
Unified Syntax for Abstract State Machines

Paolo Arcaini2(B), Silvia Bonfanti3, Marcel Dausend1, Angelo Gargantini3,
Atif Mashkoor4, Alexander Raschke1, Elvinia Riccobene5, Patrizia Scandurra3,

and Michael Stegmaier1

1 Ulm University, Ulm, Germany
{marcel.dausend,alexander.raschke,michael-1.stegmaier}@uni-ulm.de

2 Faculty of Mathematics and Physics,
Charles University in Prague, Prague, Czech Republic

arcaini@d3s.mff.cuni.cz
3 Università degli Studi di Bergamo, Bergamo, Italy

{silvia.bonfanti,angelo.gargantini,patrizia.scandurra}@unibg.it
4 Software Competence Center Hagenberg, Hagenberg im Mühlkreis, Austria

atif.mashkoor@scch.at
5 Università degli Studi di Milano, Milano, Italy

elvinia.riccobene@unimi.it

Abstract. The paper presents our efforts in defining UASM, a unified
syntax for Abstract State Machines (ASMs), based on the syntaxes of
two of the main ASM frameworks, CoreASM and ASMETA, which have
been adapted to accept UASM as input syntax of all their validation and
verification tools.

1 Introduction and Goals of the Project

Abstract State Machines (ASMs) are a flexible, yet mathematically well-founded
method and language for rigorous system engineering. The formalism can be seen
as “pseudocode over abstract data” [2]. Although this pseudocode notation is
formally defined, in practice many ways exist to encode algebraic concepts and
many abbreviations can be used to improve model conciseness and readability.

Among the different frameworks for the ASM method (like AsmL, ASM
Workbench, ASMGofer, KIV), two of the main ones are ASMETA [1] and Core-
ASM [4]. These platforms provide industrial strength tools to specify, verify,
simulate, and test ASM models. However, they implement different dialects of
the pseudocode notation and support slightly different extensions of the orig-
inal definition. For example, AsmetaL (the textual notation of the ASMETA
framework [5]) provides the concept of module that is not present in CoreASM,
while CoreASM allows the use of abstract rules, a feature that is not present in

The research reported in this paper has been partly supported by the Charles Uni-
versity research funds PRVOUK, and by the Austrian Ministry for Transport, Inno-
vation and Technology, the Federal Ministry of Science, Research and Economy, and
the Province of Upper Austria in the frame of the COMET center SCCH.

c© Springer International Publishing Switzerland 2016
M. Butler et al. (Eds.): ABZ 2016, LNCS 9675, pp. 231–236, 2016.
DOI: 10.1007/978-3-319-33600-8 14

232 P. Arcaini et al.

AsmetaL. There are some differences on the way they represent signature: Core-
ASM is not typed, and so it permits an agile modeling style, while AsmetaL is
strongly typed. Moreover, the two syntaxes are sometimes slightly different in
representing the same concept: for example, the keyword for a sequential block
is seq ...endseq in AsmetaL and seqblock ...endseqblock in CoreASM.

Therefore, while the availability of multiple support platforms is obviously an
advantage, it may also be confusing for new adopters of the method. Moreover,
designers cannot share models among the tools (unless a translator or adapter
is defined) and thus can not easily take advantage of each tool’s strengths.

To overcome these limitations, the idea of a common syntax definition “Uni-
fied ASM” (UASM), driven by the community, open to any actors, has grown
in the last two years. This paper presents the activities performed so far. The
challenges of this project are both to preserve various useful extensions of the
different tools and support a variety of application scenarios. On the one hand,
the UASM language should be usable for communication with customers and
non-experts, and, on the other hand, precise enough to allow automatic analysis
(like type checking, property verification, etc.). Moreover, we will try to identify
unifying solutions for those ASM aspects for which the two frameworks made
different design decisions. Two examples are the syntax and semantics for state
initialization and the definition of basic data types.

2 Insights into the UASM Grammar

As mentioned in the previous section, the applications of ASMs are manifold.
Due to this, we decided to keep the new common grammar as flexible as possible.
We tried to include as many useful constructs from the contributing languages
as possible, but naturally, some design decisions had to be made.

In order to allow for a more legible specification, UASM offers textual nota-
tions for basic constructs. Instead of keywords for mathematical constructs, we
also allow Unicode characters (e.g., ∈ instead of in, ∀ instead of forall).

UASM does not require type annotations. If no type information is given,
the types are checked dynamically during runtime (e.g., ∗ (multiplication) can
only be applied on two numbers). Whenever type information is required at a
later date, it can be added on demand. If a type information is given, the type
correctness is checked when the specification is parsed. Currently, only a few
basic (boolean, numbers, chars, strings) and set-based types (set, list, bag, map)
are defined. For the future, we plan to integrate a notation for algebraic data
types in order to allow for arbitrary complex (recursive) data types.

The module concept of ASMETA was adopted to allow for a better modu-
larization of large specifications.

UASM also provides definition for some aspects that have been left open up
to now, e.g., the new keyword exec followed by a rule name defines the rule to
be executed by the initial agent. Usually, this rule introduces new agents and
their programs and initializes the abstract state. Alternatively, initial values for
all locations or only specific locations of a function can be described as part

Unified Syntax for Abstract State Machines 233

of its definition (see example below). The defined constructs allow in CoreASM
as well in ASMETA to write and execute multi-agent specifications. Despite of
that, it might be useful in the future to define special constructs for creating,
removing, or assigning programs to agents.

In the following, we introduce an excerpt of the UASM language definition1.
We focus on the definition of functions and their initialization. First, this part
is a substantial supplement to the existing syntax and semantic definition of the
underlying literature; second, this part reflects some design decisions originating
from different existing realizations of ASM languages.

The aforementioned decision that types are optional strongly influences the
UASM language. This is reflected, for example, in the definition of function
parameters that allows identifiers as well as domains or a combination of both.
ParamameterDef ::= ’(’ (Id ’in’ Domain | Id | Domain)

(’,’ (Id ’in’ Domain | Id | Domain))* ’)’

For the initialization of a function, we support a fixed value for all its locations,
or specific location values by using maps and terms. The following example
illustrates these different concepts by the initialization of the controlled func-
tion gateStatus of a rail road crossing that is defined according to the following
definition.
ControlledFunction ::= (.. | ’controlled’ ’function’) IdFunction

ParamameterDef? (’->’ Domain)? (’initially’ ’from’? Term)?

controlled function gateStatus(gate in Gates) initially from

(1) {gate1 → open, gate2 → closed}
(2) if isTrainApproaching(gate) then closed else open

where isTrainApproaching(g) = ∃ s in Sensors with

g ∈ observedGates(s) and trainOnTrack(s)

The above example (1) illustrates how maps can be used to assign different initial
values to specific locations, i.e., gate status for specific gates is different. A more
flexible approach is the dynamic initialization of the state based on derived
functions. In this case, the initialization is done lazily, i.e., before a function is
accessed (read), it is checked whether this particular location has been previously
initialized or updated. If not, the given derived function is evaluated returning
the initial value. Under the assumption that a railroad crossing control module
should take control at a random time, i.e., under different circumstances, we
use this dynamic initialization for the status of the rail road gates (2). The
initial values of gateStatus are computed on demand by the derived function
isTrainApproaching, whose result is based on current sensor data.

UASM allows the declaration and definition of static functions. For instance,
a function sum that takes two integers and returns the sum, can be defined as:

static function sum(a in Integer, b in Integer) always a + b

1 The syntax of our language definition is conform to the W3C EBNF notation.

https://www.w3.org/TR/xquery/#EBNFNotation

234 P. Arcaini et al.

Fig. 1. Static function definition

Several tools can be used to build a visualization of the grammar rules by
means of syntax diagrams (or railroad diagrams)2. For instance, the definition
of static functions is shown in Fig. 1.

3 Re-engineering Existing Tools

In order to allow the CoreASM and the ASMETA frameworks to accept the new
common ASM syntax, we had to do some re-engineering, as described as follows.

Reference Parser and Integration into CoreASM. CoreASM is an open-
source project defining an ASM language implementing tools that focus on high-
level design and experimental validation of ASM specifications.

The CoreASM tool architecture defines a highly modular system based on
a minimal kernel. This architecture enables to seamlessly integrate additional
language constructs as well as tools and yields in manifold extensions and domain
specific applications.

CoreASM’s major strengths are in the creation, refinement, and debugging of
specifications. For example, starting with an abstract and untyped or only par-
tially typed specification that can already be executed, refining this specification,
and performing comprehensive debugging and testing.

As our goal is to provide an easy to read and understandable definition of
the UASM syntax. The current grammar definition is not optimized for auto-
matic processing, yet. It contains ambiguities resulting from i.e., optional end-
constructs and operator precedences which are not reflected by the grammar.
Hence, we are going to derive a grammar definition for UASM that facilitates
automatic processing like using parser generators.

Other than usual bottom-up or top-down parsers, JParsec-Framework can
deal with our grammar definition as it can handle left recursion and it resolves
ambiguities by applying strategies that make parsing deterministic. Therefore,
we implemented a reference parser for UASM using the JParsec-Framework by
merely transcribing our grammar into the JParsec syntax. This parser is already
publicly available3. Because JParsec is a parser combinator, the reference imple-
mentation can be easily extended. We also integrated it into CoreASM without
2 We use the web service http://www.bottlecaps.de/rr/ui.
3 https://github.com/uasm/uasm-reference-parser.

http://www.bottlecaps.de/rr/ui
https://github.com/uasm/uasm-reference-parser

Unified Syntax for Abstract State Machines 235

any limitations to the application of existing tools, e.g., the interpreter and the
debugger [3].

Integration into ASMETA. The ASMETA framework [1] is based on the
ASM Metamodel (AsmM) [5], an abstract syntax description (defined with the
Eclipse Modeling Framework (EMF)) of a language for ASMs. From AsmM, a
concrete textual syntax (AsmetaL), a parser, Java APIs, etc., have been devel-
oped for model editing, storage, and manipulation. On the top of these, more
complex tools for validation, verification, and testing have been developed. They
all manipulate AsmM models (i.e., instances of AsmM). So, in order to use
ASMETA tools on UASM specifications, we must map UASM specifications to
AsmM models.

Fig. 2. UASM and ASMETA integration

We followed the approach shown in Fig. 2. We derived an Xtext grammar
starting from the UASM EBNF grammar (step A); from the Xtext grammar,
a metamodel and a parser have been obtained automatically (step B). Trans-
forming a UASM specification to an AsmM model (bottom of Fig. 2) consists in
parsing the specification with the Xtext parser (step 1), producing an AsmetaL
specification from the ecore objects produced by Xtext (step 2), and finally
obtaining an AsmM model with the AsmetaL parser (step 3).

4 Validation of the Approach

After the integration of UASM in the existing frameworks (see Sect. 3), we have
devised two validation activities that one has to apply to check whether a tool
correctly supports the new syntax. These activities will be initially applied to
CoreASM and ASMETA, but, in the future, to any tool willing to support UASM
(to get a sort of UASM compliance certification).

As a first validation activity, we plan to create a repository of syntactically
correct and non-correct UASM specifications. They should be representative of
the kind of models that can be written in UASM, i.e., they should cover all
grammar elements. We will then check that a UASM compliant tool correctly
accepts/rejects the specifications.

236 P. Arcaini et al.

As a second validation activity, we want to check that the semantics is the
same in any framework. We will establish a way for accepting a sequence of
inputs and saving the machine behavior as sequences of update sets (and out-
puts). Any UASM tool must be able to produce the behavioral sequences in that
format. We will have a way to compare if two behaviors are identical. We will
save, together with the benchmarks, also their expected behaviors and we will
then check if CoreASM and ASMETA (or any other tool) correctly capture the
intended semantics. This approach can only validate deterministic single-agent
ASMs that, given an input sequence, produce only one possible output sequence.
As future work, we plan to devise ways to validate our tools also using nonde-
terministic and/or multi-agents ASMs. In that case, we could record the output
in terms of trees representing all possible evolutions of the system. However, the
approach could not scale or even be not applicable in case of infinite-state mod-
els. A different approach could be to simulate the model with a framework (either
CoreASM or ASMETA) and, step by step, check whether the produced update
set is allowed also in the other framework (in a kind of runtime monitoring).
This approach would have the advantage of being scalable also to infinite-state
systems, although it could miss some faults.

5 Conclusion and Future Work

We have presented our efforts in defining UASM, a unified syntax for ASMs,
based on the syntaxes of the main two ASM frameworks, CoreASM and
ASMETA, which have been adapted to accept UASM as input syntax of all
their validation and verification tools.

As further future work, to check that the two frameworks interpret the UASM
models in the same way, we plan to apply some validation activities based on
comparison of simulation traces. Moreover, we also plan to extend UASM with
constructs not part of the two starting syntaxes, but that are part of other ASM
syntaxes (e.g., classes of AsmL).

References

1. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Experience 41, 155–166
(2011)

2. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

3. Dausend, M., Stegmaier, M., Raschke, A.: Debugging abstract state machine speci-
fications: an extension of coreASM. In: Proceedings of the Posters and Tool Demos
Session, iFM 2012 and ABZ 2012. pp. 21–25 (2012)

4. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: an extensible ASM execution
engine. Fundamenta Informaticae 77(1–2), 71–104 (2007)

5. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a
simulation engine for abstract state machines. J. UCS 14(12), 1949–1983 (2008)

	Unified Syntax for Abstract State Machines
	1 Introduction and Goals of the Project
	2 Insights into the UASM Grammar
	3 Re-engineering Existing Tools
	4 Validation of the Approach
	5 Conclusion and Future Work
	References

