
Software Engineering
3. System Modeling | Thomas Thüm | November 19, 2020

Why System Modeling?

how the customer
explained it

how the project leader
understood it

how the programmer
implemented it

how the business
consultant described it

what the customer
really needed

2Thomas Thüm Software Engineering – 3. System Modeling

http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/

Lecture Overview

1. Why to Model Systems?

2. Modeling Behavior with Activity Diagrams

3. Modeling Behavior with State Machine Diagrams

3Thomas Thüm Software Engineering – 3. System Modeling

Why to Model Systems?

Motivation for Modeling
UML User Guide:

“A successful software organization is one that
consistently deploys quality software that meets
the needs of its users. An organization that can
develop such software in a timely and predictable
fashion, with an efficient and effective use of
resources, both human and material, is one that
has a sustainable business.
[...]
Modeling is a central part of all the activities that
lead up to the deployment of good software. We
build models to communicate the desired
structure and behavior of our system. We build
models to visualize and control the system’s
architecture. We build models to better
understand the system we are building, often
exposing opportunities for simplification and
reuse. And we build models to manage risk.”

UML User Guide:

“We build models of complex systems because we
cannot comprehend such a system in its entirety.”

4Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/

Recap: Software Engineering vs Programming

5Thomas Thüm Software Engineering – 3. System Modeling

https://commons.wikimedia.org/wiki/File:Ulm,_M%C3%BCnster-001darker.jpg
https://commons.wikimedia.org/wiki/File:Tarp_Tent.jpg

Bjarne Stroustrup (2000):

“The most important single aspect of software
development is to be clear about what you are
trying to build.”

6Thomas Thüm Software Engineering – 3. System Modeling

https://commons.wikimedia.org/wiki/File:Bjarne-stroustrup_(cropped).jpg
https://dl.acm.org/doi/book/10.5555/518791
https://dl.acm.org/doi/book/10.5555/518791
https://dl.acm.org/doi/book/10.5555/518791

What is System Modeling?

System Modeling

“System modeling is the process of developing
abstract models of a system, with each model
presenting a different view or perspective of that
system. [...] Models are used during the
requirements engineering process to help derive
the detailed requirements for a system, during
the design process to describe the system to
engineers implementing the system, and after
implementation to document the system’s
structure and operation.” [Sommerville]

7Thomas Thüm Software Engineering – 3. System Modeling

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

What is a Model?

UML User Guide:

“A model is a simplification of reality.”

Sommerville:

“A model is an abstract view of a system that
deliberately ignores some system details.”

Goals of Models [UML User Guide]

� visualize a system as it is (wanted)
� specify the structure or behavior of a system
� template to guide construction of a system
� document the decisions we have made

Sommerville:

“It is important to understand that a system
model is not a complete representation of
system. It purposely leaves out detail to make it
easier to understand. A model is an abstraction
of the system being studied rather than an
alternative representation of that system. A
representation of a system should maintain all the
information about the entity being represented.
An abstraction deliberately simplifies a system
design and picks out the most salient
characteristics.”

8Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

What Language to Use for Modeling?
Towards a Common Language

� Natural language? hard to abstract from
details, already used in requirements

� Programming language? unfamiliar to
people without programming skills in that
language, too early to decide for the
programming language

� Textual language? harder to understand

� Graphical language? makes use of our visual
abilities, requires common understanding

� Problem: engineers need to be aware of all
languages being used

� Solution: use a graphical language
independent of company and domain

9Thomas Thüm Software Engineering – 3. System Modeling

10Thomas Thüm Software Engineering – 3. System Modeling

https://xkcd.com/927/

The Unified Modeling Language

UML

“The Unified Modeling Language (UML) is a
general-purpose visual modeling language that is
used to specify, visualize, construct, and
document the artifacts of a software system.”

[UML Reference Manual]

UML User Guide:

“Modeling yields an understanding of a system.
No one model is ever sufficient. Rather, you often
need multiple models that are connected to one
another [...].”

11Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321245628/
https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/

Different Kinds of UML Diagrams
Structure Diagrams (Strukturdiagramme)

“Structure diagrams show the static structure of
the objects in a system. That is, they depict
those elements in a specification that are
irrespective of time. The elements in a structure
diagram represent the meaningful concepts of an
application, and may include abstract, real-world
and implementation concepts.” [UML 2.5.1]

Behavior Diagrams (Verhaltensdiagramme)

“Behavior diagrams show the dynamic behavior
of the objects in a system, including their
methods, collaborations, activities, and state
histories. The dynamic behavior of a system can
be described as a series of changes to the system
over time.” [UML 2.5.1]

12Thomas Thüm Software Engineering – 3. System Modeling

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

14 Types of UML Diagrams [UML 2.5.1]

UML Diagrams

Structure
Diagrams

Component
Diagram

Class
Diagram

Profile
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Object
Diagram Package

Diagram

Behavior
Diagrams

Use Case
Diagram

Activity
Diagram

State
Machine
Diagram

Interaction
Diagrams

Sequence
Diagram

Communi-
cation

Diagram

Interaction
Overview
Diagram

Timing
Diagram

Six most important UML diagrams* discussed in this course
*John Erickson and Keng Siau. 2007. Theoretical and practical complexity of modeling methods. Commun. ACM 50, 8 (August 2007), 46–51.

13Thomas Thüm Software Engineering – 3. System Modeling

https://www.omg.org/spec/UML/2.5.1/PDF
https://dl.acm.org/doi/10.1145/1278201.1278205

Why to Model Systems?

Lessons Learned

� What is the motivation for system modeling?

� What are models and what is UML?

� Which (kinds of) UML diagrams exist?

� Further Reading: UML User Guide, Chapter
1 — great introduction to modeling

Practice

� Assume you want to rearrange your room (or
a fictive one) to create a better working
environment for home studying. You would
like to ask a friend for advice before moving
furniture. Use 1 minute (not more!) to
create sketch of the room and upload that to
Moodle:
https://moodle.uni-ulm.de/mod/
moodleoverflow/discussion.php?d=1960

� Look at another sketch submitted and create
an answer in Moodle with a list of ten things
that the sketch abstracts from (i.e., what
details are not shown in the visualization).

14Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1960
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1960

Lecture Contents

1. Why to Model Systems?
Motivation for Modeling
Recap: Software Engineering vs Programming
What is System Modeling?
What is a Model?
What Language to Use for Modeling?
The Unified Modeling Language
Different Kinds of UML Diagrams
14 Types of UML Diagrams
Lessons Learned

2. Modeling Behavior with Activity Diagrams

3. Modeling Behavior with State Machine Diagrams

Modeling Behavior with Activity Diagrams

15Thomas Thüm Software Engineering – 3. System Modeling

https://xkcd.com/844/

Activity Diagrams
Activity Diagram (Aktivitätsdiagramm)

An activity diagram is a diagram visualizing
activities and their order of execution. An activity
diagram contains activities (rounded box) that
are connected by means of flows (solid arrows).
The execution begins at the initialization (filled
circle) and ends with the completion node (bull’s
eye). (Aktivität, Fluss, Startzustand, Endzustand)

Rules for Activity Diagrams

� exactly one initialization/completion node
� at least one activity
� every activity has one incoming and one

outgoing flow
� every activity is reachable from initialization
� completion is reachable from every activity

16Thomas Thüm Software Engineering – 3. System Modeling

tthuem
Pencil

Example of Sequential Activities

17Thomas Thüm Software Engineering – 3. System Modeling

tthuem
Pencil

Branching and Merging in Activity Diagrams
Branching and Merging [UML User Guide]

Motivation: model control flow that depends on
certain conditions (i.e., actions that may happen)
Branching: A branch has exactly one incoming
and two or more outgoing flows. Each outgoing
flow has a Boolean expression called guard, which
is evaluated on entering the branch.
(Verzweigung)
Merging: A merge has two or more incoming and
exactly one outgoing flow. (Zusammenführung)

Further Rules for Activity Diagrams

� guards on outgoing flows should not overlap
(flow of control is unambiguous)

� guards should cover all possibilities (flow of
control does not freeze)

� keyword else possible for one guard (sonst)

18Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
tthuem
Pencil

Example of Conditional Activities

19Thomas Thüm Software Engineering – 3. System Modeling

tthuem
Pencil

tthuem
Pencil

Forking and Joining in Activity Diagrams
Forking and Joining [UML User Guide]

Motivation: model concurrent control flows (i.e.,
activities that run in parallel)
Forking: A fork (thick horizontal or vertical line)
has exactly one incoming and two or more
outgoing flows. (Gabelung)
Joining: A join (thick horizontal or vertical line)
has two or more incoming and exactly one
outgoing flow. (Vereinigung)

Further Rules for Activity Diagrams

� branched paths must be merged eventually
(letztendlich)

� forked paths must be joined eventually
� only outgoing edges of branch nodes have

guards

20Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
tthuem
Pencil

Example of Concurrent Activities

21Thomas Thüm Software Engineering – 3. System Modeling

tthuem
Pencil

Swimlanes in Activity Diagrams
Swimlanes [UML User Guide]

Motivation: group activities according to
responsibilities
Swimlane: An activity diagram may have no or
at least two swimlanes. A swimlane (rectangle)
represents a high-level responsibility activities
within an activity diagram.
(Verantwortlichkeitsbereiche)

Further Rules for Activity Diagrams

� each swimlane has a name unique within its
diagram

� every activity belongs to exactly one
swimlane

� only flows may cross swimlanes

22Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/

Modeling Behavior with Activity Diagrams

Lessons Learned

� What can be modeled with activity
diagrams?

� What are branching and merging (used for)?

� What are forking and joining (used for)?

� What can be modeled with swimlanes?

� Further Reading: UML User Guide,
Chapter 20

Practice

� Draw a simple activity diagram in the
context of a contract tracing app and submit
it in Moodle:
https://moodle.uni-ulm.de/mod/
moodleoverflow/discussion.php?d=1961

� Inspect one other diagram and check
whether any rules are violated. Document
those as an answer.

23Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1961
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1961

Lecture Contents

1. Why to Model Systems?

2. Modeling Behavior with Activity Diagrams
Activity Diagrams
Branching and Merging in Activity Diagrams
Forking and Joining in Activity Diagrams
Swimlanes in Activity Diagrams
Lessons Learned

3. Modeling Behavior with State Machine Diagrams

Modeling Behavior with State Machine Diagrams

Activity and State Machine Diagrams

UML User Guide:

We can visualize the dynamics of execution in
two ways: by emphasizing the flow of control
from activity to activity (activity diagrams) or by
emphasizing the potential states and transitions
among those states (state machine diagrams).

24Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/

State Machine Diagrams
State Machine Diagram (Zustandsdiagramm)

A state machine diagram specifies the sequences
of states the (a part of) the system goes through
during its lifetime in response to events, together
with its responses to those events. Every state
(rectangle with rounded corners) is characterized
by a condition or situation. An event is an
occurrence of a stimulus that can trigger a state
transition. A transition (solid arrow) is a
relationship between two states. (Zustand,
Ereignis, Zustandsübergang)

[adapted from UML User Guide]

Rules for State Machine Diagrams

there is a single initial state (filled circle) and a
single final state (bull’s eye) (Start- und
Zielzustand) — see exception below

25Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
tthuem
Pencil

Example of a State Machine Diagram

26Thomas Thüm Software Engineering – 3. System Modeling

tthuem
Pencil

tthuem
Pencil

Hierarchical State Machine Diagrams

Simple and Composite States [UML User Guide]

Motivation: avoid duplicated transitions, improve
overview in complex state machine diagrams
Simple State: “A simple state is a state that has
no substructure.” (einfacher Zustand)
Composite State: “A state that has substates
(i.e., nested states) is called a composite state.”
(komplexer Zustand)

Rules for State Machine Diagrams

� every composite state has its own single
initial state (Startzustand)

� substates may be nested to any level

27Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
tthuem
Pencil

Modeling Behavior with State Machine Diagrams

Lessons Learned

� What can be modeled with state machine
diagrams?

� What is the advantage of hierarchical state
machines?

� Further Reading: UML User Guide,
Chapter 22

Practice

� Draw a simple state machine diagram in the
context of a contract tracing app and submit
it in Moodle:
https://moodle.uni-ulm.de/mod/
moodleoverflow/discussion.php?d=1962

� Give a positive vote for one other diagram
and give feedback to others if you find any
problems.

28Thomas Thüm Software Engineering – 3. System Modeling

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1962
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1962

Lecture Contents

1. Why to Model Systems?

2. Modeling Behavior with Activity Diagrams

3. Modeling Behavior with State Machine Diagrams
Activity and State Machine Diagrams
State Machine Diagrams
Hierarchical State Machine Diagrams
Lessons Learned

	Why to Model Systems?
	Motivation for Modeling
	Recap: Software Engineering vs Programming
	What is System Modeling?
	What is a Model?
	What Language to Use for Modeling?
	The Unified Modeling Language
	Different Kinds of UML Diagrams
	14 Types of UML Diagrams
	Lessons Learned

	Modeling Behavior with Activity Diagrams
	Activity Diagrams
	Branching and Merging in Activity Diagrams
	Forking and Joining in Activity Diagrams
	Swimlanes in Activity Diagrams
	Lessons Learned

	Modeling Behavior with State Machine Diagrams
	Activity and State Machine Diagrams
	State Machine Diagrams
	Hierarchical State Machine Diagrams
	Lessons Learned

