
On Confluence of Non-terminating CHR
Programs

Frank Raiser1 and Paolo Tacchella2

1 Faculty of Engineering and Computer Sciences, University of Ulm, Germany
Frank.Raiser@uni-ulm.de

2 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy
Paolo.Tacchella@cs.unibo.it

Abstract. Confluence is an important property for any kind of rewrite
system including CHR, which is a general-purpose declarative committed-
choice language consisting of multi-headed guarded rules. CHR can yield
a confluence problem, because of non-determinism in the choice of rules
using the abstract semantics. Confluence in CHR is an ongoing research
topic, because it provides numerous benefits for implementations. How-
ever, for non-terminating CHR programs confluence is generally undecid-
able. In this paper we apply the so-called Strong Church-Rosser prop-
erty to CHR. This allows determination of confluence for a subset of
non-terminating CHR programs.

1 Introduction

Confluence is an important property for any kind of rewrite system. Many
confluence-related results have been developed for term rewriting systems (TRS)
[1–3] and it also plays an important role for Constraint Handling Rules (CHR)
[4, 5].

CHR is a concurrent committed-choice constraint logic programming lan-
guage consisting of guarded rules, which transform multi-sets of atomic formulas
(constraints) into simpler ones until exhaustion [6].

Given a CHR state S and multiple applicable rules, the standard semantics
non-deterministically applies a rule. In general this means that, at the end of
the computation, different result states S1 and S2 are obtained depending on
the choice of the applied rules. Confluence is an important property, because it
is desirable for the program to have a unique result for a given input. In CHR
confluence is even more important, as it also implies consistency of the logical
reading of the program [4].

Confluence for CHR is a well-known problem and it is discussed in [4, 5].
The most interesting case is when there are two rules r1 and r2 which need at
least one common constraint to be applied and the application of one of these
rules deletes the considered constraint. It is proved that confluence of minimal
states, which fulfill these characteristics, grants confluence of the whole program
if the computation is terminating. If the CHR program satisfies the confluence
property, all states can be transformed by rule applications to yield states which



are variants of each other whereas two states are variants if they are equal modulo
a variable rename.

To the best of our knowledge no results about confluence for non-terminating
CHR programs are obtained yet. In spite of this, confluence for non-terminating
programs is a desirable property from a practical point of view. Many distributed
concurrent algorithms are non-terminating including operating systems, control
programs, and agents. As a motivating example for these kinds of programs the
next section presents a CHR program for the well-known confluent and non-
terminating dining philosophers synchronization problem. However, confluence
cannot be proved for this example using existing results from [4].

In CHR a confluent program allows easy parallelization, which often makes
confluence analysis a necessity. In [7] a parallel version of the classical union-
find algorithm was developed for CHR based on results of confluence analyses.
Similarly a confluent CHR program for the preflow-push algorithm allowed its
efficient parallelization [8]. Furthermore, a CHR program can be considered to
be an online algorithm, thus making confluence analysis an important topic for
another large range of applications.

There are numerous similarities between term rewriting systems and CHR:
both of them are rewrite systems working on terms and constraints respectively,
rewriting them based on a set of rules. Confluence properties are interesting
for both due to the non-deterministic choice of rule applications. Nevertheless,
there are also significant differences to be found between these two systems: in a
TRS the terms, rules are applied to, are always ground, while CHR allows non-
ground initial goals as well. The rewriting of terms in a TRS is always locally
restricted to the replacement of a subterm, whereas in CHR rules can be applied
to constraints independent of their position in the store. Finally, the existence of
propagation rules, which add new constraints as a logical consequence of existing
constraints, has no equivalent in a term rewriting system.

Because of the similarities between TRSs and CHR, ideas used for TRSs
can sometimes be adapted to CHR. In particular, this work shifts the Strong
Church Rosser (SCR) property [1] from TRSs to CHR. This property is a stricter
version of local confluence, which is used for confluence analysis in terminating
CHR programs.

The following section introduces necessary preliminaries about CHR, Sect. 3
contains formal definitions and results about confluence for non-terminating
CHR programs, based on the SCR property. Finally, Sect. 4 concludes with
related and future works.

2 Preliminaries

This section presents the syntax and operational semantics of Constraint Han-
dling Rules [6, 9, 10]. Constraints are first-order predicates [11] which we sep-
arate into built-in constraints and user-defined constraints. Built-in constraints
are solved by an underlying constraint solver, that is driven by a constraint the-
ory CT , while user-defined constraints are managed by a CHR program. In the



following, let a lowercase letter represent a single constraint and an uppercase
letter represent a conjunction of constraints.

2.1 CHR Syntax

A CHR program P is a finite set of CHR rules. There are three different kinds
of CHR rules: simplification, propagation, and simpagation ones.
A simplification rule has the form:

r@H ⇔ D | B

A propagation rule has the form:

r@H ⇒ D | B

A simpagation rule has the form:

r@H1 \H2 ⇔ D | B,

where r is a unique identifier of the rule, H, H1 and H2 are non-empty multisets
of user-defined constraints called heads, D is a possibly empty multiset of built-in
constraints called guard and B is a possibly empty multiset of built-in and user-
defined constraints called body. A CHR goal is a multiset of both user-defined
and built-in constraints.

Note that the behaviour of a propagation rule can be simulated by a simpli-
fication rule: let H ⇒ D | B be a propagation rule. Then the simplification rule
associated to it is H ⇔ D | H∧B. Similarly a simpagation rule H1\H2 ⇔ D | B
is associated with H1 ∧H2 ⇔ D | H1 ∧ B. In Sect.3 and subsequently, we only
consider simplification rules because of these observations.

After the CHR syntax exposition we can introduce the following motivating
example about dining philosophers.

Example 1. The following exemplary CHR program is a version of the din-
ing philosophers problem. It models three philosophers and their correspond-
ing chopsticks. Every rule pi(i = 1, 2, 3) expects the constraints for a thinking
philosopher and his two chopsticks to be present. The application of such a rule
results in that philosopher beginning to eat using the two chopsticks. The appli-
cation of the rules p′i(i = 1, 2, 3) then results in the philosopher to stop eating
and revert to thinking. Additionally the two chopsticks become available again.
The usual dead-lock problem connected to the chopstick usage doesn’t occur
because of the atomicity of the application of a CHR rule. For the purpose of
simplicity we do not consider the problem of starvation. The start state of this
program Q = {p1, p2, p3, p

′
1, p

′
2, p

′
3} is

〈ph1(think) ∧ ph2(think) ∧ ph3(think) ∧ c1 ∧ c2 ∧ c3,>〉.



p1 @ ph1(think) ∧ c1 ∧ c3 ⇔ ph1(eat).
p′1 @ ph1(eat)⇔ ph1(think) ∧ c1 ∧ c3.
p2 @ ph2(think) ∧ c1 ∧ c2 ⇔ ph2(eat).
p′2 @ ph2(eat)⇔ ph2(think) ∧ c1 ∧ c2.
p3 @ ph3(think) ∧ c2 ∧ c3 ⇔ ph3(eat).
p′3 @ ph3(eat)⇔ ph3(think) ∧ c2 ∧ c3.

2.2 CHR Operational Semantics

The operational semantics is based on an underlying constraint theory CT for
the built-in constraints which has to contain at least the syntactic equality (de-
noted by .=), true (denoted by >), and false (representing inconsistent built-in
constraints). A state S is a pair 〈G, C〉 where G is a multi-set conjunction of CHR
and built-in constraints and it is called goal store and C is a set conjunction of
built-in constraints and it is called built-in constraint store. An initial state is a
pair 〈G,>〉 [10]. We further define the function vars to map from a conjunction
of constraints to the set of variables used in the conjunction.

Let us now consider the transitions introduced in Table 1, which represent
the CHR operational semantics. The N function represents the normalization
function introduced by [5] omitting token elimination as this work only considers
simplification rules.

Solve moves a built-in constraint from the goal store to the built-in constraint
store;

Simplify uses the rule r@H ′ ⇔ D | B provided that a matching substitution
θ exists, such that H = (H ′)θ and D is entailed by the built-in constraint
store of the computation; H is replaced by B and (H .= H ′)∧D is added to
the built-in constraint store;

Propagate uses the rule r@H ′ ⇒ D | B provided that a matching substitution
θ exists, such that H = (H ′)θ and D is entailed by the built-in constraint
store of the computation; B is added to the goal store and (H .= H ′) ∧D is
added to the built-in constraint store;

Simpagate uses the rule r@H ′
1\H ′

2 ⇔ D | B provided that a matching sub-
stitution θ exists, such that (H1,H2) = (H ′

1,H
′
2)θ and D is entailed by

the built-in constraint store of the computation; H2 is replaced by B and
((H1,H2)

.= (H ′
1,H

′
2)) ∧D is added to the built-in constraint store.

From the transition system introduced in Table 1 follows that only two con-
ditions are needed to fire a rule r on a conjunction of constraints G: the head
of the chosen rule must match with some constraints in G and the guard of r
must be entailed by the built-in constraint store. It is clear that for a fixed goal
there could be more than one rule that can be fired and it is also clear that a
rule could be applied to different constraints in the goal. This yields two types
of non-determinism: non-deterministic rule selection and non-deterministic con-
straint selection. For the notion of confluence we are especially interested in the
non-determinism involved in rule selections.



Solve
CT |= c ∧ C ↔ C′ and c is a built-in constraint

〈{c} ∧G, C〉 7→ N (〈G, C′〉)

Simplify
r@H′ ⇔ D | B ∈ P x = vars(H′) CT |= C → ∃x((H

.
= H′) ∧D)

〈G ∧H, C〉 7→ N (〈B ∧G, (H
.
= H

′
) ∧ C ∧D〉)

Propagate
r@H′ ⇒ D | B ∈ P x = vars(H′) CT |= C → ∃x((H

.
= H′) ∧D)

〈G ∧H, C〉 7→ N (〈B ∧G ∧H, (H
.
= H

′
) ∧ C ∧D〉)

Simpagate
r@H′

1 \H′
2 ⇔ D | B ∈ P x = vars(H′

1 ∧H′
2) CT |= C → ∃x(((H1, H2)

.
= (H′

1, H′
2)) ∧D)

〈G ∧H1 ∧H2, C〉 7→ N (〈B ∧G ∧H1, ((H1, H2)
.
= (H

′
1, H

′
2)) ∧ C ∧D〉)

Table 1. The transition system for the original CHR semantics

Two conjunctions of constraints H1 = H ′
1 ∧ C1 and H2 = H ′

2 ∧ C2, with
H ′

i a conjunction of CHR constraints, Ci a conjunction of built-in constraints
in Hi and i = {1, 2}, are said to be CHR variants, and we write H1 ' H2, if
H ′

1
.= H ′

2θ and CT |= C1 ↔ C2θ, where θ is a renaming of local variables in H2,
i.e. variables which do not occur in the initial goal. Note that the definition of
CHR variants is symmetric, such that there is also a θ′ with H1θ

′ .= H2. In the
following, we consider only CHR variants and simply call them variants.

The transition system in Table 1 allows us to use the 7→ relation between
states with S 7→ S ′ meaning any of the possible transitions. Furthermore, we
make use of the following extensions: S 7→k Sk(k > 0) is used as a shortcut for
exactly k transitions between states S and Sk. More precisely 7→k=7→ ∪ 7→k−1

where S 7→0 S ′ means S ' S ′. Finally, we define 7→ε=7→0 ∪ 7→ and 7→∗=
∞⋃

i=0

7→i.

Note that 7→∗ always denotes a finite number of transitions.

3 Confluence Properties

In this section we investigate confluence of CHR programs and we present our
results on confluence of non-terminating CHR programs. First of all we formally
introduce the notion of confluence:

Definition 1 (Confluence). A CHR program is confluent, if for all states S
with S 7→∗ S1 and S 7→∗ S2 there exist states S ′1,S ′2 such that S1 7→∗ S ′1 ' S ′2 ∗←[
S2. Then the states S1, S2 are called joinable.

Fig. 2 (a) shows a graphical representation of the previous definition, where
dashed arrows represent the existence of a CHR computation with ≥ 0 steps.

Example 2 (confluent philosophers). The previous program for dining philoso-
phers is intuitively confluent: no matter which rules are applied the overall situ-
ation of three philosophers and three chopsticks remains and rules p′i(i = 1, 2, 3)
can always be applied to get back to a state with only thinking philosophers



and all chopsticks being available. However, it is hard to proof confluence of this
program using the above definition, and the other existing methods presented
below are not applicable due to its non-termination. With the help of our results
though, we prove the program’s confluence in Example 7.

The following exemplary CHR program based on an example in [1] is used
to point out characteristics of non-terminating CHR programs with respect to
previous confluence results for terminating ones.

Example 3. Let P = {r1, r2, r3, r4, r5, r6} be a CHR program composed of the
following rules

r1 @ a(X)⇔ b(X).
r2 @ a(X)⇔ e(X).
r3 @ b(X)⇔ a(X).
r4 @ b(X)⇔ f(X).
r5 @ e(X)⇔ e(X) ∧ g(X).
r6 @ f(X)⇔ f(X) ∧ g(X).

whose behaviour is illustrated in Fig. 1. The circles contain the constraints that
are rewritten. Note that rules r5 and r6 could also be written as propagation
rules r5 @ e(X)⇒ g(X). and r6 @f(X) ⇒ g(X) as explained before.

It is clear from rules r1 and r3 of Example 3, that the exemplary CHR
program P is non-terminating. Due to the circular nature of these rules we refer
to this example as the circular example, to avoid confusion with the previous
dining philosophers example. Furthermore, the program is not confluent, because
〈a(X),>〉 7→∗ 〈e(X),>〉 and 〈a(X),>〉 7→∗ 〈f(X),>〉 with no possibility to join
these two states, as only rules r5 and r6 are applicable afterwards.

When analysing confluence of a CHR program it is unfeasible to directly
prove Definition 1, as an infinite number of possible states S1, S2 has to be
checked for an infinite number of initial states S. It has been shown, however,
with the help of Newman’s Lemma [12, 13], that the analysis of a finite number
of minimal states, where more than one rule is applicable, suffices to determine
confluence of terminating CHR programs. To this end, the concept of critical
pairs was introduced in [4] according to the following definition:

Definition 2 (Critical pair). Let

r1@H1 ⇔ G1 | B1.

r2@H2 ⇔ G2 | B2.

be (not necessarily different) simplification rules, whose variables have been re-
named apart. Let H ′

i ∧Ai be separations of the heads Hi, such that ∀i ∈ {1, 2} :
(H ′

i ∧ Ai)
.= Hi, with Ai being non-empty conjunctions and CT |= ∃((A1

.=
A2) ∧G1 ∧G2), then a critical ancestor state of r1 and r2 is

〈H ′
1 ∧A1 ∧H ′

2, (A1
.= A2) ∧G1 ∧G2〉



a(X)WVUTPQRS b(X)WVUTPQRS
  

``

e(X)WVUTPQRS
��

∧g(X) f(X)WVUTPQRS
��

∧g(X)ee 99

r1

r3

r2 r4

r5 r6

Fig. 1. Graphical representation of Example 3

Let S be a critical ancestor state of r1 and r2. If S r17→ S1 and S r27→ S2, then
the tuple (S1,S2) is a critical pair of r1 and r2. A critical pair (S1,S2) is joinable
if S1 and S2 are joinable.

In the following, we present the critical pair analysis of Examples 1 and 3.

Example 4 (Critical pairs). The above Example 3 has exactly two critical pairs,
due to rules r1, r2 and r3, r4. The ancestor states are respectively 〈a(X),>〉 and
〈b(X),>〉 and the corresponding critical pairs are (〈b(X),>〉, 〈e(X),>〉) and
(〈a(X),>〉, 〈f(X),>〉).

For the dining philosophers example the only constraints shared by different
rule heads are the chopstick constraints, yielding exactly three critical ances-
tor states: 〈ph1(think) ∧ c1 ∧ c3 ∧ ph3(think) ∧ c2,>〉, 〈ph1(think) ∧ c1 ∧ c3 ∧
ph2(think)∧ c2,>〉, and 〈ph2(think)∧ c2∧ c3∧ph3(think)∧ c1,>〉. Additionally,
rules overlapping with themselves produce another six critical ancestor states
for every rule pi(i = 1, 2, 3). However, these states contain multiple phi(think)
or ci constraints. In practical applications the initial input goals consist only of
the three philosophers and their corresponding chopsticks though, making these
states unreachable.

For a feasible confluence check, a stricter kind of confluence with respect to
Definition 1 is introduced, which can be applied to critical ancestor states and
critical pairs:

Definition 3 (Local Confluence). A CHR program is locally confluent, if
for all states S with S 7→ S1 and S 7→ S2 there exist states S ′1,S ′2 such that
S1 7→∗ S ′1 ' S ′2 ∗← [ S2.

Based on the critical pair and local confluence definitions the following im-
portant result for confluence of terminating CHR programs has been established
in [13]:



Theorem 1 (Critical pair based confluence). A terminating CHR program
is confluent if and only if all critical pairs are joinable.

The following example shows the importance of the additional requirement of
termination for local confluence to yield confluence of the whole program. Even
though all critical pairs are joinable, the non-terminating program is in fact not
confluent.

Example 5 (Local confluence insufficient). The circular CHR program is locally
confluent, i.e. all critical pairs are joinable. Let us consider the following criti-
cal pair (〈b(X),>〉, 〈e(X),>〉). The two states are joinable as can be seen from
〈b(X),>〉 r37→ 〈a(X),>〉 r27→ 〈e(X),>〉. Analogously the second critical pair con-
sisting of the states 〈a(X),>〉 and 〈f(X),>〉 can be joined by these computation
steps: 〈a(X),>〉 r17→ 〈b(X),>〉 r47→ 〈f(X),>〉. Nevertheless the program is not con-
fluent as stated before.

Using the criteria of Theorem 1 the confluence property of a terminating
CHR program can automatically be decided [13]. To the best of our knowl-
edge there are no investigations into determining confluence of non-terminating
CHR programs. Similarly to terminating CHR programs, however, it is possible
to transfer results from term rewriting systems, where for example the Strong
Church-Rosser property is used as one possible criteria [1]. The following defini-
tion applies this property to CHR programs:

Definition 4 (Strong Church-Rosser property). A CHR program has the
Strong Church-Rosser (SCR) property, if for all states S,S1,S2 with S 7→ S1 and
S 7→ S2 there exist states S ′1,S ′2,S ′′1 , and S ′′2 , such that S1 7→∗ S ′1 ' S ′2 ε←[ S2,
and S1 7→ε S ′′1 ' S ′′2 ∗← [ S2. (Fig. 2 (b)) A CHR program with the SCR property
is also called strongly confluent.

S6
∗

{{vvv
vv

vv
vv

v �
∗

##H
HH

HH
HH

HH
H S2

1

yyrrrrrrrrrrrr �
1

&&LLLLLLLLLLLL

S1 �

∗
##G

G
G

G
G S27

∗
{{w

w
w

w
w

S1_

∗
���
�
� �

ε
**UUUUUUUUUU S2_

∗
���
�
�

)

ε

tti i i i i i i i i i

S ′1 ' S ′2 S ′1 ' S ′2 S ′′1 ' S ′′2

(a) (b)

Fig. 2. Confluence and Strong Church-Rosser property

The following definition introduces the concept of a strongly closed program
as the criteria which has to be verified for analysing a non-terminating CHR pro-
gram for confluence. Note that the construction of the critical ancestor state is a



syntactical notion, but the remaining part of the analysis involves argumentation
about the operational behavior.

Definition 5 (Strong closedness). A CHR program is called strongly closed
if for every critical pair (S1,S2) of the critical ancestor state S there exist states
S ′1,S ′2,S ′′1 and S ′′2 such that S1 7→∗ S ′1 ' S ′2 ε←[ S2, and S1 7→ε S ′′1 ' S ′′2 ∗← [ S2.

Example 6 (No SCR program). We have seen in Example 5 that the CHR
program of Example 3, is locally confluent. Furthermore this program is not
strongly closed and thus not strongly confluent: Consider again the critical pair
(S1,S2) = (〈b(X),>〉, 〈e(X),>〉) resulting from the ancestor state 〈a(X),>〉.
Due to Definition 4 and Definition 5 we have to show that the SCR property
for the critical ancestor state 〈a(X),>〉 does not hold. Let us consider the case
S1 7→ε S ′1,S2 7→∗ S ′2. Note that S2 allows only rule r5 to be applied, thus the only
states reachable from S2 consist of an e(X) constraint and any number of g(X)
constraints. If S1 7→0 S ′1, i.e. S1 ' S ′1, then we know that S2 67→∗ S ′2 ' S ′1, be-
cause the necessary constraint b(X) can never be generated from S2. If S1 7→ S ′1,
there are two cases: S ′1 = 〈a(X),>〉 and S ′1 = 〈f(X),>〉. However, in both cases
it holds again that S2 67→∗ S ′2 ' S ′1. Therefore we have shown, that the exemplary
CHR program is not strongly closed.

The following theorem proves the equivalence between the strongly closed
property and the strongly confluent one of a program.

Theorem 2 (Strong confluence). A (possibly non-terminating) CHR pro-
gram is strongly confluent if and only if it is strongly closed.

Proof. The two implications have to be proved:

“⇒”: This implication follows directly from Definition 4 and Definition 5.
“⇐”: This implication follows from the monotonicity property of CHR analo-

gous to the proof of our Theorem 1 that is given in [13]. For the proof a
state S with S 7→ S1 and S 7→ S2 is considered. There are three different
combinations of computation steps possible: In the case of a Solve+Solve
or Solve+Simplify combination it can be shown that the two computations
can be performed in either order, such that S 7→ Si 7→ S ′(i = 1, 2). For a
Simplify+Simplify combination it is possible that the two rules are ap-
plied to distinct CHR constraints. In such a case the rules can be applied
consecutively again to yield strong confluence. In the other case the proof
idea is to determine the overlap of head constraints of both of the involved
rules and construct a critical ancestor state from it. By assumption the crit-
ical pair resulting from this state is strongly joinable and it is then shown,
that all computation steps applicable to the critical pair are also applicable
to (S1,S2) and result in a joined state. ut

Analogous to the step from local confluence and termination to confluence
of the whole program, Theorem 3 uses strong confluence instead. For its proof
the following lemma is required:



Lemma 1. Let S be a state with S 7→k S ′k and S 7→ S1 for a strongly confluent
program, there exist S ′C and SC with S ′k 7→ε S ′C ' SC

∗← [ S1. Fig. 3(a) shows
the situation given in this lemma.

Proof. By induction over k:

Base step for k = 1 the claim follows directly from the SCR property as shown
in Fig. 3(b).

Inductive step we suppose that the claim holds for k−1 (inductive hypothesis)
and we prove that it holds also for k.
Fig. 3(c) considers the case S ′k−1 7→0 S ′C , which means that S ′k−1 ' S ′C and

therefore the required property holds, because then S ′k−1 ' S ′C ' SC 7→
S ′k.

Fig. 3(d) considers the case S ′k−1 7→ S ′C . In this case the required property
holds by SCR. ut

Theorem 3 (SCR yields confluence). A (possibly non-terminating) strongly
confluent CHR program is confluent.

Proof. We consider a strongly confluent CHR program. In order to prove con-
fluence let S be a state with S 7→k S ′k and S 7→n Sn. We have to show that the
states S ′k and Sn can be joined as given in Fig. 4(a). Proof follows by induction
over n and by considering Lemma 1:

Base step we suppose that n = 1, then the joinability is given by applying the
above Lemma 1 as shown in Fig. 4(b).

Inductive step we suppose that S ′k 7→∗ S ′C′ and Sn−1 7→∗ SC′ and by induc-
tive hypothesis we suppose also that S ′C′ ' SC′ , which means that S ′k and
Sn−1 are joinable. In the following, we distinguish two possible cases for the
transition Sn−1 7→∗ SC′ :
Sn−1 7→0 SC′ : in this case Sn−1 ' SC′ which means that the same rule can

be applied to both Sn−1 and SC′ .
Sn−1 7→l SC′(l > 0): the proof is given by a direct application of Lemma 1

to the states Sn and S ′C′ or SC′ as depicted in Fig. 4(c). ut

Corollary 1 (closedness yields confluence). A (possibly non-terminating)
strongly closed CHR program is confluent.

Proof. The proof of this corollary follows directly from Theorem 2 and Theo-
rem 3. ut

The following example is an application of the previously obtained results.

Example 7 (strongly confluent dining). In the case of the dining philosophers
example we can now investigate the critical pairs for their strong closedness.

Beginning with the first critical ancestor state S = 〈ph1(think) ∧ c1 ∧ c3 ∧
ph3(think) ∧ c2,>〉 we get the critical pair (S1,S2) = (〈ph1(eat) ∧ ph3(think) ∧



SI

k

��		
		

		
		

		
		

		
		

�
1

$$H
HHHHHHHHH S6

1

zzvvvvvvvvvv �
1

$$H
HHHHHHHHH

S1I

∗

��	
	

	
	

	
	

	
	

S ′1
�

ε
##G

G
G

G
G

SCR S17

∗
{{w

w
w

w
w

S ′k �

ε
##H

H
H

H
H S ′C ' SC

S ′C ' SC

(a) (b)

SF

k−1

����
��

��
��

��
��

��
��

	
1

$$I
IIIIIIIII SE

k−1

����
��

��
��

��
��

��
��



1

$$J
JJJJJJJJJ

S1I

∗

��	
	

	
	

	
	

	
	

S1H

∗

���
�

�
�

�
�

�
�

S ′k−1_

1

��

	

0
$$I

I
I

I
I

S ′k−1




1 %%J
J

J
J

J_

1

��

S ′k S ′C ' SC
�

1
oo S ′C′ ' SC′

_

∗

���
�
�
�
�
�
�

S ′k 


ε
%%J

J
J

J
J SCR

S ′C ' SC

(c) (d)

Fig. 3. Proof diagrams of Lemma 1



S6
k

zzvvvvvvvvvv �
n

$$H
HHHHHHHHH SG

k

����
��

��
��

��
��

��
��



1

$$JJJJJJJJJJJ

S ′k
�

∗
##G

G
G

G
G

Sn6

∗
{{v

v
v

v
v

S1H

∗

���
�

�
�

�
�

�
�

S ′C ' SC S ′k
	

ε
$$I

I
I

I
I

Lemma 1

S ′C ' SC

(a) (b)

S4
k

yyttttttttttt �
n−1

''OOOOOOOOOOOO

S ′k
	

∗
$$I

I
I

I
I

Ind. Hyp. Sn−10

lxxp p p p p p 	
1

$$I
II

II
II

II
I

S ′C′ ' SC′

�

ε
&&N

NNNNN
Lemma 1 Sn5

∗
zzu

u
u

u
u

S ′C ' SC

(c)

Fig. 4. Proof diagrams of Theorem 3



c2,>〉, 〈ph1(think) ∧ c1 ∧ ph3(eat),>〉) by applying rules p1 and p3 respectively.

Strong confluence follows directly from S1
p′
17→ S and S2

p′
37→ S. Note that this

already proves both symmetric cases needed for strong confluence of the critical
pair. The other two similar critical ancestor states can be shown to be strongly
confluent analogously. Also for the unreachable states, which include multiple
phi(i = 1, 2, 3) or ci(i = 1, 2, 3) constraints, strong confluence is given by apply-
ing the appropriate r′i rules, and thus it follows from Corollary 1 that the dining
philosophers program is confluent.

4 Conclusion

In this work we revisited existing results about confluence for terminating CHR
programs and investigated confluence for non-terminating programs. Applying
the Strong Church-Rosser property to Constraint Handling Rules we are able to
give a criteria for confluence of non-terminating CHR programs.

As confluence in general is undecidable it is important to note that only the
subset of strongly closed CHR programs can be shown to be confluent using our
theorem. However, due to possible non-termination an automated test for strong
closedness is not possible, such that the SCR property has to be investigated
manually as shown in the previous example.

Research on confluence in CHR is an ongoing endeavor. A current result by
Duck, et.al. [14] on observable confluence suggests that a stricter definition of
critical pairs could be found, as the considered set of critical pairs is often based
on unreachable ancestor states. As an example of this result consider the critical
ancestor states of the dining philosophers Example 4 again.

Confluence is also considered by the CCP community. For example [15] de-
fines simple denotational semantics for subsets of CCP programs adding restric-
tions on the notion of choice or requiring confluence. Furthermore, confluence is
actively being investigated by the term rewriting community [2, 3].

Due to the many available results for term rewriting systems it may prove
valuable to investigate their application to CHR, as we did here for the strong
Church-Rosser property. In order to ease this process a formal embedding of
term rewriting systems in CHR could be of help. Furthermore the results given
in this paper could be extended to general CHR programs, including propagation
and simpagation rules. It may also be worthwhile to explore syntactical criteria
for strong closedness, as this would allow for an efficient automated confluence
test detecting confluence of a subset of the strongly closed non-terminating CHR
programs.

Acknowledgments

The authors wish to express their gratitude to Thom Frühwirth and Maurizio
Gabbrielli for the initial suggestion, helpful discussions, and supervision. We
are grateful for comments from the anonymous referees, and we want to thank
Hariolf Betz for his tireless endeavors to improve the quality of the paper’s
parlance.



References

1. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems: Abstract properties and applications to term rewriting systems.
Journal of the ACM 27(4) (1980) 797–821

2. Gramlich, B., Lucas, S.: Generalizing Newman’s Lemma for left-linear rewrite
systems. In Pfenning, F., ed.: Proc. 17th Int. Conf. on Rewriting Techniques and
Applications (RTA’06), Seattle, Washington, USA, August 12-14, 2006. Volume
4098 of Lecture Notes in Computer Science., Springer-Verlag (2006) 66–80 ISBN:
3-540-36834-5; DOI: 10.1007/11805618.

3. Gramlich, B.: Confluence without termination via parallel critical pairs. In: Col-
loquium on Trees in Algebra and Programming. (1996) 211–225

4. Abdennadher, S., Frühwirth, T., Meuss, H.: Confluence and semantics of constraint
simplification rules. Constraints 4(2) (1999) 133–165

5. Abdennadher, S.: Operational semantics and confluence of constraint propagation
rules. In: Principles and Practice of Constraint Programming. (1997) 252–266

6. Frühwirth, T.: Constraint Handling Rules - the story so far. In: Principles and
Practice of Declarative Programming 2006 (PPDP’06), Venice - Italy (July 2006)
Invited Tutorial.

7. Frühwirth, T.: Parallelizing union-find in constraint handling rules using confluence
analysis. In: International Conference on Logic Programming. (2005)

8. Meister, M.: Fine-grained parallel implementation of the preflow-push algorithm
in CHR. In: WLP. (2006) 172–181

9. Frühwirth, T.: Theory and practice of Constraint Handling Rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3) (October
1998) 95–138

10. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer-
Verlag (2003)

11. Lloyd, J.W.: Foundations of Logic Programming. Springer - Verlag (1987) Second,
Extended Edition.

12. Newman, M.H.A.: On theories with a combinatorial definition of “equivalence”.
Annals of Mathematics 43(2) (1942) 223–243

13. Meuss, H.: Konfluenz von Constraint Handling Rules-Programmen. Diplomar-
beit/diploma thesis, Institute of Computer Science, LMU, Munich (1996)

14. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for constraint
handling rules. In: International Conference on Logic Programming (to appear).
(2007)

15. Falaschi, M., Gabbrielli, M., Mariott, K., Palamidessi, C.: Confluence in concurrent
constraint programming. Theoretical Computer Science 183(2) (1997) 281–315


