
Developing an Optimizing Compiler for the Game Boy as a
Software Engineering Project
Stefan Kögel, Michael Stegmaier, Raffaela Groner,

Stefan Götz, Sascha Rechenberger, and Matthias Tichy
Institute of Software Engineering and Programming Languages, Ulm University

D-89069 Ulm
<firstname>.<lastname>@uni-ulm.de

ABSTRACT
Software engineering students not only have to learn theoretical
concepts but also how to successfully apply them in practice. Hence,
projects are an important part of software engineering curricula.
As software engineering methods and technologies are only rele-
vant for non-trivial software systems, we report in this paper on a
master-level software engineering project course in which a team of
students developed a compiler for the Game Boy in a single semes-
ter. The students developed different languages and corresponding
parsers to a common intermediate language, optimizations on the
intermediate language, as well as a code generator for the Game
Boy. We particularly present lessons learned by us and the students
as well as potential course improvements.

CCS CONCEPTS
• Social and professional topics� Software engineering edu-
cation; • Software and its engineering� Compilers;

KEYWORDS
Compiler construction, software engineering education, project-
based learning

ACM Reference Format:
Stefan Kögel, Michael Stegmaier, Raffaela Groner, Stefan Götz, Sascha
Rechenberger, and Matthias Tichy. 2018. Developing an Optimizing Com-
piler for the Game Boy as a Software Engineering Project. In ICSE-SEET’18:
40th International Conference on Software Engineering: Software Engineering
Education and Training Track, May 27-June 3 2018, Gothenburg, Sweden.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3183377.3183388

1 INTRODUCTION
Getting experience in realizing reasonable-sized software engineer-
ing projects should be an important part of software engineering
education. This stimulates not only learning of fundamental soft-
ware engineering knowledge and skills as well as their application
in realistic settings, but also experience in team work.

Experience with using projects in engineering education, i.e.,
project-based learning [5], shows that students achieve a better un-
derstanding of how to apply knowledge, gain problem-solving skills,
and show higher motivation. This in turn assists their learning.

Complementary to software engineering skills, those projects
also give students the opportunity to gain technical knowledge in
specific areas.

In this paper, we report on a course which applies project-based
learning to the area of compiler construction, a topic which is often
not in the core of software engineering curricula. However, it is

on the one hand well understood in theory and practice and on
the other hand compiler construction knowledge can be useful
in various areas, from parsing complex network messages to the
development of domain specific languages. Our particular focus in
the project was to teach modern software engineering principles
like working in small teams, continuous integration, and giving
presentations.

Our course uses the Game Boy as a target device for the compiler.
The Game Boy is (as seen from today) a rather simple device. Hence,
a group of students can create a compiler from scratch for it in a
reasonable time frame. Furthermore, our students still relate to
the device from their own childhood which sparks interests and
increases motivation.

During the course, the group of students develop (1) own pro-
gramming languages and parsers to an intermediate language, (2)
complementary optimizations on the intermediate language, and
(3) a code generator to the Game Boy. Figure 1 contains an overview
of the modules developed by students.

In the next section, we present the course design with more
details including learning objectives as well as the course structure.
Section 3 discusses our lessons learned and planned improvements.
After a short presentation of related work in Section 4, we conclude
and sketch our future plans in Section 5.

2 COMPILER CONSTRUCTION PROJECT
2.1 Learning Objectives
Our learning objectives were twofold: students should get expe-
rience in applying software engineering principles and gain an
understanding of compiler techniques.

Knowledge and understanding: Students should be able to ex-
plain the advantages of using version control systems, integration
tests, and clearly defined interfaces between modules. Furthermore,
students should be able to explain how the different steps of a
compiler pipeline produce optimized machine instructions. That is,
what is a parser, what are common optimizations and their trade-
offs, and how can high-level language constructs be translated into
low level machine instructions.
Skills and abilities: Students should be able to self-organize in
small teams using version control software and perform quality as-
surance through integration tests and benchmarks. They also need
to be able to present their work to other students. At last, they have
to be able to implement a parser using a technology of their own
choice, implement a common code optimization, and to generate
assembler code for certain programming language constructs.

https://doi.org/10.1145/3183377.3183388


ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden S. Kögel, M. Stegmaier, R. Groner, S. Götz, S. Rechenberger, and M. Tichy

Judgment and approach: Small teams of students have to orga-
nize themselves and distribute complex tasks between their mem-
bers. Students and teams also have to choose appropriate architec-
tures for various tasks involved in writing a compiler.

2.2 Course Structure
Our course is structured into the three following phases. These are
also shown in Figure 1:

Parser: Each student should define their own syntax and develop
a parser for it.
Optimizers: The students should work out optimizations either
alone or in small teams and implement them.
Code Generator: Two teams of students implement a code gen-
erator and a register allocation algorithm. The teams have to stan-
dardize on an interface between their implementations.

We structure the phases further by giving one lecture and one
assignment per week. This gives students a goal to work towards
from week to week.

For the Parser, we allow students to use any parsing technology
of their choosing and make no restrictions on the syntax of their
language. Our only requirement is that the students’ programming
languages are able to express: arithmetic expressions, assignments,
arrays, loops, if-statements, and procedure definitions.

The students’ parsers have to serialize their parsed abstract syn-
tax tree into an XML format defined by us (see Section 2.3 for
details.) This enables a modular design that allows any parsers to
be used with all optimizers and code generators. The result of this
modular architecture is that the work of all students can be com-
bined into an optimizing compiler that supports all programming
languages defined by the students.

To implement more complexOptimizers, students have to work
in teams. They use a version control system (i.e. GitLab) with au-
tomatic unit and integration tests that ensure that all modules
work together. Some of these tests are given, others are created
by students, giving them experience in writing their own unit and
integration tests. Students also have to benchmark the effects of
their optimizers on the code generated by the compiler.

For developing the Code Generator, students are divided into
two teams: One team creates a code generator that generates as-
sembler code that uses an unlimited amount of, so called, magic
registers. The other team implements a register allocation algo-
rithm that calculates an efficient allocation of Game Boy hardware
registers on the the magic registers. For this step students have to
develop a low level intermediate representation that can represent
Game Boy assembler instructions and magic registers.

Our compiler is made up of many modules that have to be run in
a certain order. At first, we used several Python scripts to sequence
these models in order to run our integration tests. Two students
implemented a simpler to use and more robust Pipeline Tool that
can be controlled via configuration files.

To keep each other informed about their used technology and
progress, students have to give presentations about their work at
the end of each phase.

2.3 Used Resources
In order to allow collaboration of students, we defined an interme-
diate representation in the form of an Abstract Syntax Tree (AST)
as an XML Schema Definition. The parsers of the students have to
output XML files complying with this XML Schema Definition.

To interface with the Game Boy hardware we have defined a
Hardware Abstraction Layer in the form of magic functions that
can be called the same way as regular procedures. These magic
functions allow things like handling graphics, producing sound,
reading inputs and so on.

We created an interpreter for the intermediate representation
that enables the students to run their AST files. This allows them
to test their parsers and optimizations without a working code
generator. In the interpreter, we implemented the magic functions
to behave the same way as they do on the Game Boy hardware.

To facilitate testing, we also provide magic functions for printing
to the console. For this we provide a tool that emulates the CPU of
the Game Boy and prints to the console when these magic functions
are called. This way the students can compare the output produced
by their generated code with the output produced by the interpreter.
We set up git repositories with continuous integration for every
student. With these git repositories the students can benefit from
automated testing.

In the end, every student will write their own game in their own
language that can be run in an emulator such as Emulicious [1] and
on a Game Boy using a re-programmable cartridge.

The Interpreter, XML Schema, and description of the magic func-
tions are available at https://drive.google.com/open?id=0B02lNuyg_
dFLRGFNR2VVa3NjM28

3 EXPERIENCE REPORT
While it is essential for any kind of project to have a solid plan to
go on, it is also necessary to adapt to shortcomings and improve
the initial plan through experience.

Which is why in this section we take a look at the experiences
we made during all phases of the project and analyze in which
way we can improve the project for future generations of students.
We will do so by evaluating our experiences of the strengths and
flaws of our plan. First by looking at each phase individually and
afterwards by inspecting the project as a whole.

3.1 Phase One: Parser
We planned to have students write an arithmetic expression parser
as the first assignment, which turned out to be too much for a
first assignment. Parsing binary operators with precedence rules is
notoriously difficult. Furthermore, students had to become familiar
with a parsing technology and our AST format. This did put us one
week behind schedule. We therefore conclude, that the opening
assignment should be more simple.

In the current version of the course, students have to parse
number literals and procedure calls. This is much simpler and allows
students to use themagic functions of the interpreter to draw simple
pictures.

At the beginning of the project the used programming languages
were: Java (6 students), JavaScript (1 student), C++ (1 student),
Haskell (1 student), Elixir (1 student), and Prolog (1 student). Five

https://drive.google.com/open?id=0B02lNuyg_dFLRGFNR2VVa3NjM28
https://drive.google.com/open?id=0B02lNuyg_dFLRGFNR2VVa3NjM28


Developing a Game Boy Compiler as a Software Engineering Project ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden

Figure 1: Phases and work packages per phase

students ended up using Java and three students Haskell for writing
their parsers. The language choice did also transfer to the other
two phases of the project which resulted in the Code-Generator
being written in Java while the Register-Allocation was done in
Haskell. We were also able to observe a pattern linking the choice
of programming language with the choice of parser technology. All
parsers written in Java were generated by using ANTLR1 and all
parsers written in Haskell were created by using Parsec2.

This alignment of used technologies can be explained by students
helping each other with their preferred technology and by having
to use a common technology when working in a team.

Two students tried to write their parser completely from scratch.
One of them switched from C++ to Haskell with Parsec and the
other one dropped out. Thus, we strongly advice students against
writing their parsers by hand.

Examples of the created languages can be seen on the left side
of Figure 1. Most languages were Java-like with some changes to
comments or to how different data types are called. Other students
took inspiration from other languages (i.e. Haskell and LISP) or
changed up how keywords were called completely. We attribute the
Java resemblance of most created languages to both the students
familiarity with languages of this style and the fact that our AST
suggests an imperative programming language.

3.2 Phase Two: Optimizations
In order to parse our intermediate representation, we suggested the
usage of already existing libraries for parsing XML data structures.
Two students did not follow our suggestion and ended up having a
hard time finding bugs in their own XML parser implementation.
I.e. they did not handle XML comments or did not parse self closing
tags correctly.

Another problem was that many students did not implement
all features for their optimization that we requested. Students also
invested too little time into benchmarking their optimizations. Both
problems can be avoided by better communication on our side. For
example, we plan to request integration tests for the optimizations
before students implement them. In this way, we can check that
they have understood all requirements of their optimization.

We also recognized that a way for students to check for side
effect free code sections would have been helpful, because many

1http://www.antlr.org/
2https://wiki.haskell.org/Parsec

optimizations can only be applied to side effect free code. Many
students had to implement this by themselves with varying lev-
els of success which further impacted the quality of the resulting
optimization. Offering a tool that checks for side effect free code
sections can improve the results of the final optimizations, while
simultaneously simplifying their implementation.

During this phase two students also implemented a pipeline tool
for sending an input program through a parser, all optimizations,
the code generator, and a Game Boy assembler. All steps performed
by this tool could be controlled via configuration files. The pipeline
tool simplified the implementation of unit and integration tests,
which were essential for finding bugs during the remaining project.
We recognize how valuable this can be for quality assurance and
will therefore reuse this setup in future projects.

Shortly after students started working on their optimizations for
the second phase a voluntary lecture evaluation was performed by
our university. Some students voiced their dissatisfaction with the
fact that they were still not able to write code that could be run on
an actual Game Boy. As a take away for our current project, we
decided to switch phases two and three to have executable Game
Boy code at about half way through the semester. We also hope
that this switch could make it easier for students to realize the
importance of optimizations when seeing the limits of what non
optimized programs can achieve on hardware with resources as
limited as those of a Game Boy.

Furthermore, the evaluation showed that students found that
the project had a good structure, that the contents were reasonably
easy to follow, and that all students would recommend the project
to other students.

3.3 Phase Three: Code Generation
Our students were split into two groups for the last phase of the
project. The first group implemented a Code generator for Game
Boy assembly using an unlimited number of magic registers. The
generated code would then be passed to the program developed
by the second group of students which replaced access to magic
registers with actual registers using a graph-coloring algorithm.

The main problem with this approach is that no program can
be properly compiled for the Game Boy until the register alloca-
tion works correctly. Thus, in our current project, we are treating
the Game Boy as a stack machine. This allows our students to
generate valid Game Boy assembler without magic registers from



ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden S. Kögel, M. Stegmaier, R. Groner, S. Götz, S. Rechenberger, and M. Tichy

Figure 2: Screenshots of games created by our students.
Screenshots taken from the Game Boy emulator Emuli-
cious [1]

the beginning. Register allocation can then be implemented as an
optimization on the stack machine code.

Our plan of giving students complete control over how to orga-
nize within their respective groups ended up backfiring and causing
discord, forcing intervention by us. While this can be an important
learning experience about the importance of proper project organi-
zation and planning, it also causes unnecessary stress and friction
between students. This can however be fixed by enforcing some
stricter organization from the beginning.

3.4 Looking back
Throughout the whole project, we forced students to write unit
tests for each completed feature of their parser, optimizer, and the
code generator/register allocator. Our goal was to show students
the importance of testing. However, the tests students created were
not created with any kind of coverage in mind making the testing
environment ineffective. This forced us to detach one advanced
student for filling the gaps in test coverage. For future projects, we
will have to enforce stricter organization and structure for tests. We
will also take advantage of the already existing testing environment,
by using it as a way of tracking the progress of our students.

Over the course of the project we also fell behind our planned
schedule by four weeks, because we extended deadlines to allow
students to catch up. While this practice provided a pleasant work
environment, it failed in promoting efficient planning and deadline
handling.

To prevent students from falling behind, we introduced a manda-
tory meeting each week in our current project. During this Lab,
students will be able to work on the project while we are present
to help with problems.

In the end, even though there were some problems along the
way, eight students were able to use their self-developed languages

to write games that could be run on a Game Boy COLOR. These
games can be seen in Figure 2 and a short video of all finished
games in action is available at https://youtu.be/kr_aJmJLJOc

4 RELATEDWORK
There are several projects which discuss compiler construction but
don’t consider e.g. language design, optimizations or software en-
gineering. Aiken [2], Daley [3], and Mernik and Zumer [4] present
projects to teach students compiler construction by implementing
a compiler as individuals or in teams. Those projects consider pri-
marily teaching compiler construction without focusing on other
aspects like, for example, software engineering or the need for
students to work together in self-organized teams. Schocken et
al. [6] present a course consisting of a set of projects which leads
to building a computer. Students gain experience in software engi-
neering, digital architectures, compilers and operating systems. In
contrast to our project, students don’t design their own language
and optimizations aren’t considered.

5 CONCLUSION
In this paper, we present a project that allows students to gain prac-
tical software engineering experience by implementing a compiler.
During this project, students reported that they found this project
very interesting and we felt that they had a lot of fun. This was
despite the project requiring many hours of work per week from
the students. We attribute this to the fact that students had a lot of
freedom and could use languages and tools that interested them
the most, in order to implement their compiler.

The project can be improved further by simplifying the first
assignments, so that students can focus more on familiarizing them-
selves with parsing and continuous integration tools. Further, we
propose Labs to get better feedback about the progress and prob-
lems of our students. These Labs also allow us to intervene when
students get stuck on a problem.

REFERENCES
[1] 2017. Emulicious (Game Boy [..] Emulator). Retrieved October 4, 2017 from

http://emulicious.net (Author: Michael Stegmaier).
[2] Alexander Aiken. 1996. Cool: A portable project for teaching compiler construction.

ACM Sigplan Notices 31, 7 (1996), 19–24.
[3] James S Daley. 1978. A laboratory approach to teaching compiler writing. In ACM

SIGCSE Bulletin, Vol. 10. ACM, 19–21.
[4] Marjan Mernik and Viljem Zumer. 2003. An educational tool for teaching compiler

construction. IEEE Transactions on Education 46, 1 (2003), 61–68.
[5] Julie E Mills, David F Treagust, et al. 2003. Engineering education—Is problem-

based or project-based learning the answer. Australasian journal of engineering
education 3, 2 (2003), 2–16.

[6] Shimon Schocken, Noam Nisan, and Michal Armoni. 2009. A synthesis course
in hardware architecture, compilers, and software engineering. In ACM SIGCSE
Bulletin, Vol. 41. ACM, 443–447.

https://youtu.be/kr_aJmJLJOc
http://emulicious.net

