
A Universal Control Construct for Abstract
State Machines

Michael Stegmaier, Marcel Dausend, Alexander Raschke(B),
and Matthias Tichy

Institute of Software Engineering and Compiler Construction, Ulm University,
89069 Ulm, Germany

{michael-1.stegmaier,marcel.dausend,alexander.raschke,
matthias.tichy}@uni-ulm.de

Abstract. Abstract State Machines can be used to specify arbitrary
system behaviour. However, when writing executable specifications one
often has to write additional statements which organise how, e.g., in
which order, the rules are executed. This reduces the readability and
comprehensibility of specifications and can introduce additional defects
to them. We propose a new syntax construct for the specification of
control flow for the ASM language which improves the compactness and
readability of specifications by providing syntactic elements for often
manually realised behaviour. This construct enables to parametrise which
rules shall be selected for execution and how the selected rules are
executed. We illustrate how the control construct can improve the code’s
readability on some examples. The proposed control construct is also
released as a plugin for CoreASM.

Keywords: Abstract State Machines · Control construct · Control flow

1 Introduction

Abstract State Machines (ASMs) (see [5]) allow a formal description of the
functional requirements in the analysis and design phase. They are a state-based
specification language, as they allow to model a software system or hardware
system by states and possible state transitions.

Unlike in finite state machines, states in ASMs don’t have names. They
are general mathematical structures instead. These mathematical structures
are universes (non-empty sets) together with functions operating on the sets.
This underlying mathematical approach leads to an improvement of verifiability
and reusability [3]. They offer a conceptually simple, yet flexible approach for
specifying state transition systems.

In ASMs, control flow is realised through a combination of multiple basic
control constructs. The specification of a semantically complex control flow
is often hard to realise using the basic control constructs and, hence, results
in high nesting depths. High nesting depths increase complexity and therefore
deteriorate readability [15].
c© Springer International Publishing Switzerland 2016
M. Butler et al. (Eds.): ABZ 2016, LNCS 9675, pp. 37–53, 2016.
DOI: 10.1007/978-3-319-33600-8 2

38 M. Stegmaier et al.

In this paper, we propose a universal control construct (UCC) that unites
different step semantics (parallel, sequence, rulebyrule, stepwise) and
conditional blocks such as if, while and iterate. Furthermore, it provides the
possibility to limit the execution of a block to a given number of repetitions which
can be useful for situations like initialisation. Last but not least, it provides a
way to select and execute only a subset of rules which can be useful, for example,
when choosing a strategy or a heuristic for an algorithm or for the simulation
of errors.

In the next section, we review the current support for the specification of
control flow in ASM and identify several shortcomings using concrete examples.
In Sect. 3, we present the proposed control construct, its syntax and its semantics
and compare it to related work in Sect. 4. We conclude the paper in Sect. 5 and
give an outlook on future work.

2 Shortcomings of Current ASM Control Constructs

This section shows some shortcomings of current ASM specifications and
motivates the introduction of a more powerful universal control construct by
means of examples. The meaning of the presented control construct is quite
intuitive for the reader and should be understandable without a precise definition
of the semantics as given in Sect. 3. For better readability we use (parallel)
nesting by indentation.

In complex specifications of real systems, the notion of basic ASMs as a list of
guarded updates fired in parallel often does not fit. Usually, after an initialisation
phase, several steps have to be performed in sequence. Introducing modes is a
common pattern for specifying this behaviour. This class of ASM specifications
is named “control state ASMs” [5]. Mode variables have to be defined and each
rule is guarded by a mode condition such that only one rule is executed per ASM
machine step.

An example for this applied pattern is given in Listing 1. It is the main rule of
the specification of the operational semantics of the control construct proposed
in this paper. The initial value of the mode is assumed to be INIT.

1 rule Main =
2 if mode = INIT then
3 Initialise

4 if mode = SELECT then
5 Selection

6 if mode = PREPARE_EXECUTION then
7 PrepareExecution

8 if mode = EXECUTION then
9 Execution

10 if mode = RESET then
11 Reset

Listing 1. Main rule of UCC specification

One problem of the control state ASM pattern is that it is not easy to extract
the order of modes from the specification. This is because the subsequent modes
are set inside nested guards in separate rules.

A Universal Control Construct for Abstract State Machines 39

In our example, the reader needs the whole specification to gain the insight
that (in this particular case) the INIT mode is executed only once and after
that, the remaining rules are executed rule by rule in an infinite loop.

Our proposed construct aims at overcoming this weakness as shown in
Listing 2. UCC allows for defining that rules are executed only once (at most

1 times) and that the other rules are executed rule by rule per machine step
(stepwise). In this example, the order of modes is non-linear which is also a
common case. Depending on whether a new selection should be made, the mode
following RESET either is SELECT or PREPARE_EXECUTION. This non-linearity
cannot directly be specified using stepwise, therefore the guard in line 6 is
needed. If this guard evaluates to false the conditional rule is treated as a
skip. Thus, the UCC forces the user to make the condition under which rules
are executed more explicit and more visible. Obviously, this circumstance is not
always an advantage. In specifications realising very complex automata it might
be better to not linearise the sequence of the modes.

1 rule Main =
2 perform always stepwise
3 perform at most 1 times
4 Initialise

5 end
6 if shouldSelect then
7 Selection

8 PrepareExecution

9 Execution

10 Reset

Listing 2. Improved Main rule using UCC

Another example for better readability of specifications by hiding technical
(yet necessary for execution) details is given in Listing 3. For testing and
demonstration purposes, the specified system behaves normally or it simulates
a subset of three different errors. The current behaviour shall be chosen non-
deterministically for each step. Listing 3 specifies an environment for a safety-
critical system that should be able to cope with different kinds of errors. An
arbitrary subset of the error simulating rules is chosen and executed in parallel.
If there was no error the environment should behave normally.

1 choose errorsToSimulate ⊆ {SimulateSensorError,
SimulateTemperatureError, SimulateCommunicationError} do

2 if |errorsToSimulate| = 0 then
3 NormalBehaviour

4 else
5 forall r ∈ errorsToSimulate do
6 r

Listing 3. A subset of all errors can occur simultaneously

Using the UCC, the complex rule of Listing 3 can be condensed into the
succinct rule of Listing 4.

40 M. Stegmaier et al.

1 perform always single variable selection
2 NormalBehaviour

3 perform any nonempty variable selection
4 SimulateSensorError

5 SimulateTemperatureError

6 SimulateCommunicationError

Listing 4. Equivalent specification as in Listing 3 using UCC

The following example (Listing 5) shows excerpts of a specification of the A*
algorithm [14] using ASMs. The A*-algorithm is a heuristic method to determine
the shortest path between two nodes in a directed graph with only positive edge
weights. To illustrate the algorithm, the sliding puzzle has been chosen, which
is also known as 15-puzzle (see [12]). In this puzzle, there are fifteen numbered
tiles and one free place. The goal of the game is to repeatedly move tiles into
the free place until the desired state is reached. In this specification, multiple
heuristics have been realised.

Listing 5 shows the initialisation rule of this specification. Besides the already
mentioned typical initialisation mode, the heuristic to use for the algorithm is
chosen in this rule. Since all functions in ASMs are globally accessible there is no
simple way to ensure that the heuristic will not change throughout a complete
run of the algorithm (see Listing 5, line 9).

1 rule InitialiseAstar =
2 if not initialised then
3 seq
4 MakePuzzle

5 FindEmpty(InitialState)
6 root ← CreateNode(InitialState, undef, undef)
7 OpenListEnqueue(root)
8 endseq
9 choose h ∈ HEURISTIC do heuristic := h

10 initialised := true

Listing 5. The rule InitialiseAstar of Specification of A*

Using UCC, the rule InitialiseAstar becomes significantly shorter and now
only consists of the actual initialisation of the algorithm. Using perform at most

1 times in sequence the contained ruleblock will be executed in sequence and
at most once. This way we make sure that the algorithm is initialised only once.
We can omit the function initialised now because UCC takes care of making
sure that the initialisation is never re-executed.

1 rule InitialiseAstar =
2 perform at most 1 times in sequence
3 MakePuzzle

4 FindEmpty(InitialState)
5 root ← CreateNode(InitialState, undef, undef)
6 OpenListEnqueue(root)

Listing 6. The rule InitialiseAstar of Specification of A* using the proposed
construct

A Universal Control Construct for Abstract State Machines 41

Furthermore, the heuristic does not have to be decided during the
initialisation anymore (Listing 6). Instead, the heuristic can be chosen
permanently at the point where it is needed (see Listing 7).

1 derived GetHeuristicalValue(state) = return value in
2 perform single fixed selection
3 value := CalcGoalHeuristic(state)
4 value := CalcMisplacedTiles(state)
5 value := CalcManhattan(state)

Listing 7. The rule GetHeuristicalValue of Specification of A* using the proposed
construct

By using the single fixed selection, we ensure that a single rule (a
single heuristic in this case) is selected and will always be selected (fixed) for
the complete run of the specification. This use of the UCC has the following
advantages:

– A permanent random decision does not need to take place during the
initialisation anymore.

– The function storing the random permanent decision can be omitted. The
UCC can remember its random decision and it ensures that its decision cannot
be changed from outside.

– The decision is made at the point where it is needed. The reader won’t need
to search the specification in order to find out how the decision is being made.

In the next section, the syntax and semantics of the UCC is defined in details.
It supports the control constructs already available in (Turbo-)ASM as well as
additional description possibilities as shown in this section. This unification also
reduces the nesting depth and, thus, improves readability [15].

3 A Universal Control Construct for ASM

The goal of the proposed control construct is to provide a succinct high-level
description scheme, formulated in intuitive terms, one can use to specify complex
control structures and reduce nesting depth. In this section, its syntax and
semantics are defined.

3.1 Syntax

For our control construct, we propose the syntax defined by the following
grammar shown in Listing 8. The nonterminals Term, ConstantTerm and Rule

are defined as expected [7].

Selection = ’all’ | SubSelection;
SubSelection = SubSelectionSize (’variable’ | ’fixed’) ’selection’;
SubSelectionSize = (’any’ [’nonempty’]) | ’single’;
Enabled = (’always’ | EnabledAtMost | EnabledUntil) [EnabledReset];
EnabledAtMost = ’at most’ ConstantTerm ’times’;

42 M. Stegmaier et al.

EnabledUntil = ’until’ (’no updates’ | ’no change’);
EnabledReset = ’resetting’ ’on’ ConstantTerm;
StepSemantics = ’in’ (’parallel’ | ’sequence’) | ’rulebyrule’ | ’stepwise’;
Condition = ((’if’ | ’while’) Term) | ’iterate’;
RuleBlock = Rule {Rule};
Semantics = ?Any sequence of Selection, StepSemantics, Enabled?;
PerformRule = ’perform’ [Semantics] [Condition] RuleBlock [’end’];

Listing 8. The resulting grammar for UCC

The syntax and the corresponding semantics are split up into four groups
which cover different orthogonal aspects of the control construct: (1) Selection
supports selecting a subset of rules from the rule block, (2) Enabled determines
whether the construct should be enabled or not, (3) StepSemantics determines
the step semantics to be used for the execution of the selected rules, and (4)
Condition provides a condition that has to be true before the selected rules can
be executed. The first group of keywords is the Selection group:

– all - The whole ruleblock is selected for execution.
– any - A random subset of rules from the ruleblock is selected for execution.

It can be attributed by the keyword nonempty to avoid selecting an empty
subset.

– single - A single random rule from the ruleblock is selected for execution.

An any or single selection can either be variable, i.e., a selection is
made for every evaluation of the construct, or fixed, i.e., the selection is
permanently made in the first evaluation of the construct and reused for
consecutive evaluations. The second group of keywords is the Enabled group:

– always - The construct is always enabled.
– at most n times - The construct is enabled at most n times.
– until no change - The construct is only enabled until there’s no update

resulting from the evaluation of the construct or all the resulting updates are
trivial [10], that is, no update (if any) resulting from the evaluation of the
construct does change the value of any function.

– until no updates - The construct is enabled until there are no updates
resulting from the evaluation of the construct.

If the construct is not enabled anymore, it will not do anything. The construct
can only be re-enabled if a reset condition is specified in the resetting on part.
The third group of keywords is the StepSemantics group:

– in parallel - The rules are executed in parallel.
– in sequence - The rules are executed in sequence.
– rulebyrule - The rules are executed rule by rule. That is, in the first

evaluation of this construct the first rule is executed, in the second evaluation
the second rule is executed and so on. After the last rule of the block the first
rule is executed again and so on.

A Universal Control Construct for Abstract State Machines 43

– stepwise - Similar to rulebyrule the rules are executed rule by rule. The
difference is that with stepwise, the same rule is executed for every evaluation
during the same machine step. In the next machine step, the next rule is
executed and so on. This difference is explained in more detail on the next
page.

The fourth group of keywords is the Condition group:

– if - The selected rules are only executed if the specified condition evaluates
to true.

– while - The selected rules are executed in a loop as long as the specified
condition evaluates to true. This corresponds to the semantics of the turbo
rule while.

– iterate - The selected rules are executed in a loop as long as they produce
updates. This corresponds to the semantics of the turbo rule iterate.

In general, the construct must not be confused with a loop. Most notably,
the Enabled part does not specify a looping condition. For example, at most n

times does not mean that the construct loops n times. Instead it means that
the construct must not be evaluated more than n times at all. After the nth

repetition, the construct is disabled and cannot be executed anymore. That
is, it will behave like a skip. The construct is re-enabled if the condition
provided for resetting on evaluates to true. But it is possible to make the
construct loop by either using while or iterate. While there is a significant
similarity in the descriptions of iterate and until no updates, there is a
major difference. The keyword iterate causes the construct to loop while the
keyword until no updates does not.

The difference between rulebyrule and stepwise occurs when using them
in conjunction with loops. Loops allow a construct to be evaluated multiple
times during the same machine step. With rulebyrule, one rule after another
is executed within the loop. With stepwise, always the same rule is executed
during the loop. Only if the UCC is reached again in another machine step, the
next rule is executed.

1 forall i in {1, 2} do
2 perform rulebyrule r1, r2, r3
3 perform stepwise r1, r2, r3

Listing 9. Example for stepwise vs. rulebyrule

Figure 1 illustrates the difference between stepwise and rulebyrule using
the example in Listing 9. It shows a time line on which each machine step is
indicated by a vertical bar. Each row shows the rules that are to be executed by
the perform rule in the respective iteration of the loop. The rule that is executed
in the current iteration is marked. The rules to be executed with rulebyrule

are above the time line and the rules to be executed with stepwise are beneath
the arrow.

In our syntax, we allow every sequence of the groups of keywords
(see Listing 8). This way we improve the learning curve of our construct by

44 M. Stegmaier et al.

Fig. 1. Illustration of stepwise vs. rulebyrule

reducing the cognitive load of the specification author. He already has to
remember all the keywords he wants to use, so at least he does not have to
remember the sequence as well. This is not a threat to readability because the
groups of keywords are semantically independent from each other.

An obvious criticism of the UCC would be the introduction of many different
keywords. In terms of a programming language, this is a clear disadvantage.
For one thing, all those keywords are reserved and cannot be used as identifiers
anymore, for another, the author of a specification has to remember the keywords
to effectively make use of the control construct. So initially, writing specifications
with the UCC can be even more difficult. But at the same time, the control
construct approaches a natural language even closer by using many different
keywords. Getting closer to a natural language usually improves readability for
non-experts. Since ASM specifications are often used for communication with
customers, certain emphasis should be placed on readability.

3.2 Semantics

In the following specification of the operational semantics, we use the following
auxiliaries to work with lists:

– head returns the head of the list, that is, the first element of the list.
– tail returns the tail of the list, that is, a list of all elements following the first

element.

In general, there are different ways to describe the semantics of ASM
constructs. One possibility is to define rules of inference for the update set for a
construct [5]. Another possibility is the operational approach used in the design
specification of CoreASM (see [6]). In this formalisation, the interpretation of
each expression is described using ASMs producing a complex value containing
the calculated update set and the result of the evaluation. In this approach, all
partial update sets are collected and at a machine step applied to the current
state.

In this paper, we also describe the semantics using ASMs. Instead of defining
the partial interpretation of each part of each construct, we describe the
interpreter of the UCC as a whole. Although it is not easily possible to integrate
our definition into an execution engine like CoreASM, the translation process is

A Universal Control Construct for Abstract State Machines 45

straightforward. The advantage of the presented approach is the linearity of the
description. We split the semantics into four phases that are described in detail
in the following sections:

1. Selection A subset of rules is selected from the ruleblock.
2. PrepareExecution If the construct is still enabled, the selected rules are

copied for execution.
3. Execution The selected rules are executed and the copy of the selection is

adapted according to the specified step semantics.
4. Reset The repetition state is reset if the given reset condition evaluates

to true.

Fig. 2. Run Loop

For the description we assume that an occurrence of the UCC is already
parsed and available in a proper model (see Fig. 2) that provides access to the
following parts of the construct:

– The contained block of rules (accessed via the function ruleBlock).
– The condition of the Condition group (accessed via the function condition).
– The value of the term (n) provided to at most n times (accessed via the

function atmostTimes).
– The selector ∈ {ALL, SINGLE, ANY, ANY_NON_EMPTY} (accessed via the function

selector).
– The keyword from theEnabled group ∈ {ATMOST_N_TIMES, UNTIL_NO_CHANGE,
UNTIL_NO_UPDATES, ALWAYS} (accessed via the function enabled).

– The keyword from the Condition group ∈ {IF, WHILE, ITERATE} (accessed
via the function conditionKind).

– The step semantics ∈ {IN_PARALLEL, IN_SEQUENCE, RULEBYRULE, STEPWISE}
(accessed via the function semantics).

46 M. Stegmaier et al.

– The reset condition of the Enabled group (accessed via the function
resetCondition).

Furthermore, the following functions are used to maintain the state of the
construct:

– ruleSelection holds the current selection and results from the Selection phase.
– rulesToExecute holds the rules that are to be executed in the Execution

phase. It results from the PrepareExecution phase. It is initialised as [].
– counter keeps track of the number of executions when at most n times is

used. Its value is only relevant for the PrepareExecution phase. In that
phase it gets increased for each execution. It is initialised as 0 and can only
be reset to 0 in the Reset phase (if resetCondition evaluates to true).

– disabled is a flag that keeps track of whether the construct has been disabled.
Its value is only relevant for the PrepareExecution phase. In that phase
it gets set to true depending on the condition associated with the keyword
specified for enabled. It is initialised as false and can only be reset to false

in the Reset phase (if resetCondition evaluates to true).
– updatesFromBlock is a flag indicating whether the last Run of the rules has

produced updates. Its value is relevant for the PrepareExecution phase
and the Execution phase. Its value implicitly results from running the rules.
It is initialised as true.

– stateHasChanged is a flag indicating whether the last Run of the rules has
changed the state, i.e., the updates resulting from running the rules change
the value of a function. Its value is only relevant for the PrepareExecution

phase. Its value implicitly results from running the rules. It is initialised as
true.

– newMachineStep is a flag indicating whether the last interpretation of the
construct was in another machine step than the current. Its value is only
relevant for the PrepareExecution phase. Its value is set to true by the
environment as soon as a new machine step is started. The construct sets its
value to false in the PrepareExecution phase in order to remember that
the construct has already been interpreted in the current machine step. This
distinction is required for the difference between the semantics of stepwise
and rulebyrule.

3.3 SELECTION Phase

The Selection phase is specified by the rule Selection (see Listing 10).
It selects the rules to execute from the ruleBlock. With the keyword all,
the selection corresponds to the whole ruleBlock (see Listing 10, line 4).
With the keyword single, only an arbitrary single rule is selected
(see Listing 10, line 6). With the keyword any, an arbitrary subset of rules
is selected (see Listing 10, line 8). This selection can be empty. If the keyword
any is attributed by the keyword nonempty an arbitrary subset of rules that is
not empty is selected from the ruleBlock (see Listing 10, line 10).

A Universal Control Construct for Abstract State Machines 47

1 rule Selection =
2 case selector of
3 ALL:
4 ruleSelection := ruleBlock
5 SINGLE:
6 choose r ∈ ruleBlock do ruleSelection := [r]
7 ANY:
8 choose s ⊆ ruleBlock do ruleSelection := s
9 ANY_NON_EMPTY:

10 choose s ⊆ ruleBlock with s �= ∅ do ruleSelection := s
11 endcase
12 mode := PREPARE_EXECUTION

Listing 10. Selection rule

3.4 PREPAREEXECUTION phase

The PrepareExecution phase is specified by the rule PrepareExecution

(see Listing 11). It determines the rules to execute. With the keyword always,
this always is the whole selection (see Listing 11, line 19). With the keyword
at most, the rules to execute are the selection repeated n times with n being
a constant natural number (see Listing 11, lines 5 – 7). With the keyword
until no updates, the rules to execute only are the selection if there are
updates resulting from the previous step (see Listing 11, line 14 – 17). Otherwise a
flag is set to disable the construct (see Listing 11, lines 14, 15). With the keyword
until no change, the rules to execute are the selection only if the state has
changed in the previous step, i.e., there are updates from the previous step that
actually change the value of a function in the state (see Listing 11, lines 9 – 12).
Otherwise a flag is set to disable the construct (see Listing 11, lines 9, 10).

1 rule PrepareExecution =
2 if rulesToExecute = [] then
3 case enabled of
4 ATMOST_N_TIMES:
5 if counter < atmostTimes then
6 rulesToExecute := ruleSelection
7 counter := counter + 1
8 UNTIL_NO_CHANGE:
9 if not stateHasChanged then

10 disabled := true
11 else if not disabled then
12 rulesToExecute := ruleSelection
13 UNTIL_NO_UPDATES:
14 if not updatesFromBlock
15 disabled := true
16 else if not disabled then
17 rulesToExecute := ruleSelection
18 ALWAYS:
19 rulesToExecute := ruleSelection

48 M. Stegmaier et al.

20 endcase
21 else if semantics = STEPWISE and newMachineStep then
22 rulesToExecute := tail(rulesToExecute)
23 newMachineStep := false
24 mode := EXECUTION

Listing 11. PrepareExecution rule

3.5 EXECUTION Phase

The Execution phase is specified by the rule Execution (see Listing 12).
With the keyword if, the rules to execute are executed if the specified condition
evaluates to true (see Listing 12, line 4). With the keyword while, the rules
to execute are executed as long as the specified condition evaluates to true

(see Listing 12, line 5). With the keyword iterate, the rules to execute are
executed as long as they produce at least one update (see Listing 12, line 6). At
the same time the rules to execute are adjusted according to the specified step
semantics. That is, in case of rulebyrule only the very first rule of the current
rule selection is consumed (see Listing 12, lines 8, 9).

1 rule Execution =
2 if rulesToExecute �= [] then
3 case conditionKind of
4 IF: if condition then Run

5 WHILE: while condition do Run

6 ITERATE: while updatesFromBlock do Run

7 endcase
8 if semantics = RULEBYRULE then
9 rulesToExecute := tail(rulesToExecute)

10 else if semantics �= STEPWISE
11 rulesToExecute := []
12 mode := RESET
13

14 rule Run =
15 case semantics of
16 IN_PARALLEL:
17 forall r ∈ rulesToExecute do
18 r
19 IN_SEQUENCE:
20 foreach r ∈ rulesToExecute do
21 r
22 RULEBYRULE, STEPWISE:
23 if rulesToExecute �= [] then
24 let r = head(rulesToExecute) in
25 r
26 endcase

Listing 12. Execution rule and Run rule

A Universal Control Construct for Abstract State Machines 49

The rule Run actually executes the rules. With the keyword in parallel, the
rules are executed in parallel (see Listing 12, lines 17 – 19). With the keyword
in sequence, the rules are executed in sequence (see Listing 12, lines 21, 22).
The foreach rule is the sequential counterpart to the forall rule, i.e., each
iteration of the loop is computed in sequence instead of in parallel. With the
keyword rulebyrule, or the keyword stepwise the rules are executed one by
one (see Listing 12, lines 24 – 26), i.e., with each evaluation only exactly one rule
is executed.

3.6 RESET Phase

The Reset phase is specified by the rule Reset (see Listing 13). It resets
the state of the Enabled part if the provided condition evaluates to true

(see Listing 13, lines 2 – 4). If the keyword variable is used the next phase will
be the Selection phase (see Listing 13, lines 5, 6). If the keyword fixed is used
the next phase will be the PrepareExecution phase (see Listing 13, line 8). So
in case of a fixed selection the selection stays untouched thus will be permanent.

1 rule Reset =
2 if resetCondition then
3 disabled := false
4 counter := 0
5 if selection = VARIABLE_SELECTION and rulesToExecute = []

then
6 mode := SELECT
7 else
8 mode := PREPARE_EXECUTION

Listing 13. Reset rule

4 Related Work

In the following, we compare the presented UCC with the control structures
found in other formal specification languages.

TurboASM [4] is an extension of basic ASMs that introduces control
constructs with sequential step semantics. We compare our construct with this
common extension in order to show that the UCC covers the possibilities of
Turbo-ASMs completely.

The Vienna Development Method (VDM) [9] is a well established formal
specification language which was originally developed by IBM. The specification
language VDM-SL hides the theoretical background from less-experienced users.
The state is defined by data structures built on abstract data types. VDM does
not support the selection of a random subset of rules or based on priorities. The
loop constructs do not limit the execution of rules for the complete run, but only
for the current construct execution.

Henshin [1] is a formal language based on the graph transformation formalism
[13]. Henshin uses graph transformation rules for the specification of state

50 M. Stegmaier et al.

changes and provides different control constructs to specify which rules to
execute and in which order. While Henshin supports all of the control construct
features shown in Table 1, graph transformations are a different formalism
compared to abstract state machines.

The Very High Speed Integrated Circuit Hardware Description Language
(VHDL) [2] is a hardware description language for electronic design automation
to describe systems such as integrated circuits. It’s a high level specification
language that can also be used as a general purpose parallel programming
language.

Table 1 shows whether these languages explicitly support seven different
control construct features. The first five control construct features cover how
rules are executed, e.g., whether it can be specified to execute rules in parallel
or in sequence. The last two aspects cover how rules are selected for execution,
e.g., whether it is possible to specify priorities to select the rules to execute.

Note that all these specification languages support to manually realise the
different control construct features, e.g., one could realise a random selection of
rules by manually calling a random method to decide whether the rule should
be executed for each rule. Hence, the table shows whether the UCC is explicitly
realised by a syntax element. For example, Henshin specifically provides a so-
called IndependentUnit to non-deterministically select rules for execution.

Table 1. Control constructs in formal specification languages

Supported Feature UCC TurboASM VDM Henshin VHDL

Parallel execution yes yes yes yes yes

Sequential execution yes yes yes yes yes

Limit execution count yes no no yes no

Sequential Loop (while) yes yes yes yes yes

Conditional execution yes yes yes yes yes

Random selection of rules yes yes no yes no

Priority-based selection of rules no no no yes no

The table shows that there is a common subset of features, i. e., parallel
execution, sequential execution, conditional execution and sequential loops. But
limiting the execution count or selecting a subset of rules to execute or even
selecting a random subset of rules is only supported by some languages.

Control constructs can also be found in every imperative programming
language. Simple loop constructs like for and while are covered in UCC
by while and at most n times. Continuation with the next iteration
(continue) and early exit of a loop (break) are not directly supported in
our construct but could be simulated by appropriate guards. The programming

A Universal Control Construct for Abstract State Machines 51

languages Perl1 and Ruby2 support additional loop constructs. While redo
restarts the current iteration, retry (in Ruby only) resets the entire loop.
Restarting the current iteration is not possible in UCC, but the entire loop
can be restarted by resetting on.

Random selection of rules has already been addressed by Gurevich
in the context of bounded-choice nondeterminism [10]. He introduces the
construct choose among to support non-deterministic choice algorithms like
non-deterministic Turing machines. Applications of this construct are found in
[11] where the actions of a thread are modeled as non-deterministic bounded
choice between different rules (cf. Listing 14).

1 rule Execute program : choose among
2 WM−EE transfer
3 Create var
4 Create thread

Listing 14.)]Example usage of choose among (from [11])

A similar construct is used by Börger in [5, p. 294] to describe computations
in Cold [8]. He chooses one or multiple rules from a given set of rules to realize
non-deterministic rule execution (cf. Listing 15).

1 ColdUse(Proc) = choose n ∈ N, choose p1, ..., pn ∈ Proc
2 p1 seq ... seq pn

Listing 15.).]Random selection of rules that are executed in sequence (from [5]).

These kinds of non-deterministic selection from a set of rules are provided
by our construct, too. In contrast to Gurevich and Brger, we allow a selection
of rules that is permanent for the current run of a machine. For example, this
extension can be used to specify heuristics that are modeled by different rules
as in Listing 7.

In [5, p. 39] a rule CycleThru is introduced, that cycles through a sequence
of rules and executes them one by one. The “stepwise” execution of UCC
can be simulated with that rule but resetting on a condition is not easily
possible. A conditional update of the current position in parallel may result
in an inconsistent update because this location is also set (and most likely to a
different value) during the execution of CycleThru.

5 Conclusion and Future Work

The goal of our approach is to improve the specification of Abstract State
Machines. The proposed construct has been validated in several ways. On one
hand, by defining transformation rules which transform any expression using the
proposed control construct into a semantically equivalent block of standard ASM,

1 https://www.perl.org.
2 https://www.ruby-lang.org.

https://www.perl.org
https://www.ruby-lang.org

52 M. Stegmaier et al.

on the other hand, by implementing it as a CoreASM Plugin3. Additionally,
a test suite has been developed which can be executed using the provided
implementation. While this test suite primarily validates the implementation
itself, it also demonstrates that the proposed semantics are actually applicable.
Furthermore, the implementation allows to run any specification that uses UCC.

Using some examples, we have shown that in several situations UCC helps to
simplify definitions. In future it should be determined and explored what other
use cases for this control construct can be found and how existing specifications
can be simplified by using it.

Furthermore, specifications using the UCC should be presented to non-
software engineers to measure the level of understanding. These experimental
studies must be conducted in order to obtain reliable results.

Acknowledgements. First ideas to introduce a UCC originate from a CoreASM
workshop in Ulm some time ago. We thank Vincenzo Gervasi, Roozbeh Farahbod,
and Simone Zenzaro for inspiring discussions and valuable comments on a preliminary
version of this paper. We also thank the anonymous reviewers for their extensive and
valuable reviews that helped us improve the paper significantly.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
121–135. Springer, Heidelberg (2010)

2. Ashenden, P.J.: The Designer’s Guide to VHDL, 3rd edn. Morgan Kaufmann
Publishers Inc., San Francisco (2008)

3. Börger, E.: The origins and the development of the ASM method for high level
system design and analysis. J. UCS 8(1), 2–74 (2002)

4. Börger, E., Bolognesi, T.: Remarks on Turbo ASMs for functional equations and
recursion schemes. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 218–228. Springer, Heidelberg (2003)

5. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

6. Farahbod, R.: CoreASM: an extensible modeling framework & Tool environment
for high-level design and analysis of distributed systems. Ph.D. thesis, Simon Fraser
University.(2009)

7. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: an extensible ASM execution
engine. In: Proceedings of the 12th International Workshop on Abstract State
Machines, ASM 2005. pp. 153–166 (2005)

8. Feijs, L.M.G., Jonkers, H.B.M.: Formal Specification and Design. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge (1992)

9. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley
Encyclopedia of Computer Science and Engineering (2008)

3 http://github.com/coreasm/coreasm.plugins/tree/master/org.coreasm.plugins.
universalcontrol.

http://github.com/coreasm/coreasm.plugins/tree/master/org.coreasm.plugins.universalcontrol
http://github.com/coreasm/coreasm.plugins/tree/master/org.coreasm.plugins.universalcontrol

A Universal Control Construct for Abstract State Machines 53

10. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic (TOCL) 1(1), 77–111 (2000)

11. Gurevich, Y., Schulte, W., Wallace, C.: Investigating Java concurrency using
abstract state machines. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L.
(eds.) ASM 2000. LNCS, vol. 1912, pp. 151–176. Springer, Heidelberg (2000)

12. Johnson, W.W., Story, W.E.: Notes on the “15” puzzle. Am. J. Math. 2(4), 397–404
(1879)

13. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation : Foundations, vol. 1. World Scientific Pub Co, Singapore (1997)

14. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.
Prentice Hall Press, Upper Saddle River (2009)

15. Schroeder, A.: Integrated program measurement and documentation tools. In:
Proceedings of the 7th International Conference on Software Engineering, ICSE
1984, pp. 304–313. IEEE Press (1984)

http://www.springer.com/978-3-319-33599-5

	A Universal Control Construct for Abstract State Machines
	1 Introduction
	2 Shortcomings of Current ASM Control Constructs
	3 A Universal Control Construct for ASM
	3.1 Syntax
	3.2 Semantics
	3.3 SELECTION Phase
	3.4 PREPAREEXECUTION phase
	3.5 EXECUTION Phase
	3.6 RESET Phase

	4 Related Work
	5 Conclusion and Future Work
	References

