
Außergewöhnliche Features in unüblichen
Sprachen

Prof. Dr. Matthias Tichy1, Stefan Kögel1

1Institute of Software Engineering and Compiler Construction
Ulm University

Ulm, 15.10.2015



Introduction

• Seminar (Bachelor & Master)
• Supervisor: Stefan
• Interesting languages/topics that lack mainstream attention
• State of the art (known since 1970)



Requirements

• Curiosity
• Independence
• Programming knowledge
• English skills



Goals

Learn to:
• Think outside the box
• Read papers/do research
• Write a scientific work
• Hold a presentation
• Use arcane technology to solve real world problems



What you need to do

• Keep the deadlines
• Write a good essay (10-12 pages)
• Presentation (20 minutes) + Discussion (10 minutes)
• Participation
• Don’t plagiarise



Contents of your essay

• Motivation
• Explanation
• Example
• Research/Literature (at least three papers or books)
• Applications?
• English is preferred, if possible (Please use a spell checker)



Important Dates & Deadlines

15.10. Einführungsveranstaltung (heute)
21.10. Vortrag Wissenschaftliches (aus)arbeiten
8.11. Deadline Gliederung & Quellen

9.-13.11. Besprechung Gliederung & Quellen
13.12. Deadline Abgabe 1te Version & Peer-Reviewstart
20.12. Deadline Abgabe Peer-Reviews
13.01. Vortrag Präsentieren für Dummies
17.01. Deadline Abgabe verbesserte Version

18.-22.01. Besprechung verbesserte Version
7.02. Deadline Abgabe finale Version

8.-12.02. Präsentationen



Erlang

-> Concurrency oriented programming
-> Supervision trees
-> Let it crash

-> How does concurrency work?
-> How are errors/failures handled?
-> Best practices?
-> Differences to other languages/platforms?



Cyclone/Rust

; Systems programming language developed
by Mozilla

; Memory safe replacement for C++?
; Regions/lifetimes

; What are regions/lifetimes?
; How is memory safety accomplished? Any

trade-offs?
; No more segfaults?
; How does this interact with concurrency?



Agda
λ Dependent types
λ Lift values to the type level
λ You should know some

Haskell!

λ What are dependent types
and how do they work?

λ No more
ArrayIndexOutOfBounds?

λ How do you work with
Agda?

λ Applications outside of
academia?

http://learnyouanagda.liamoc.net/

head : {A : Set}{n : Nat} -> Vec A (suc n) -> A
head (x :: xs) = x



Clojure/Scala

() Immutable data structures
() Concurrency made simple, not easy

() How do those structures work?
() What are the trade-offs?
() How are they used in practice?

(Especially in concurrent settings)



Haskell/Lisp

λ Meta programming

λ What is it good for?
λ How does it work?
λ How does it interact with type safety?
λ Example applications?

Wait, haven’t I already heard of this? Wasn’t this invented in like
1970 by a language wit Lots of Irritating and Superfluous
Parenthesis?



Haskell/Rust

λ Algebraic data types
λ Making illegal states unrepresentable

; How does it work?
; No more NullPointerExceptions?
; Example applications? Solved Problems?
; Usage in other languages/designs?



Java Modelling Language
@ Contracts

@ How does it work?
@ What kind of problems does it catch?

Which does it miss?
@ Real world applications?
/*@ public normal_behavior
@ requires y >= 0;
@ ensures \result * \result <= y
@ && y < (Math.abs(\result) + 1)
@ * (Math.abs(\result) + 1);
@*/

public static int isqrt(int y)
{
return (int) Math.sqrt(y);

}



Topics

Erlang concurrency & error handling
Cyclone/Rust memory safety (regions/lifetimes)

Agda dependent types
Clojure/Scala immutable data structures
Haskell/Lisp meta programming

Haskell/Rust type system
Java Modelling Language contracts



End

Thanks for coming.

Any questions left?


