic

expression", then replace it with a constraint that satisfies it.

cell(A,B,X) , cell(C,D,Y) ==> A=:=B+C | ...

is transformed to :

cell(A,B,X) , cell(C,D,Y) , guardSum(A,B,C) ==> ...

This is done, because when the compiler indexes the constraints it does not
include the guards in the indexing. By replacing it with a constraint, it is indexed.

The guardSum constraints are added to the store when constraints they will
depend on are added to the store. The overhead of generating the guardSum con-
straints is linear in the number of constraints they depend on because for each
constraint generated there is at least one constraint that matches it. Hence,
generating the constraints introduces a constant factor only to the overall com-
plexity.

It was observed in subsection 4.2 that this modification increased the runtime.
However, ordering the constraints after applying this guideline improved the
runtime by more than a constant factor.

Guideline 6. The order of head constraints within a rule is significant. The
compiler tries to match constraints in the order they appear in the rule as ob-
served in subsection 4.3. Hence, to make use of indexing of constraints, the recur-
rence rule starts with the currentSize constraint, followed by a constraint that
has the same attribute of the currentSize constraint, followed by a constraint
that has common attributes with the previous constraint, and so on.

Guideline 7. Result Rules are defined to get the result and print it.

They are defined at priorities four and five. Two priorities are used because
the result of some DP problems is the maximum or minimum of several values.
Therefore, the value is calculated at priority four and printed at priority five.

These guidelines are applied on the five DP problems and then evaluated. All
generated graphs could be approximated to the complexities of the corresponding
problems5.

6 Conclusion

Five DP problems were implemented then evaluated. Modifications were pro-
posed and evaluated in order to improve the runtime. Then, guidelines following
the five implementations and modifications are introduced that helps in imple-
menting DP recurrences in CHRrp.

5 Generated graphs are shown Appendix B



Future Work. Guidelines introduced are tested on DP problems that have a
recurrence consisting of two attributes only. Tests should be done to see if these
guidelines can be extended on DP problems that have recurrences consisting of
three or more attributes.

currentSize constraint is problem specific. However, it is related to the
recurrence formulation. The size of the implemented problem was defined by
reasoning but no direct mapping from the recurrence was introduced. A possible
research is to find the attributes that control the size of the problem directly
from the recurrence.

Space complexity was not investigated in this paper. Modifications to the
implementations can be researched to reach the optimal theoretical space com-
plexity.

Theoretical complexity analysis can be done to prove that this formulation
is in the optimal time complexity.

Related Work. A Viterbi implementation was proposed by [12] and bench-
marked. This implementation was then extended and optimized to achieve the
theoretical best time complexity. This paper was published so recently that com-
parisons between our results and their results could not be done.
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A Knapsack Modifications

A.1 Ground Typing versus Not Typing

Hypothesis Typing variables to ground is more efficient.

Test This optimization is tested on the Knapsack problem. In definition of
constraints, constraint/3 is transformed to constraint(+,+,+). For example,
cell/3 is transformed to cell(+,+,+).
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Fig. 4. Typed vs. non-typed.

Results Typing is indeed more efficient by a constant factor approximately
equal 1.2.

A.2 Typing Ground versus Typing Integers

It’s possible to specify the type of variable to be natural integer. This can give
more information to the compiler to do more optimization.

Hypothesis Typing integers is more efficient.

Test This optimization is tested on the Knapsack problem. In the definition of
constraints, constraint(+,+,+) is transformed to constraint(+int,+int,+int).
For example, cell(+,+,+) is transformed to cell(+int,+int,+int). This trans-
formation is done for all constraints that have integer attributes.
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Fig. 5. Ground-typed vs. integer-typed.

Result They produced the same performance.

B Final Implementations

In this section, final implementations of the five DP problems are evaluated after
applying the guidelines.
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Fig. 10. Viterbi with varying number of states.
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Fig. 11. Viterbi with varying sequence length in sparse transition matrix.
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Fig. 12. Viterbi with varying sequence length in complete transition matrix.
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Fig. 13. Viterbi with varying the degree of sparsity of the transition matrix.
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