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Inverse computation of a program is the calculation of the possible inputs given an output. If part of the input is
also given, then this is known as partial inversion. Inverse computation is performed by inverse interpreters whilst
program inversion is performed by inversion compilers.

Sometimes it is easier to solve a problem in one direction rather the other, like it is easier to disarrange Rubik’s cube
than to arrange it. Applications to concrete programs include:

• decoding from encoding (Huffman, cryptography)

• inverting (arithmetic) functions

• computing samples for inconsistency/failure in a constraint solver starting backwards from failure

• computing tautologies starting backwards from “true”

We want to compute backwards from a result of a CHR query to one or all possible predecessor states. This process
is indeterministic, so the angelic semantics of CHR [2] comes handy. Such an execution is useful for running programs
(and their associated functions) backwards, for simulating CHR executions, and for reasoning about them, i.e. to
achieve reachability analysis and safety analysis as in model checking for software verification. Reverse execution
might also be useful for computing with bidirectional rules in both directions, getting CHR more closer to its most
abstract first-order logic semantics.

Preliminary work has been done to invert some common CHR programs. In this project, we wish to compile the
various examples and generalize the inversion procedure, then implement an inversion compiler that produces the
inverse of an input CHR program. The compiler reads the input CHR program, translates it to a standard notation,
performs the inverse then outputs the inverse CHR program.
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