
Graph Transformation Systems in CHR

Frank Raiser

Faculty of Engineering and Computer Sciences, University of Ulm, Germany
Frank.Raiser@uni-ulm.de

Abstract. In this paper we show it is possible to embed graph trans-
formation systems (GTS) soundly and completely in constraint handling
rules (CHR). We suggest an encoding for the graph production rules and
we investigate its soundness and completeness by ensuring equivalence
of rule applicability and results. We furthermore compare the notion of
confluence in both systems and show how to adjust a standard CHR
confluence check to work for an embedded GTS.

1 Introduction

Constraint handling rules (CHR) [1] allow for rapid prototyping of constraint-
based algorithms. Besides constraint reasoning, CHR have been used for various
tasks including theorem proving, parsing, and multi-set rewriting. In this work
we show that CHR also provide the means for concise implementations of graph
transformations.

Graph transformation systems are used to describe complex structures and
systems in a concise, readable, and easily understandable way. They have ap-
plications ranging from implementations of programming languages over model
transformations to graph based models of computation [2–4]. The principal idea
of a graph transformation is to apply a production rule to a graph. A part of
the so-called host graph has to be matched to the rule and is then modified
accordingly.

While there are several specialized tools available for performing graph trans-
formations, it is usually cumbersome to combine them with general-purpose
programming languages. Following the tradition of using CHR for rapid proto-
typing, we investigate the necessities for implementing a graph transformation
system with CHR. We show that CHR are indeed a suitable choice for proto-
typing graph transformations, as every rule of a graph transformation system
can be directly and intuitively translated into a corresponding CHR rule already
yielding an executable graph transformation system. No effort has to be invested
into creating an underlying transformation engine, as the CHR implementation
in combination with an advantageous encoding of the rules is sufficient.

In order to arrive at an intuitive and concise encoding of graph production
rules with CHR, we make restrictions to the graph transformation systems. These
restrictions consist in requiring injective matchings and inclusions in the graph
production rules. However, these are common restrictions often found in practical
applications of graph transformation systems [4, 5].

From a theoretical point of view we investigate the soundness and complete-
ness of our proposed encoding by ensuring equivalence of applicability and re-
sults. Thus we ensure that such a CHR rule is applicable if and only if the
corresponding graph production rule is applicable. We further show that apply-
ing a constraint handling rule in this context results in a state encoding the
graph obtained by applying the corresponding graph production rule in a graph
transformation system and vice versa.

Finally, we compare the notion of confluence in both systems. We particularly
concentrate on the investigation of critical pairs which is the basis of confluence
checking. A slightly changed definition of CHR confluence is presented that al-
lows the application of existing confluence checkers to a graph transformation
system embedded in CHR.

This work is divided into six sections: We begin with the introduction of
the necessary notions of graph transformation systems and CHR in Section 2.
Section 3 then presents our proposed encoding of a GTS in CHR, the properties
of which we analyze in Section 4. Section 5 compares the notion of confluence in
both systems before we conclude in Section 6.

2 Preliminaries

In this section we introduce the required formalisms for graph transformation
systems and constraint handling rules.

2.1 Graph Transformation System (GTS)

The following definitions for graphs and graph transformation systems have been
adapted from [2].

Definition 1 (type graph, typed graph). A graph G = (V,E, src, tgt) con-
sists of a set V of nodes, a set E of edges and two morphisms src, tgt : E → V
specifying source and target of an edge, respectively. A type graph TG is a graph
with unique labels for all nodes and edges.

For the purpose of simplicity, we avoid an additional label morphism in favor
of identifying variable names with their labels. For multiple graphs we refer to
the node set V of a graph G as VG and analogously for edge sets and the src, tgt
morphisms. We further define the degree of a node as deg : V → N, v 7→ #{e ∈
E | src(e) = v}+ #{e ∈ E | tgt(e) = v}.

A typed graph G is a tuple (V,E, src, tgt, type, TG) where (V,E, src, tgt) is
a graph, TG a type graph, and type a morphism with type = (typeV , typeE) and
typeV : V → TGV , typeE : E → TGE. The type morphism is a graph morphism,
therefore it has to satisfy the following condition: ∀e ∈ E : typeV (src(e)) =
srcTG(typeE(e)) ∧ typeV (tgt(e)) = tgtTG(typeE(e))

Example 1. Figure 1 shows an example for a type graph and a corresponding
typed graph. The type graph is used to define two types of nodes: processes and
resources. Furthermore it allows use edges going from processes to resources.

The typed graph is one possible instance of a graph modelling processes and
resources being used by those processes. The type morphism is represented by
the dotted lines, showing how the nodes are typed as processes or resources,
respectively.

type graph

use

typed graph

type morphism

Process Resource

Fig. 1. Type graph and typed graph

Definition 2 (GTS, rule). A Graph Transformation System (GTS) is a tuple
consisting of a type graph and a set of graph production rules. A graph production
rule – also simply called rule if the context is clear – is a tuple p = (L l← K

r→
R) of graphs with inclusion morphisms l : K → L and r : K → R.

We distinguish two kinds of typed graphs: rule graphs and host graphs. Rule
graphs are the graphs L,K, R of a graph production rule p and host graphs
are graphs to which the graph production rules can be applied. We furthermore
make use of graph transformations based on the double-pushout approach as
defined in [2]. Most notably, we require a so-called match morphism m : L→ G
to apply a rule p to a typed host graph G. The transformation yielding the typed
graph H is written as G

p,m
=⇒ H. For our work, we restrict the possible match

morphisms to injective morphisms which is a common restriction [4, 5].
A graph production rule p can only be applied to a host graph G if the

gluing condition [2] is satisfied, which in our case of injective match morphisms
is simplified such that p can be applied as long as there are no dangling edges.
Section 3.1 explains the notion of dangling edges and how they are handled in
our encoding.

As an example, we provide an implementation for recognizing cyclic lists,
which is presented in [4].

Example 2. The GTS for recognizing cyclic lists consists of two rules depicted
in Figure 2. The rule unlink shortens a list consisting of three linearly connected

1 2 1 2 1 2

L

L
1 1 1

unlink:

twoloop:

K R

K R

Fig. 2. Graph transformation system for recognizing cyclic lists

nodes by removing the intermediate node. For a cyclic list, this rule can be
applied up to the point where only two nodes are left. In that case, the rule
twoloop transforms those two nodes into the graph consisting of a single node
with a loop. See [4] for a more thorough discussion of this example.

Note that we use a shorthand notation in Figure 2 which only shows the
morphisms l and r implicitly by the labels of the nodes which are mapped onto
each other. Nodes and edges which are removed or added in the graphs L or R
are not labelled, as there is no node or edge in K which is mapped to them.

2.2 Constraint Handling Rules (CHR)

This section presents the syntax and operational semantics of Constraint Han-
dling Rules [1, 6]. Constraints are first-order predicates which we separate into
built-in constraints and user-defined constraints. Built-in constraints are pro-
vided by the constraint solver while user-defined constraints are defined by a
CHR program. For our purpose we only need a subset of CHR, namely simpli-
fication rules. Simplification rules are of the form

Rulename @ H1, . . . ,Hi ⇔ G1, . . . , Gj | B1, . . . , Bk

where Rulename is a unique identifier of a rule, the head H = H1, . . . ,Hi is a
non-empty conjunction of user-defined constraints, the guard G = G1, . . . , Gj is a
conjunction of built-in constraints and the body B = B1, . . . , Bk is a conjunction
of built-in and user-defined constraints.

The operational semantics of a simplification rule is based on an underlying
constraint theory CT for the built-in constraints and a state, which is a pair
〈G, C〉 where G is a goal, i.e. a conjunction of user-defined and built-in con-
straints, and C is a (built-in) constraint [6]. A simplification rule of the form
H ⇔ G | B is applicable to a state 〈E ∧G, C〉 if CT |= ∀(C → ∃x(H .= E ∧G))
where x are the variables in H. We define the following state transition for the
application: 〈E ∧G, C〉 7→ 〈B ∧G, (H .= E) ∧ C ∧G〉.

For the remainder of this work, we can further restrict these rules, as there is
no need for the guard constraints, such that a CHR simplification rule is simply
of the form

Rulename @ H ⇔ B.

3 Representation of Graphs in CHR

In order to embed a GTS in CHR, we have to encode the available graph produc-
tion rules as simplification rules and provide a conjunction of goal constraints
corresponding to the host graph. To this end we provide a bijective correspon-
dence between graphs and their representation through CHR constraints given
by the following constructions.

At first we have to find out what constraints will be needed for encoding the
rules and host graph. At this point we require the GTS to be typed, as we can
directly defer the necessary constraints from the corresponding type graph as
explained in Definition 3. Note that this is a very weak restriction though, as
every untyped graph can be typed over the trivial type graph consisting of a
single node with a loop.

Definition 3 (type graph encoding). For a type graph TG we define the
following constraints to encode graphs typed over TG:

– Introduce a constraint degree /2.
– ∀v ∈ VTG introduce a constraint v/1.
– ∀e ∈ ETG introduce a constraint e/3.

We assume all nodes and edges of the type graph TG to be uniquely labelled
such that the introduced constraints have unique names as well. The degree /2
constraint is a special constraint we require to be able to check for dangling
edges as is explained in Section 3.1.

Definition 4 (typed graph encoding). A typed graph G based on a type
graph TG is encoded with constraints as follows:

– ∀v ∈ VG with type(v) = t add the constraint t(T) with T being a new variable.
– ∀e ∈ EG with type(e) = t, src(e) = v1, tgt(e) = v2, type(v1) = t′, type(v2) =

t′′ and previously created constraints t′(T 1), t′′(T 2) add another constraint
t(E, T 1, T 2) with E being a new variable.

– If G is a typed host graph the node degrees are known and thus ∀v ∈ VG with
deg(v) = k, type(v) = t which add t(T) we also add degree(T, k).

A typed rule graph G encoded like this is denoted as encode(G).

Example 3 (cont). For our example of the GTS for recognizing cyclic lists we
assume the trivial type graph consisting only of a node and a loop. There-
fore every node in the typed graph has the same type, just like every edge has
the same type. Based on this type graph we need the following constraints:
degree /2,node /1, edge /3.

A host graph which contains a simple cyclic list consisting of exactly two
nodes is encoded as follows:
node(N1) ∧ node(N2) ∧ edge(E1, N1, N2) ∧ edge(E2, N2, N1) ∧ degree(N1, 2) ∧
degree(N2, 2).

We can now encode a complete graph production rule based on these defini-
tions. There are several possible ways to do this in CHR. However, we restrict
ourselves to a single simplification rule here, as it is a very intuitive encoding
which is useful in the upcoming proofs. The remaining results of this paper
can also be transferred to different CHR representations like a simpagation rule
approach.

Definition 5 (GTS rule in CHR). A graph production rule p = (L l← K
r→

R) from a GTS is translated into a CHR simplification rule of the form p @ H ⇔
B with H,B being conjunctions of constraints as follows:

– H = encode(L) ∧D1

– B = encode(R) ∧D2

– D1 and D2 being conjunctions of degree constraints as follows:
• ∀v ∈ L \K with deg(v) = k, type(v) = t, and t(T) ∈ encode(L) we have

degree(T, k) ∈ D1.
• ∀v ∈ K let n = #{e ∈ EL | src(e) = v ∨ tgt(e) = v}, m = #{e ∈

ER | src(e) = v ∨ tgt(e) = v}, type(v) = t, t(T) ∈ encode(K) then
degree(T,D) ∈ D1 with D being an unused variable. Further add the
constraint degree(T,D+m−n) ∈ D2.

• ∀v ∈ R\K with deg(v) = k, type(v) = t, t(T) ∈ C2 let degree(T, k) ∈ D2.

We further require the encoding of K found in encode(L) and encode(R) to
share the same variables for the same nodes and edges as this implicitly models
the inclusion morphisms analogously to the way we use node labels in Figure 2.

A rule encoded like this is denoted as code(p).

Example 4 (cont). As an example, consider the second rule from our example
GTS, which reduces two cyclic nodes to a single node with a loop. Its encoding
as a CHR simplification rule is given below:
twoloop @ node(N1),node(N2),

edge(E1, N1, N2), edge(E2, N2, N1),
degree(N2, 2),degree(N1, D1)
⇔
node(N1), edge(E,N1, N1),
degree(N1, D1+2−2).

3.1 On Dangling Edges

A graph production rule can only be applied to a host graph when it is guaran-
teed that the result is consistent. While in the most general case of graph trans-
formations there also exists an identification problem [2], our injective matchings
allow for only one kind of inconsistency: When a node gets deleted by a rule, the
corresponding node in the host graph may have edges adjacent to it which are
not explicitly given in the rule. In such a case, the remaining edge would be left
dangling as it is no longer adjacent to two nodes. Therefore this situation has to
be avoided and before a rule is applied to a host graph, we first have to ensure
that there are no dangling edges according to the following definition:

Definition 6 (dangling edge). A dangling edge is an edge e ∈ EG \m(EL)
such that there is a node v ∈ VL \ VK with m(v) = src(e) ∨m(v) = tgt(e).

The degree /2 constraints introduced earlier are our means of detecting dan-
gling edges: Let e ∈ EG be a dangling edge which is adjacent to vG ∈ VG, such
that for v ∈ VL \ VK : m(v) = vG. Due to Definition 5, the corresponding rule
includes a degree(T, k) constraint for the node v with k = deg(v). This means
that there are k edges adjacent to the node v in the rule graph. When match-
ing this rule graph injectively to the host graph G we need to identify each of
these edges with an edge in EG adjacent to m(v) = vG. By the definition of
a dangling edge, the edge e is not among those k edges as e ∈ EG \ m(EL).
Therefore, we have deg(vG) > k. As G is a host graph and thus the degrees of
nodes are known, there is a corresponding degree(T ′, l) constraint with l > k for
the node vG. Here it can be seen clearly that a match between degree(T ′, l) and
degree(T, k) is impossible due to l > k and therefore the rule will not be applied
as the dangling edge condition is violated.

Note that this check is only relevant to nodes which get removed by the
graph production rule. If a node is in VK , a dangling edge is not possible and
thus for those nodes the rule contains degree(T,D) constraints which can always
be matched due to D being a variable.

Example 5 (cont). Consider the twoloop rule given in Example 4 along with the
following encoded host graph:
node(A)∧node(B)∧node(C)∧edge(E1, A, B)∧edge(E2, B, A)∧edge(E3, B, C)∧
degree(A, 2) ∧ degree(B, 3) ∧ degree(C, 1)
Applying the twoloop rule to this graph to remove the node B would leave the
edge E3 going from B to C dangling. However, this is avoided as the encoding
of the twoloop rule contains the following constraint in its head: degree(N2, 2).
Only a node with a degree of exactly 2 can thus be removed by this rule, which
rules out that the node B in the above host graph is removed. Nevertheless, the
rule can be applied with N2

.= A as the node A has the necessary degree of 2.

3.2 Runtime Performance

After embedding graph transformations in CHR we are interested in the runtime
performance needed to execute these transformations. In general the perfomance
of a CHR program is determined by the time needed to find an applicable rule
and the time needed to apply that rule.

As we have a one-to-one correspondence of CHR rules and graph transfor-
mation rules we know that executing D graph transformation steps is equal
to applying D CHR rules in the corresponding CHR program. Given a host
graph G = (V,E, src, tgt) its encoding in CHR corresponding to Definition 4
uses 2|V |+ |E| constraints. In general the search for an applicable rule needs to
consider all possible combinations of these constraints for all constraints appear-
ing in the head of a rule. Using the upper bound from [7] we get the runtime
complexity as O(D ·

∑
i

cni
max · (OHi +OGi)+(OCi +OBi)) where the sum iterates

over all rules of the program, cmax is the maximal number of constraints present
at any time during the computation, ni is the number of head constraints in
rule i, OHi is the time needed to unify the chosen goal constraints with the head
constraints, OGi is the time needed to verify the guard of the rule, OCi is the
time needed for adding the constraints on the right-hand side of the rule, and
OBi

is the time needed to remove the constraints on the left-hand side of the
rule.

Note that in our embedding, CHR rules corresponding to graph transforma-
tion rules require no guards and thus OGi = 0∀i. Furthermore the time needed
to add and remove constraints can be considered constant. For a worst-case
analysis we can furthermore replace ni with the n = nj of the rule j with
the maximal number of head constraints. This yields a runtime complexity of
O(D ·

∑
i

cn
max ·OHi

). The time required for unification with the head constraints

can also be approximated by the rule with the largest number of head constraints.
With m being the number of rules in the program we then get the complexity
O(D ·m · cn

max ·OHn
).

Better bounds can be deferred by taking a closer look at the embedded GTS.
For example if all rules have the property of not extending the graph’s size,
i.e. rules remove more edges and nodes than adding them, then the number of
constraints is bounded by the number c0 of initial constraints which encode the
original host graph. Therefore the bound for such a GTS isO(D·m·cn

0 ·OHn). Also
note that actual CHR implementations use sophisticated methods to determine
constraints for rule applications and thus the actual runtime may be considerably
less.

Example 6. Consider the example GTS for recognizing cyclic lists from Figure 2.
As it contains two rules which both remove a node and reduce the number of
edges by one it is clear that the number of goal constraints monotonly decreases
during execution. Therefore cmax = c0 = 2|V |+ |E|, i.e. the maximal number of
constraints in a computation is bounded by the original host graph’s encoding.
Furthermore the number of rule applications is restricted by the number of nodes
in the host graph, such that D = |V |. And as the two CHR rules are known we
get m = 2 and n = max

i
ni = max{8, 6} = 8. Therefore runtime complexity is

bounded by: O(|V | ·m · (c0)8 ·OH1). As c0 = 2|V |+ |E| can be approximated by
|V |2 we get O(2|V | · (|V |2)8 · OH1) = O(|V |17 · OH1). Note that this is a crude
approximation and in practical settings runtime is much better depending on
the chosen CHR implementation.

4 Soundness and Completeness

After introducing our encoding for a GTS in CHR, we now investigate the prop-
erties of this encoding. First of all, we show that the CHR rules created for
a graph production rule are applicable if and only if the corresponding graph
production rule is applicable. For a GTS one of the applicable rules is chosen

nondeterministically. We get this exact behavior when using the standard se-
mantics of CHR.

Lemma 1 (CHR applicability). If code(p) is applicable, so is the correspond-
ing graph production rule p = (L l← K

r→ R) .

Proof. If the CHR rule is applicable, then there exist matching constraints for H
in the goal store. As no functions are used for the constraints in the goal store
the matching only requires substitutions of the form [T/c] or [T/T ′] for variables
T, T ′ and constant c.

This CHR matching implies a match morphism m for the graph production
rule: Every node v ∈ VL (resp. edge e ∈ EL) is represented as a constraint in
H and there is a matching constraint C ′ which corresponds to a node v′ ∈ VG

(resp. edge e′ ∈ EG) such that we can define m(v) = v′ (resp. m(e) = e′). Due to
the multi-set semantics of CHR, different nodes in VG are encoded by different
constraints and no single constraint can be matched to multiple head constraints.
This property of CHR guarantees that m is injective.

It remains to be shown that there are no dangling edges. Let us therefore
assume that there is a dangling edge, i.e. there exists an edge e ∈ EG \m(EL)
with src(e) = m(v) ∨ tgt(e) = m(v) for a v ∈ L \K.

As v ∈ L \K, a constraint degree(T, k) is present in H according to Def. 5.
Due to the CHR rule being applicable, this requires a matching constraint in the
goal store. Therefore the node m(v) has degree k as well. Due to m being an
injective graph morphism, however, every edge adjacent to v is mapped to an
edge adjacent to m(v). Therefore the dangling edge e cannot exist.

ut

Lemma 2 (graph rule applicability). If p = (L l← K
r→ R) is applicable, so

is code(p).

Proof. Let m be the injective match morphism for the application of the graph
production rule. Then ∀v ∈ VL with type(v) = t there is a constraint t(T) in H.
As m is a graph morphism, we have that type(m(v)) = t and thus a constraint
t(T ′) exists in the goal store corresponding to the node m(v). The CHR rule is
therefore applicable through a match with [T/T ′].
∀e ∈ EL with src(e) = vs, tgt(e) = vt, type(e) = te, type(vs) = ts, type(vt) =

tt we have the following CHR rules in the conjunction H: ts(T1), tt(T2), and
te(E, T1, T2). Due to m being a graph morphism, there exist corresponding con-
straints ts(T ′

1), tt(T ′
2) for the nodes v1 = m(vs), v2 = m(vt) in the goal. There

further exists an edge e′ with src(e′) = m(vs), tgt(e′) = m(vt), type(e′) = te
which is represented by a constraint te(E′, T ′

1, T
′
2). As discussed above, we al-

ready have [T1/T ′
1][T2/T ′

2], so we can extend this to [T1/T ′
1][T2/T ′

2][E/E′] for a
CHR match.

It remains to be shown that there is a match for the eventually occurring
degree /2 constraints in H:
Case 1: a constraint of the form degree(T,D) with [T/T ′] is always matchable, as
the degree constraint corresponding to the node represented by T ′ is guaranteed

to be available in the goal store.
Case 2: degree(T, k) with [T/T ′]: Analogous to case 1, there exists a constraint
degree(T ′, l) in the goal store. k > l is a contradiction to m being an injective
graph morphism. k < l implies an edge e′ 6∈ m(EL). However constraints of the
form degree(T, k) are added only for nodes which are removed by the production
rule and thus this is a dangling edge which contradicts the initial applicability
of the graph production rule. Therefore k = l, which allows a CHR matching
through [T/T ′].

ut

Theorem 1 (applicability). A graph production rule p = (L l← K
r→ R) is ap-

plicable to a typed host graph G if and only if code(p) is applicable to encode(G).

Proof. This is immediate from the combination of Lemma 1 and Lemma 2.
ut

Theorem 2 (soundness and completeness). Given a typed host graph G

and encode(G), a graph production rule p = (L l← K
r→ R) represented by

code(p) = H ⇔ B, and a match m : L → G the following transitions are
equivalent:

– G
p,m
=⇒ G̃

– 〈encode(G), true〉 7→ 〈encode(G̃), true〉 by applying code(p).

Proof. “⇒”: According to the proof of Lemma 2, the match m implies a match
for applying code(p). We now show that the construction of G

p,m⇒ G̃ is analogous
to the application of the CHR rule code(p):
First the nodes and edges in m(L) get deleted from G, but nodes and edges in
m(l(K)) = m(K) (l is an inclusion) are kept. For the CHR rule application, all
constraints in the goal matched in H are removed. As H contains constraints
encoding all nodes and edges of L we successfully remove nodes and edges in
m(L). Next we add nodes and edges in R \ r(K). For the CHR rule application,
the constraints in B are added. This adds constraints encoding all nodes and
edges of R taking into account the substitutions made for matching H. As r is
an inclusion, all nodes and edges in K are also encoded in encode(R) and are
added to the result. We therefore keep the constraints encoding m(K) despite
temporarily removing them. We showed, that all nodes and edges present in G̃
are also contained in the modified goal store after the CHR rule application.

It remains to be shown that also the degree /2 constraints remain consistent
such that the CHR rule application indeed results in encode(G̃) being added to
the goal store.

We note that for nodes v ∈ L \K – i.e. nodes which are removed by the rule
application – we only have a degree constraint in H which also gets removed.
Let now n, m as given in Def. 5 for a v ∈ K. There is a corresponding constraint
degree(T,D) in H. For the node v the application of the graph production rule
replaces n edges by m edges. Edges which are adjacent to m(v), but are not in
m(L) remain unchanged. Therefore, the graph production rule changes the degree

of m(v) by m−n. The constraint degree(T,D+m−n) in B directly encodes this
change, thus giving us a consistent degree encoding for nodes v ∈ K. Finally
for nodes in v ∈ R \ K which are newly added by the graph production rule
we explicitly add a degree constraint to B with the correct degree according to
Def. 5.

“⇐”: According to the proof of Lemma 1, the CHR match involved in the
application of code(p) implies a match morphism m. We can therefore argue
analogously to the above by decomposing the effects of the CHR rule application
into constraints which are removed and added. By combining this with the match
morphism m, we can similarly show that the correct nodes and edges are re-
moved and added when applied to the graph transformations and that the degree
constraints remain consistent.

ut

5 Confluence

Both graph transformation systems and constraint handling rules provide the
notion of a confluence property. This property guarantees that any derivation
made for an initial state results in the same final state no matter which applica-
ble rules are applied. This section introduces the necessary definitions used for
GTS and CHR confluence before comparing the two notions. It is shown how
confluence checking in CHR can be adjusted to check the confluence property of
a GTS encoded in CHR.

5.1 Preliminaries

Definition 7 (GTS confluence). A GTS is called confluent if, for all typed
graph transformations G

∗⇒ H1 and G
∗⇒ H2, there is a typed graph X together

with typed graph transformations H1
∗⇒ X and H2

∗⇒ X. Local confluence means
that this property holds for all pairs of direct typed graph transformations G ⇒
H1 and G⇒ H2. [2]

A general result for rewriting systems is that it is sufficient to consider local
confluence for terminating graph transformation systems. To verify local conflu-
ence we particularly need to study critical pairs and their joinability, according
to this definition based on [2]:

Definition 8 (critical GTS pair). A pair P1
r1,m1⇐= K

r2,m2=⇒ P2 of direct typed
graph transformations is called a critical GTS pair if it is parallel dependent,
and minimal in the sense that the pair (m1,m2) of matches m1 : L1 → K and
m2 : L2 → K is jointly surjective.

A pair P1
r1,m1⇐= K

r2,m2=⇒ P2 of direct typed graph transformations is called
parallel independent if m1(L1) ∩ m2(L2) ⊆ m1(K1) ∩ m2(K2), otherwise it is
called parallel dependent.

A critical GTS pair P1
r1,m1⇐= K

r2,m2=⇒ P2 is called joinable if there exists a
typed graph K ′ together with typed graph transformations P1

∗=⇒ K ′ and P2
∗=⇒

K ′

A similar notion of confluence has been developed for CHR [6]:

Definition 9 (CHR confluence). A CHR program is called confluent if for
all states S, S1, and S2: If S 7→∗ S1 and S 7→∗ S2, then S1 and S2 are joinable.
Two states S1 and S2 are called joinable if there exist states T1 and T2 such that
S1 7→∗ T1 and S2 7→∗ T2 and T1 and T2 are variants.

Analogous to a GTS, the confluence property for terminating CHR programs
is determined by local confluence which can be checked through critical pairs:

Definition 10 (critical CHR pair). Let R1 be a simplification rule and R2

be a (not necessarily different) rule whose variables have been renamed apart.
Let Hi ∧Ai be the head and Gi be the guard of rule Ri(i = 1, 2), then a critical
ancestor state of R1 and R2 is

〈H1 ∧A1 ∧H2, (A1
.= A2) ∧G1 ∧G2〉,

provided A1 and A2 are non-empty conjunctions and CT |= ∃((A1
.= A2)∧G1 ∧

G2).
Let S be a critical ancestor state of R1 and R2. If S 7→ S1 using rule R1 and

S 7→ S2 using rule R2, then the tuple (S1, S2) is a critical CHR pair of R1 and
R2. A critical CHR pair (S1, S2) is joinable if S1 and S2 are joinable.

5.2 Critical Pair Properties

After defining the different notions of confluence we now further investigate the
difference between critical GTS pairs and critical CHR pairs for CHR programs
encoding a GTS.

Lemma 3. If P1
p1,m1⇐= G

p2,m2=⇒ P2 is a critical GTS pair, then there exists
a conjunction of built-in constraints C such that 〈encode(G),>〉 is a critical
ancestor state for the critical CHR pair (〈encode(P1), C〉, 〈encode(P2), C〉).

Proof. Theorem 1 guarantees that code(p1) and code(p2) are applicable to the
critical ancestor state.

As m1,m2 are jointly surjective we know that all constraints in encode(G)
are required for applying code(p1) and code(p2), i.e. there are no redundant con-
straints. We further know that there exist one or more constraints in encode(G)
which are required for both rule applications, as otherwise m1(L1)∩m2(L2) = ∅
which is a contradiction to the critical GTS pair being parallel dependent. Let A
be the conjunction consisting of all these constraints which are required for both
rule applications.

As code(p1) and code(p2) are applicable, there are corresponding constraints
A1 and A2 in the heads of those rules which are matched to A in a rule ap-
plication. Let the heads of these rules be separated into H1 ∧ A1 and H2 ∧ A2.
The match morphisms imply the existence of constraints H ′

1,H
′
2 in encode(G)

for all constraints in H1 and H2, respectively. These constraints have to be dif-
ferent from A for the rules to be applicable and they are disjoint because of the

maximality of A. Due to the minimality of G, there are no further constraints in
encode(G), therefore encode(G) = H ′

1∧A∧H ′
2. 〈encode(G),>〉 is therefore a crit-

ical ancestor state. As code(p1) and code(p2) are both applicable to it, there is the
corresponding critical pair: (〈encode(P1), A

.= A1 ∧ A
.= A2〉, 〈encode(P2), A

.=
A1 ∧A

.= A2〉)
ut

Corollary 1. If the CHR program for a terminating GTS is confluent, then all
critical GTS pairs are joinable.

Proof. As every critical GTS pair has a corresponding critical CHR pair and all
critical CHR pairs are joinable, we know by the completeness property that the
critical GTS pairs are also joinable.

ut

Due to Corollary 1, existing confluence checkers for CHR can be used to
investigate confluence of a GTS encoded in CHR. Confluence of the CHR pro-
gram is a sufficient condition for confluence of the corresponding GTS however,
as can be seen in the example below, there are cases in which the CHR program
may not be confluent although the corresponding GTS is confluent. Similarly, if
we try to transfer the confluence property of a GTS to the corresponding CHR
program, we cannot succeed as in general there are too many critical CHR pairs
which could cause the CHR program to be non-confluent. To improve upon this
situation, we therefore introduce a weaker kind of confluence:

Definition 11 (weak confluence, valid state). A CHR program is called
weak confluent if for all valid states S and states S1 and S2: If S 7→∗ S1 and
S 7→∗ S2, then S1 and S2 are joinable.

A state S = 〈G′, C〉 is called valid if there exists a graph G such that G′ =
encode(G).

Note that especially states which encode the same node of a graph with
multiple node constraints or provide multiple degree constraints for the same
node are invalid states. Example 7 includes a selection of such invalid states.

Using Definition 11 we can now investigate confluence for a CHR program
corresponding to a confluent GTS:

Lemma 4. If all critical GTS pairs are joinable, the corresponding CHR pro-
gram is weak confluent.

Proof. Let S = 〈encode(G), C〉 be a valid critical ancestor state. If the critical
CHR pair resulting from S corresponds to a critical GTS pair, it is also joinable
due to Theorem 2.

Let S be a valid critical ancestor state for which the resulting critical CHR
pair does not correspond to a critical GTS pair. By definition of the critical an-
cestor state, we know that two rules code(r1) and code(r2) are applicable and
by Theorem 1 r1 and r2 are applicable to G, giving us the corresponding non-
critical GTS pair P1

r1,m1⇐= G
r2,m2=⇒ P2. As S does not contain redundant con-

straints we know that m1 and m2 are jointly surjective. Thus this GTS pair

has to be parallel independent as this is the only way for it to not be a critical
GTS pair. If it is parallel independent however, we know that there exists P such

that P1
r2,m′

2=⇒ P
r1,m′

1⇐= P2 and due to the previous soundness result this implies
joinability for the critical CHR pair.

ut

Example 7. Consider a graph production rule for removing a loop from a node
and its corresponding constraint handling rule:

R@node(N), edge(E,N, N),degree(N,D)⇔ node(N),degree(N,D − 2)

For investigating confluence one must overlap this rule with itself which yields
the following seven critical CHR ancestor states:

1. 〈node(N) ∧ edge(E,N, N) ∧ degree(N,D),>〉
2. 〈node(N) ∧ edge(E,N, N) ∧ degree(N,D) ∧ degree(N,D′),>〉
3. 〈node(N) ∧ edge(E,N, N) ∧ edge(E′, N, N) ∧ degree(N,D),>〉
4. 〈node(N) ∧ node(N ′) ∧ edge(E,N, N) ∧ degree(N,D),>〉
5. 〈node(N)∧edge(E,N, N)∧edge(E′, N, N)∧degree(N,D)∧degree(N,D′),>〉
6. 〈node(N) ∧ node(N ′) ∧ edge(E,N, N) ∧ degree(N,D) ∧ degree(N,D′),>〉
7. 〈node(N) ∧ node(N ′) ∧ edge(E,N, N) ∧ edge(E′, N, N) ∧ degree(N,D),>〉

States 2 and 4–7 are invalid states as they have multiple encodings of the same
node or multiple degree encodings of a node. State 1 is the encoding of the
corresponding critical pair for the graph production rule and state 3 is not critical
because the corresponding pair of graph transformations is parallel independent:
S3 = 〈node(N) ∧ edge(E,N, N) ∧ edge(E′, N, N) ∧ degree(N,D),>〉
S3

R⇒ S1
3 = 〈node(N) ∧ edge(E′, N, N) ∧ degree(N,D − 2),>〉

S1
3

R⇒ S′
3 = 〈node(N) ∧ degree(N,D − 4),>〉

S3
R⇒ S2

3 = 〈node(N) ∧ edge(E,N, N) ∧ degree(N,D − 2),>〉
S2

3
R⇒ S′

3

Theorem 3. All critical GTS pairs are joinable if and only if the corresponding
CHR program is weak confluent.

Proof. The first direction follows directly from Lemma 4. By Lemma 3 we know
that all critical GTS pairs have corresponding critical CHR pairs with valid crit-
ical ancestor states. However, if the CHR program is weak confluent all such
critical CHR pairs are joinable and thus by Theorem 2 the critical GTS pairs
are joinable as well.

ut

6 Conclusion

We have shown that constraint handling rules (CHR) provide an elegant way for
embedding graph transformation systems (GTS). The resulting rules are very

concise and directly related to the corresponding graph production rules. There
is no need for further implementations besides these production rules which
makes CHR a natural choice for prototyping a GTS. We have also shown that
a CHR implementation of a GTS shares many important properties with the
formal GTS. Particularly the notion of confluence is similar and allows for stan-
dard CHR confluence checkers to be reused for embedded graph transformation
systems with only slight adjustments.

To achieve this elegant solution, we restricted the GTS match morphisms to
injective ones like [4] and [5] did. In the case of the standard nondeterministic
semantics for CHR, all possible injective matches can be chosen. However, most
CHR implementations make it difficult for a user to interactively modify or
choose a match morphism, as it is chosen implicitly by the refined semantics of
the implementation.

Apart from having a viable alternative for GTS implementations, there is
room for further research. This work only considers typed graphs, but could be
extended to support typed attributed graphs as well. It is also worthwhile to
investigate further similarities between GTS and CHR by transferring existing
results from one model to the other. For example, [2] provides criteria for layered
graph transformation systems under which termination can be guaranteed and
which might be applicable to CHR as well.

References

1. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3) (October
1998) 95–138

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer-Verlag (2006)

3. Sadiq, W., Orlowska, M.E.: Applying graph reduction techniques for identifying
structural conflicts in process models. In: CAiSE ’99: Proceedings of the 11th Inter-
national Conference on Advanced Information Systems Engineering, London, UK,
Springer-Verlag (1999) 195–209

4. Bakewell, A., Plump, D., Runciman, C.: Specifying pointer structures by graph
reduction. In: AGTIVE. (2003) 30–44

5. Habel, A., Plump, D.: Relabelling in graph transformation. In: Proc. Int. Confer-
ence on Graph Transformation (ICGT 2002). Lecture Notes in Computer Science,
Springer-Verlag (2002)

6. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer-
Verlag (2003)

7. Frühwirth, T.: As time goes by: Automatic complexity analysis of simplification
rules. In: 8th International Conference on Principles of Knowledge Representation
and Reasoning, Toulouse, France (2002)

