
Debugging Abstract StateMachine
Specifications: An Extension of CoreASM

Marcel Dausend, Michael Stegmaier and Alexander Raschke

Institute of Software Engineering and Compiler Construction,
University of Ulm, Germany

{marcel.dausend, michael-1.stegmaier, alexander.raschke}@uni-ulm.de

Abstract. We introduce a debugger component as an extension of Core-
ASM to simplify validation of (complex) ASM specifications. As a basis,
we map well-known debugging concepts of imperative programs to the
ASM context. The architecture of our debugger is described and some
background information to the implementation is given. We conclude by
summarizing the current functionalities of our debugger and outlining
further development prospects.

Keywords: Abstract State Machines, CoreASM, Debugging

1 Introduction

Creating and editing different kinds of specifications are key tasks that have to
be done throughout the system development process. An accepted executable
formalism for the specification of hard- and software systems are Abstract State
Machines (ASMs) [1]. ASMs have been used to describe, verify and validate
complex formal languages, especially their semantics, e. g. Java and its virtual
machine [6] or comprehensive parts of the Unified Modeling Language [5].

A major problem of complex specifications is their maintainability and com-
prehensibility. In case of ASMs, several methodologies and tools have been devel-
oped to support defining, editing, validating, and verifying ASM specifications.
These tools differ in their support of ASM concepts and focus on specific appli-
cation issues [1]. One of these tools is CoreASM. Amongst others, it provides a
flexible plugin architecture and an interpreter for ASMs [2].

Debugging is a common method to “identify and remove errors from (com-
puter hardware or software)” 1 and to comprehend specifications. Our approach
is to extend CoreASM with a debugging component so that multi-agent ASM
specifications can be revised more easily.

In Sect. 2, we clarify our notion and capabilities of debugging ASMs and give
a brief overview of existing tools and their concepts for debugging of ASMs. We
then explain how debugging concepts for imperative programs can be mapped to
concepts for debugging ASM specifications. In Sect. 3, we briefly show existing
debugging features of CoreASM before we describe our extension of CoreASM.
In Sect. 4, we summarize the current status of our extension and outline our
next steps and future work.
1 definition of debug from http://oxforddictionaries.com/definition/debug

21

http://oxforddictionaries.com/definition/debug

2 Debugging Abstract State Machines

According to [4], we consider debugging as an interactive process, where a run-
ning instance of a program can be stepwise observed and the program execution
can be controlled by the user. This observation provides opportunities to com-
prehend and deeply understand the program and finally revise it, if necessary.

Debugging of ASMs has been addressed formerly by the tools ASMGofer and
Xasm [1]. Both tools enable you to control an ASM execution by starting, paus-
ing, resuming, and stopping. They offer break conditions to automatically pause
an ASM execution. If the execution is paused, both tools allow to investigate the
status of ASM functions. CoreASM itself does not support debugging as defined
in the previous paragraph, which has been indicated as an open issue [2].

2.1 From debugging of imperative programs towards debugging of
ASM specifications

In order to enable fine grained control to debug an ASM execution, an execution
step has to be defined. Whereas a step in an imperative program means setting
the program counter from the current instruction to the following instruction,
a step in terms of ASMs means evaluating the machine’s program (or Agent
programs) and applying the resulting update set to the current state of the
ASM. Thus, we use this definition as a debugging step. We do not yet take into
account microsteps, which are hidden inside a turbo ASM step (cf. [1], p.174).

A breakpoint is a clearly defined point in a program, where the execution
stops if this point of the program is reached. We consider different kinds of
breakpoints: (line) breakpoints, watchpoints, and method breakpoints.

In an imperative program, a (line) breakpoint is reached if the program
counter hits a statement (contained in the line of code) which is marked by a
breakpoint. In an ASM, a (line) breakpoint is reached, if the marked statement
causes an update that is contained within the ASM’s update set at the end of
the current step. Thereby, it is possible that multiple breakpoints are reached at
the same time, which is not possible in an imperative program.

A watchpoint in an imperative program marks a declaration of a variable.
The watchpoint is hit if this variable is modified or read in the current step.
In an ASM, we define a watchpoint as a breakpoint marking either a universe
declaration or a function declaration. This includes variable declarations, which
are functions of arity zero. The breakpoint is reached if a marked universe or
function is changed by any update of the current update set.

Method breakpoints in an imperative program mark the head of a method
declaration and are reached if this method is invoked. In ASMs we have macro
rules instead of methods, so a method breakpoint marks the head of an ASM
rule. Instead of stopping the ASM execution when invoking the rule, the break-
point is reached if at least one statement inside the rule’s body causes an update
which is contained in the current update set.

Another debugging concept for imperative programs is called “watch ex-
pression”. A watch expression is a well formed expression of the programming

22

language. It can be defined as part of the debugging environment so that its cur-
rent result can be evaluated during the program execution. We define a watch
expression in ASMs as either a function name or a function name including
parameters. The values of all locations of the given function or the value of the
given location can be observed at each update step of the ASM.

A Modification allows to change a function at a given location when the
execution is paused.

3 Architecture and implementation

CoreASM implements different aspects of multi-agent ASM using a flexible plu-
gin based architecture. For example, both, basic ASM and turbo ASM, are im-
plemented as separate plugins.

For the purpose of simple debugging, CoreASM offers the plugin DebugInfo-
Plugin. It allows adding output statements, which are assigned to user defined
channels, to a specification. By configuring a set of channels it can be defined
which debug info statements are considered for output during the execution.

Additional information, like the current status of an execution, its selected
agents, and the current update, can be displayed on the console, but stepwise
execution is not possible.

We enhance debugging functionalities of CoreASM using the Eclipse Debug
Project (EDP)2 to implement the concepts introduced in Sect. 2.1. As a basis
for debugging we introduce a stepping mode. This mode forces the interpreter to
execute exactly one update step and pause the execution afterwards. The user
can toggle between the stepping mode and the running mode.

Since our implementation is based on EDP, it is possible to run ASM spec-
ifications in debug mode and provide a debug perspective with views to manage
breakpoints, to inspect and modify variables, and to define and inspect expres-
sions. Furthermore, breakpoints can be set or removed directly within the editor.
Entries that have been changed in the current step are highlighted to simplify the
inspection of updates. The current number of steps and the currently selected
agents are displayed at the top of the variables view by default.

In addition to the EDP views, we provide an update view showing all updates
of the current update set for a user defined set of agents. Every entry of the
update view provides information about the statement which causes the update,
its source file and line number, and its executing agent. Inside the update view,
all entries of updates matching a breakpoint are highlighted by a special symbol
to ease inspection.

The implementation extends the engine driver to enable control of the Core-
ASM program executions. The Control API of CoreASM provides the informa-
tion about the current status of the interpreter [3]. This information is used to
update the views of our CoreASM debugger after each step.

An ASM specification running in debug mode considers all types of break-
points (cf. Sect. 2.1) and automatically pauses if any breakpoint is reached.

2 http://www.eclipse.org/eclipse/debug/index.php

23

http://www.eclipse.org/eclipse/debug/index.php

4 Conclusion and future work

This work provides the basis for a systematic investigation of complex ASM
specifications and opens opportunities to revise them. Our debugger extends
CoreASM mainly by using the EDP (cf. Sect. 3) which is an integral part of the
Eclipse environment.

Since “Traditional debugging models [...] do not suite ASMs.” [2] we propose
an adaptation of imperative debugging concepts for the state machine domain
of ASMs (cf. Sect. 2.1). In particular, the user interface provided by EDP was
adapted and extended to visualize changes of the state of an ASM execution. A
new view provides a list containing all updates of a step and allows direct access
to its corresponding ASM statements.

Although the debugger is already helpful, there are plenty of possibilities for
further extensions. Some ASM constructs are not yet supported: our current
definition of a step neglects sequential steps. Derived functions and local rules
cannot be debugged, because they do not cause updates which could be observed
via the interpreter. We are working on a way to support these constructs.

Additionally, we plan to introduce a history that enables stepping backwards
to compare states of an ASM execution, show their differences, and to trace rule
calls of specific agents. Furthermore, a record and replay functionality could be
used to eliminate non-determinism (e. g. choose or the selection of agents for a
specific step) in order to enable debugging of an ASM specification repeatedly
under the same conditions.

More information about our project and its current status can be found at our
website http://www.uni-ulm.de/en/in/pm/research/projects/coreasm.

Acknowledgments Thanks to Roozbeh Farahbod for answering numerous ques-
tions, trying out the tool, and suggesting some further improvements.

References

1. E. Börger and R. Stärk. Abstract State Machines – A Method for High-Level System
Design and Analysis. Springer, 2003.

2. R. Farahbod. CoreASM: An Extensible Modeling Framework & Tool Environment
for High-level Design and Analysis of Distributed Systems. PhD thesis, Simon Fraser
University, Burnaby, Canada, 2009.

3. R. Farahbod, V. Gervasi, U. Glässer, and G. Ma. CoreASM Plug-In Architecture.
In Rigorous Methods for Software Construction and Analysis, pages 147–169, 2009.

4. J. Henkel and A. Diwan. A Tool for Writing and Debugging Algebraic Specifications.
In Proceedings. of the 26th ICSE 2004, pages 449–458, 2004.

5. J. Kohlmeyer and W. Guttmann. Unifying the Semantics of UML 2 State, Activity
and Interaction Diagrams. Perspectives of Systems Informatics, 5947:206–217, 2010.

6. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine - Definition,
Verification, Validation. Springer, 2001.

24

http://www.uni-ulm.de/en/in/pm/research/projects/coreasm

Debugging Abstract State Machine Specifications

Introduction

Although debugging is an integral part of the implementation

of software, it is just roughly supported by current Abstract State

Machine (ASM) tools.

In order to simplify the validation of (complex) ASM specifications

we extend CoreASM [Farahbod2009] by a debugger.

An Extension of CoreASM

Contact

Fig. 1 The stepping
mode button of the
CoreASM control bar

[Farahbod 2009] R. Farahbod. CoreASM: An Extensible Modeling Framework

& Tool Environment for High-level Design and Analysis of Distributed

Systems. PhD thesis, Simon Fraser University, Burnaby, Canada, 2009.

[Farahbod, Gervasi et al. 2004] R. Farahbod, V. Gervasi, U. Glässer, and G.

Ma. CoreASM Plug-In Architecture. In Rigorous Methods for Software

Construction and Analysis, pages 147-169, 2009.

References

Marcel Dausend marcel.dausend@uni-ulm.de

Alexander Raschke alexander.raschke@uni-ulm.de

Michael Stegmaier michael-1.stegmaier@uni-ulm.de

Project Site

http://www.uni-ulm.de/en/in/pm/research/projects/coreasm/

Architecture and Implementation

Architecture and implementation of our debugging component are

based on the EDP as a basis for user defined integrated Eclipse

debuggers.

The Control API of CoreASM provides information about the

current status of the interpreter [Farahbod, Gervasi et al. 2004].

We prepare the conceptual basis for the implementation of

the debugger through the transfer of concepts of debugging of

imperative programs to concepts of debugging ASM

specifications.

Therefore, we characterize the following debugging concepts in

terms of ASM: a debugging step, a line breakpoint, a watchpoint,

a method breakpoint, a watch expression, and modification of

data.

Fig. 2 The standard debug control
of Eclipse

Functionalities

• the control mode "stepping" for the interpreter

• capabilities to debug CoreASM programs based

on the Eclipse Debug Project (EDP)

• line breakpoints

• watchpoints

• rule breakpoints (cf. method breakpoints)

• watch expressions

• variables view

• expressions view

• breakpoint view

• extensions that go beyond EDP

• updates view

• agent filter for updates view

An Example of Using the CoreASM Debugger

As an example, we debug a slightly modified version of the

CoreASM sample specification "Dining Philosophers".

A debug execution of CoreASM can be controlled either by

using the extended CoreASM controls (Fig. 1) or by using

the standard eclipse debug control (Fig. 2).

The updates of the last execution step are presented within

the update view (see Fig. 3). Green highlighted entries

indicate an update which is currently hit by a breakpoint.

A filter can be used to focus on a specific agent (see Fig. 4).

Fig. 3 New updates view for CoreASM
Fig. 4 Agent filter menu of the updates view

The variables view (Fig. 5) and the

expressions view (Fig. 6) can be

used to examine the current state of

the CoreASM execution.

Fig. 5 The variables view
presenting the current state of
the CoreASM execution

Fig. 6 The expressions view of
Eclipse

Fig. 7 Editor component with indicators for corresponding breakpoints
and the last update of the current update set

The main component of CoreASM is the editor (Fig. 7).

• A watchpoint (see Fig. 7, l. 43) interrupts the interpretation if

the marked function at any given location has been

changed during the current execution step.

• A method breakpoint (rule breakpoint; Fig. 7, l. 45) is hit if

any update is caused by any statement within the

rules' body.

• A line breakpoint (Fig. 7, l. 47) causes the interpreter to

pause if a statement of the marked line triggers an update

within the current update set.

• The line containing the last update in the current update

set is marked by an indicator (blue arrow; see Fig. 7, l. 49).

25

