
Constraint-Based Hardware Synthesis

Andrea Triossi1, Salvatore Orlando1, Alessandra Raffaetà1, Frank Raiser2, Thom Frühwirth2
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Abstract. We propose a high-level hardware description environment which aims at re-
ducing the gap between application design and the well-established hardware description
frameworks. Our motivations rise from an explicit demand for design representation lan-
guages at a higher abstraction level with respect to the ones currently adopted by hardware
system engineering. A candidate solution can be identified in the constraint programming
paradigm. In particular our work investigates the possibility of synthesising special-purpose
hardware devices starting from the Constraint Handling Rule formalism. Our method can
be used to guide the development of a prototype source-to-source compiler capable of pro-
ducing, from a constraint based expression, compliant Hardware Description Language code.
This paper includes a prototype implementation that allows for efficient parallel execution
of multi-set constraint rewrite rules.

1 Introduction

The traditional hardware design flow usually begins with a high level application description,
goes through a Register Transfer Level (RTL) model and ends in a gate-level netlist that can
be directly mapped into hardware. While the second translation (from the RTL model to the
gate-level specification) is commonly taken by a synthesiser there is still no standard practice for
the first translation. Hardware Description Languages (HDLs), such as VHDL [19] and Verilog
[18], are a well proven and established standard for hardware design, but force the designer of
Application Specific Integrated Circuits (ASICs) to think at the RTL level for which HDLs are
the perfect match. In other words, HDLs are characterised by a low level of abstraction: HDL
is for hardware what assembly is for software. Although silicon process technology continues to
evolve at an accelerated pace, design automation technology is now seen as the major technical
barrier to progress. Furthermore integrated devices may well contain several processors, memory
blocks or accelerating hardware units for dedicated functions that are more related with software
architecture than low level HDL representations.

The motivation of introducing a new hardware modelling language primarily relies on the
changing nature of the systems under design. The standard design approach of dividing the func-
tionalities into hardware and software has led to a firm distinction between the programming
languages adopted to describe the systems. Besides the clear advantage of moving from HDL to
a high level language, we should take into account the benefit introduced by a reconfigurable
programming environment. Reconfigurable computing is intended to fill the gap between hard-
ware and software, achieving potentially much higher latency related performance than software,
while maintaining a higher level of flexibility than hardware [4]. In order to obtain these per-
formance benefits, reconfigurable systems are usually formed by a combination of reconfigurable
logic and a general-purpose microprocessor. The processor performs the operations that cannot
be done efficiently in the reconfigurable logic, such as data-dependent control, network tasks and
possibly memory accesses, while the computational cores are mapped to the reconfigurable hard-
ware. Field Programmable Gate Arrays (FPGAs) are an instance of dynamically programmable
hardware: they are devices containing programmable interconnections between logic components,
called logic blocks, that can be programmed to perform complex combinational functions. Software
engineers can program FPGA by using a reconfigurable programming language and the reconfig-
urable compiler can provide an architecture-independent developing platform. We can mention, for
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example, Impulse-C [20] and Mitrion-C [21] as commercial reconfigurable programming languages
that increase software productivity [6].

Our goal is to synthesise hardware starting from a language at a level higher than that of
the commonly used behavioural HDLs in order to let the programmer to easily focus on system
behaviour rather than on low level implementation details. The design procedure identified in [10]
can be applied to a declarative paradigm rather than traditional imperative languages, inherit-
ing all the well-known benefits for the programmer. In [12], the sentence “algorithm = logic +
control”, gave rise to a number of logic programming languages where only the meaning of the
program needs to be expressed, while the control is generated by the compiler resulting in efficient
executions. We will apply these principles to hardware choosing as input language the rule-based
formalism Constraint Handling Rules (CHR) [8]. Its plane and clear semantics make it suitable
to be directly implemented in hardware. One of the most important advantages of CHR towards
this purpose relies on the fact that it is already structured for concurrent computations, thus
matching the parallel characteristics of the target gate-level hardware, because it does not provide
for backtracking search but it rather employs guards that are used to commit to a single possibil-
ity without trying the other ones. Guards can be also used for synchronisation among processes
solving different goals. When a goal cannot be rewritten, the process solving this goal does not
fail but it is blocked until, possibly, other processes will add the constraints that are necessary to
entail the guard of an applicable clause.

Clearly our work can be also used as a complement of existing well-established frameworks. Our
CHR-based system for hardware specification can be exploited, for example, as a way to rapidly
verify if a program is correct and then to write an effective and efficient procedural description. On
the other hand we aim at finding a hardware model that can execute a software specification rather
than to specify hardware design from a software description (like other declarative frameworks cited
in Section 2). While an algorithm-level hardware description can often be useful, we are aware
of the importance for the user to retain full control of the fine grained specifications whenever a
particular need arises. Hence our framework is developed taking into account the possibility of
merging standard HDL and high-level programming language (CHR) compiled into synthesizable
HDL.

The remainder of this paper is organised as follows. In Section 2 several approaches to high level
synthesis are illustrated. The proposed hardware implementation is described in Section 3 while
the experimental results are discussed in Section 4. Section 5 draws some concluding remarks.

2 Related work

With the aim of achieving a higher level of abstraction in hardware description and bringing
closer to the hardware level programming languages commonly used for software design, two major
approaches were pursued in the last decade: extending hardware description languages including
VHDL and Verilog, and extending programming languages including C and C++.

The first approach ultimately resulted in SystemVerilog [23] and extensions to VHDL that
improve simulation performance and hardware verification, and they help the synthesis process
only by adding modeling interfaces. Indeed they come with the infrastructure needed for designing
advanced testbenches, such as constrained-random stimuli generation, functional coverage, and
assertions, but programmers still have to own a strong hardware background if they want to use
them as hardware description environment.

The second line of research led to SystemC [22], a set of C++ classes and macros, which
enable a designer to simulate concurrent processes using plain C++ syntax. SystemC has semantic
similarities to VHDL and Verilog, but it has a syntactical overhead compared with these languages
when used as a hardware description language because it is intended mainly for specification,
architectural analysis, testbenches, and behavioural design. Furthermore skepticism about the
usefulness of C++ design flow is expressed in [9] where the concern about the rising gap between
the models and the synthesis is pointed out. Especially block-level designers explain that C++
is not the right direction for HDL development because synthesis and verification impose much
stronger requirements on the language.
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On the side of functional languages we can count a large number of successful approaches to
hardware description. Since the 80s one of the most popular domains in which functional languages
have been extensively used is hardware design [16]. General purpose functional languages, like
Haskell, have been widely used as host languages for embedding HDL [3, 13]. Other examples
of declarative hardware oriented languages are Pebble [14] or Ruby [11] that support structural
descriptions based on abstractions such as blocks and their interconnections. They allow the user
to focus on the essential structure of the system describing parameterised design concisely thanks
to features such as iterative descriptions and static recursion in the circuit design. These extensions
provide simple meta-languages that help programmers to deal with complex circuits rather than
using a poor structural HDL.

Logic programming and especially Prolog are used as formalisms for hardware design specifica-
tion and verification as well. The work [5] illustrates how the essential requirements of a HDL are
satisfied using fundamental features of Flat Concurrent Prolog and how it can overcome known
disadvantages of common HDL like overloading, verbosity or the lack of composite if statement.
More recent approaches [2, 1] present a Prolog-based hardware design environment based on a high-
level structural language called HIDE+. Such language was developed with the precise purpose of
filling the gap of the structural HDL languages that can deal only with small circuits. Indeed the
HDL description tends to be very complex due to the need of making all the connections explicit.

3 Hardware blocks construction

In this section we discuss the main ideas behind our CHR-based hardware specification approach.
We aim at translating CHR rules into VHDL behavioural model of hardware modules, which di-
rectly manipulate constraints, and which can be synthesised in a specific technology using existing
logic-level synthesis tools.

3.1 The CHR subset covered

Since the hardware resources can be allocated only at compile time (dynamic allocation is not
allowed in hardware due to physical bounds), we need to know the largest number of constraints
that should be kept in the constraint store. It is not trivial to foresee the maximum number of
constraints to be stored during computation. Thus in order to establish an upper bound to the
growth of constraints, we consider a subset of CHR, which does not include propagation rules.
Programs are composed of simpagation rules of the form:

rule @ c1(X1), ..., cp(Xp)\cp+1(Xp+1), ..., cn(Xn)⇔ (1)
g(X1, ..., Xn) | Z1isf1(X1, ..., Xn), ..., Zmisfm(X1, ..., Xn), ci1(Z1), ..., cim(Zm).

where Xi (i ∈ {1, . . . , n}) can be a set of variables and the number of body constraints is less or
equal than the number of constraints removed from the head (m ≤ n − p) and no new type of
constraints is introduced: {i1, . . . , im} ⊆ {p+1, ..., n}. In this way the number of constraints cannot
increase and the constraint store can be bounded by the width of the initial query. Moreover, the
rule is in head normal form: all the arguments in the head of the rule are variables and variables
never occur more than once (all equality guards implicitly present in the head are written explicitly
in the guard).

We recall that the semantics of a simpagation rule is the following: if the guard g is true, the
first part of the head, c1(X1), . . . , cp(Xp), is kept while the second one, cp+1(Xp+1), . . . , cn(Xn), is
removed, and the constraints in the body ci1(Z1), . . . , cim

(Zm) are added to the constraint store.

Example 1. We consider, as running example, the following program which computes the greatest
common divisor (gcd) between two integers using the Euclid’s algorithm.

R0 @ gcd(N) <=> N = 0 | true.
R1 @ gcd(N) \ gcd(M) <=> M>=N | gcd(M-N).
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(a) (b)

Fig. 1. (a) Hardware design scheme (b) Optimisation model for gcd

Rule R0 states that the constraint gcd with the argument equal to zero can be removed from the
store, while R1 states that if two constraints gcd(N) and gcd(M) are present, the latter can be
replaced with gcd(M-N) if M>=N.

It is clear that the number of constraints remains bounded during the computation. Indeed the
first rule, if applied, removes a constraint from the store, instead the second removes a constraint
and adds a new one, thus leaving the total number of constraints unchanged.

3.2 Principles of the hardware blocks

The framework we propose is logically divided into two parts:

1. Several hardware blocks representing the rewriting procedure expressed by the program rules.
2. An interconnection scheme among the blocks specific for a particular query.

The first one realizes the hardware needed to compute the concurrent processes expressed by the
CHR rules of the program while the second one is intended for reproducing the query/solution
mechanism typical of constraint programming.

As depicted in Fig. 1(a) we call Program Hardware Block (PHB) a collection of Rule Hardware
Blocks (RHBs) generated by each rule of the CHR program. The proposed approach considers
the constraints as hardware signals and the arguments as the values that signals can assume. The
initial query can be directly placed in the constraint store from which several instances of the PHB
concurrently retrieve the constraints working on separate parts of the store and after computation
they replace the input constraints with the new ones. A Combinatorial Switch (CS) sorts and
assigns the constraints to the PHBs taking care of mixing the constraints in order to let the rules
be executed on the entire store. The following paragraphs explain in details the construction of
the blocks.

Rule Hardware Blocks The hardware corresponding to the CHR rule (1) has as inputs n signals
that have the value of the variables X1...Xn (all the arguments of the head constraints). If X1...Xn

are sets of variables we use vectors of signals (records in VHDL). The computational part of the
RHB is given by the functions f1...fm that operate on the inputs and the resulting outputs signals
have the value of the variables X1...Xp and Z1...Zm.

We exploit the basic VHDL concurrent statement called process to translate the computational
part of any rule to a sequential execution. Indeed each rule can be mapped in a single clocked
process containing an if statement over the guard variables.

In order to take into account the possibility of a reduction of the number of constraints during
the computation, each output signal for a given constraint is coupled with a valid signal that
states to the following components whether to ignore the signal related to such constraint or not.
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Fig. 2. The Rule Hardware Blocks for the gcd rules.

Example 2. Fig. 2 sketches the RHBs resulting from the two rules of the gcd program introduced
in Example 1. Notice that each constraint is associated with two signals: one contains the value of
the variable of the constraint (the solid line), and the other one models its validity (dashed line).

The block in Fig 2(a), that corresponds to R0, has as input, the value for variable N together
with its valid signal. It performs a check over the guard and if the guard holds the valid signal is
set to false whereas the value of the gcd signal is left unchanged. This simulates at the hardware
level the removal of a constraint from the constraint store.

The block in Fig 2(b) is the translation of the second rule of gcd. It consists of four input signals,
i.e. the values for the variables N and M with their valid signals. In this case the valid signals remain
unchanged. If the guard holds the value of the signal for the second input constraint is replaced
with Z = M-N while the value of the first one is not modified. If the guard does not hold the outputs
of the block coincide with the inputs. The computational part is carried out by the subtraction
operator.

Program Hardware Block The PHB is the gluing hardware for the RHBs: it executes all the
rules of the CHR program and hence it contains all the associated RHBs. PHB takes as input the
two global input signals clk and reset used for synchronising and initialising purposes. It provides
for the finish control signal used to denote when the outputs are ready to be read by the following
hardware blocks. The RHBs keep on applying the rule they stand for till the output remains
unchanged for two consecutive clock cycles.

It is worth stressing that in the hardware each constraint is represented as a different signal. If
the head of a rule contains more than one constraint of the same type, the corresponding signals
must be considered as input in any possible order by a RHB encoding the rule. This is obtained
by replicating RHB a number of times equal to the possible permutations of the constraints of
the same type. Finally we have to guarantee that only one copy of the RHB can execute per clock
cycle.

Example 3. Let us consider rule R1 described in Example 1. Two instances of gcd are present in
the head of the rule and hence two signals are created respectively with value N and M and they
are the inputs of the RHB. Due to the guard of R1 these inputs feed a comparator that checks
if the value of the second signal is greater or equal than the first. If the condition is satisfied the
value of the second signal is replaced by the result of the subtractor that has as inputs the two
signals. Now consider the case in which N is greater than M, the rule can fire as well because the
head constraints are of the same type and so they can be swapped. For this reason PHB has to
contain another copy of the RHB that executes such rule but with inputs in reverse order (see
Fig. 3).

The PHB level is also used to set the rules parallelisation at the basis of the computation. As we
said each rule is executed by one or more concurrent processes that fire synchronously every clock
cycle. Therefore we exploit the notion of strong parallelism of CHR, introduced in [7], assuming
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Fig. 3. The Program Hardware Block for the gcd program

that rules can work on common constraints at the same time if they do not rewrite them. If two
rules try to change the same constraint then we cannot parallelise and we need to execute them one
after the other if the latter is still applicable. According to the theoretical operational semantics
[8], we can state that the provided rule application is fair since every rule that could fire does it
every clock cycle or in the worst case in the subsequent cycle.

Combinatorial Switch A further level of parallelisation is achieved replicating the PHBs into
several copies that operate on different parts of the global constraint store. PHBs can compute
independently and concurrently because they are attempting to rewrite different constraints. Al-
though they process data synchronously, since they share a common clock, it is not required that
they terminate computation at the same time. Indeed the CS acts as synchronisation barrier let-
ting the faster PHBs wait for the slower ones. It is also charged to manage communication among
hardware blocks exchanging data between themselves: once all the PHBs have provided their re-
sults, it reassigns the output signals as input for other PHBs guaranteeing that all the permutation
between them are covered. Exploiting the fact that the number of constraints cannot increase, the
CS works directly on the signals coming from the PHB, but there are no impediments to retrieve
the constraints from an external memory if the space capacity of the FPGA is not sufficient. In
practice the implementation of this interconnection element relies on a signal switch that sorts
the n query constraints according to all the possible k-combination on n (where k is the number
of inputs to the single PHB) and connects them to all the inputs of the PHBs. Implementing
CS as a finite state machine leads to a total number of states S equal to the number of possible
combinations divided by the number of concurrent PHBs:

S =

(
n
k

)
n/k

=
∏k−1

i=1 n− i

(k − 1)!

Example 4. The gcd program presented in Example 1 shows that we can implement in hardware
the Euclid’s algorithm at the behavioural level, i.e., it describes a system in terms of what it
does rather than in terms of its components and interconnections. Instead, here we illustrate an
example of structural hardware design which shows the hardware granularity achievable generating
the VHDL code for the basic building block of sequential circuits directly implementable in FPGA.
According to the general scheme for rules representation described above, the following CHR rule
implements the D flip-flop, the elementary memory block capable of storing the value of a signal:

d(X) \ q(_) <=> q(X).
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Fig. 4. 2-bit counter circuit

where d/1 and q/1 stand for the input and the output signals of the D flip-flop. The q constraint
is rewritten every time a d constraint is present, as in the D flip-flop, every clock cycle, the value
of the output is replaced by the value of the input.

By using again the idea that the removal and the introduction of the same constraint corre-
sponds to the memory refresh we can implement more complex circuits. The following two lines
code describes the hardware circuit of a two-bit counter represented in Fig. 4:

b0(X) <=> Z is (not X), b0(Z).
b0(X) \ b1(Y) <=> Z is (X xor Y), b1(Z).

where not and xor are operators predefined in HDL (built-in) that are used to implement the
combinatorial logic part of the circuit.

4 Experimental results

We use the automatically generated hardware blocks described in Section 3 to implement in FPGA
the running example presented in Example 1 to find the greatest common divisor at most of 128
integers. The resulting hardware design relies on 64 PHBs deriving in parallel the gcd while the
CS pairs the constraints in a round robin tournament scheme where each constraint is coupled
once with each other. For comparison purposes we implement the same algorithm directly in
behavioural VHDL using a knockout system where we compute the gcd in parallel of 64 pairs then
of 32 and so on. Both hardware specifications are then synthesised and simulated with ISim the
Xilinx ISE simulator at 100MHz reference clock frequency. Fig. 5 reports the execution times for
16, 32, 64 and 128 1-byte integers. The two FPGA implementations are labelled respectively as
FPGA (CHR) and FPGA (VHDL). The curve labelled CPU refers to the computational time of the
CHR gcd program running on Intel Xeon 3.60GHz processor with 3GB of memory. It is displayed
just for an order of magnitude reference since we cannot compare them due to the completely
different hardware nature.

The plot clearly shows how the execution time can increase to more than an order of magnitude
with respect to the VHDL solution. This effect is primarily due to the fixed nature of the CS that
can not reduce the number of possible combinations when the number of constraints decreases.
In Section 4.1 we address this issue suggesting an optimisation for rules that have the property of
strong parallelism like in the gcd case. The outcome of such optimisation is also reported in Fig. 5
(labelled as FPGA (CHR) Opt.) and it exhibits a relevant reduction of the execution time. Notice
that the VHDL implementation leads to an execution time almost constant due to the complete
parallelism achievable by hardware. We do not observe a super-linear trend in our implementation
like the one noticed in [17] because the derivations of each pair of gcd constraints do not interfere
each other. Finally we should notice that the resulting highest frequencies of operation are all
above 250 MHz and up to 350 MHz, which is quite good for a non pipelined architecture.

Analogous results are obtained on a different example, namely the implementation of Floyd-
Warshall algorithm aimed at finding the length of the shortest paths between all pairs of vertices
in a weighted graph. A procedural version of the algorithm is the following:
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1 for k=1 to N
2 for i=1 to N
3 for j=1 to N
4 di,j=min(di,j ,di,k+dk,j)

where di,j are the elements of the matrix representing the graph. In CHR the algorithm can be
expressed as a simple rule with three constraints in the head standing for three edges that should
be taken into account for the minimum computation:

edge(I,K,D1), edge(K,J,D2) \ edge(I,J,D3) <=>
D3>D1+D2 | D4 is D1+D2, edge(I,J,D4).

From such rule our method generates a simple PHB that has as inputs and outputs three terns of
signals that are respectively: the source, the destination and the weight of the edges. Depending
on the query dimension n a CS with 1

2 (n− 1)(n− 2) states assigns the constraints to bn
3 c PHBs.

In Fig. 6 we compare our implementation with the VHDL based one described in [15] derived
by a logic-level specification. As we can see from the plot, our implementation exceeds the best
handcrafted design only by less than one order of magnitude and at the same time it delivers a high
degree of flexibility: you can manipulate a one-line code rather than rearrange a fixed architecture
of hundreds of lines.

4.1 Optimisation

Besides the general framework described in Section 3 we want to propose an optimisation in order
to speed up the computation in presence of algorithms that considerably reduce the number of
constraints during computation. In such cases it is worth noting that a CS, that simply combines
all the constraints in all the possible combinations, is highly inefficient. In fact many constraints
that are marked as not valid by the PHBs still continue to be shuffled by the CS uselessly. To face
this issue we rely on the possibility of exploiting the strong parallelism property directly on the
whole constraint store and not only on portion of it like the PHBs do. We need a new hardware
block charged to combine, in parallel on several PHBs, the kept constraints with different sets of
removed constraints. An example of such device can be provided optimising the CS obtained by
the implementation of the gcd rules. Fig 1(b) shows a possible implementation for a five constraints
query but the design can be easily increased linearly with the number of constraints. It relies on
a circular shift register preloaded with the query constraints and with one cell connected to all
the first input (kept constraint) of the PHBs and all the others connected to the second input
(removed constraint) of each PHBs. Each time the PHBs terminate their computation the new
output constraints replace the old ones in the shift register and they shift until a valid constraint
fills the first position of the register (we skip the steps with a not valid constraint in the first
position). Using this topology there is no need to implement multiple instances of the same rule
at the PHB level (see Section 3.2): indeed now the order of the input constraints matters because
one is the kept gcd and the other is the removed one. As consequence, apart from the first PHB,
the output carrying the kept constraint can be left disconnected because it refers always to the
same constraint.

5 Conclusion

We described the general outline of an efficient hardware implementation of a CHR subset able
to comply with the restricted bounds that hardware imposes. The level of parallelisation achieved
provides a time efficiency comparable with that obtained with a HDL design. At the same time, the
proposed solution offers a more general framework reusable for a wide range of tasks. Additionally,
it was shown that, applying the same hardware generation technique to CHR with HDL built-in
operators, we obtain elementary hardware blocks that can be easily integrated with existing HDL
code.
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Further optimisations applicable also to problems where the number of constraints does not
necessarily decrease during the computation will be object of future works; however an important
challenge would be the hardware implementation of complex programs as well. A general treatment
of rules dependency at the PHB level is still missing and only appropriate considerations on rules
interaction can lead to a hardware performing parallel execution, pipelining and balancing out
circular dependencies. These studies can eventually open the doors to the production of a source-
to-source compiler that takes as input CHR and carries out a structural hardware description in
HDL ready for a synthesis tool.
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