Software Engineering

S Software Engineering
Programming Languages




Why Software Architecture?

what the customer  how the customer how the project how the analyst  how the programmer
really needed explained it leader understood it designed it implemented it

Thomas Thiim Software Engineering — 4. Software Architecture


http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/

Lecture Overview

1. Introduction to Software Architecture
2. Modeling Structure with Component Diagrams

3. Common Architectural Patterns

Thomas Thiim Software Engineering — 4. Software Architecture



I Introduction to Software Architecture



On the Role of Architecture

Thomas Thiim Software Engineering — 4. Software Architecture


https://commons.wikimedia.org/wiki/File:Ulm,_M%C3%BCnster-001darker.jpg

Architecture Bridges the Gap

Large software systems ... “Weeks of coding can save you
hours of planning.” [anon]

= have numerous
requirements

= require many developers

= need separation of
concerns
(Trennung von Belangen)

Requirements Software Architecture Implementation



https://pixnio.com/de/objekte/bucher/buecher-dokument-bildung-informationen-wissen-lesen-sie-forschung-schule-stapel-studie-arbeit
https://www.flickr.com/photos/christiaancolen/34247406926
https://commons.wikimedia.org/wiki/File:Policy_Admin_Component_Diagram.PNG

Analysis and Design

?qol»\\\vc.vhcm {?
EC Voo

| Sysdenn Mochaling—

-
[}
1
1

: A%(7>:§ .

- —— -



tthuem
Pencil


Software Architecture

Architectural Design (Architekturentwurf)

“Architectural design is a creative process in
which you design a system organization that will
satisfy the functional and non-functional
requirements of a system.” [Sommerville]

Software Architecture

"“A software architecture is a description of how
a software system is organized. Properties of a
system such as performance, security, and
availability are influenced by the architecture
used.” [Sommerville]

In Practice: [Sommerville]

“You might propose an abstract system
architecture where you associate groups of system
functions or features with large-scale components
or subsystems. You then use this decomposition
to discuss the requirements and more detailed
features of the system with stakeholders.”



https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

ALL MODERN DIGITAL
INFRASTRUCTURE

T m )

i - A PROTECT S0ME.

RANDOM PERSON

IN NEBRASKA HAS

| BEEN THANKLESSLY

MAINTAINING
SINCE 2003

)
1

—

Thomas Thiim Software Engineering — 4. Software Architecture


https://xkcd.com/2347/

3 Goals of Software Architecture [sommenie]

communication
of stakeholders

Goals of Software
Architectures

support meet critical
software reuse requirements

Software Engineering — 4. Software Architecture


https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

4 Views in Software Architecture sommenite]

physical view

development view

Architectural Views

logical view

process view

Sommerville:

“A logical view, which shows the key abstractions in the
system as objects or object classes. It should be possible
to relate the system requirements to entities in this
logical view.

A process view, which shows how, at runtime, the
system is composed of interacting processes. This view
is useful for making judgments about non-functional
system characteristics such as performance and
availability.

A development view, which shows how the software is
decomposed for development; that is, it shows the
breakdown of the software into components that are
implemented by a single developer or development team.
This view is useful for software managers and
programmers.

A physical view, which shows the system hardware and
how software components are distributed across the
processors in the system. This view is useful for systems
engineers planning a system deployment.”



https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

Conway’s Law [Melvin E. Conway, 1968]

“Any organization that designs a system [...] will
produce a design whose structure is a copy of the
organization’s communication structure.”

Software Engineering


https://twitter.com/conways_law
http://www.melconway.com/Home/Committees_Paper.html
http://www.melconway.com/Home/Committees_Paper.html
http://www.melconway.com/Home/Committees_Paper.html

Introduction to Software Architecture

Lessons Learned

= What is software architecture?
= Why is software architecture so important?

= Further Reading: Sommerville, Chapter
6.0-6.2 (p. 167-175)

Practice

= |nvest five minutes trying to understand the
Corona-Warn-App by inspecting the source
code of the Android client:
https://github.com/corona-warn-app/
cwa-app-android/tree/main/
Corona-Warn-App/src/main/java/de/rki/
coronawarnapp

= Summarize what you learned about the app
by answering a questionnaire in Moodle:
https://moodle.uni-ulm.de/mod/choice/
view.php?id=293405



https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://github.com/corona-warn-app/cwa-app-android/tree/main/Corona-Warn-App/src/main/java/de/rki/coronawarnapp
https://github.com/corona-warn-app/cwa-app-android/tree/main/Corona-Warn-App/src/main/java/de/rki/coronawarnapp
https://github.com/corona-warn-app/cwa-app-android/tree/main/Corona-Warn-App/src/main/java/de/rki/coronawarnapp
https://github.com/corona-warn-app/cwa-app-android/tree/main/Corona-Warn-App/src/main/java/de/rki/coronawarnapp
https://moodle.uni-ulm.de/mod/choice/view.php?id=293405
https://moodle.uni-ulm.de/mod/choice/view.php?id=293405

Lecture Contents

1. Introduction to Software Architecture
On the Role of Architecture
Analysis and Design
Software Architecture
3 Goals of Software Architecture
4 Views in Software Architecture
Lessons Learned

2. Modeling Structure with Component Diagrams

3. Common Architectural Patterns



I Modeling Structure with Component Diagrams



Recap: 14 Types of UML Diagrams uw s,

Profile
Diagram Class

Diagram

Composite
Structure
Diagram

Structure
Diagrams
Deployment
Diagram

Object
Diagram Package

Diagram

Component
Diagram

UML Diagrams

Use Case
Diagram

Activity
Diagram

Behavior
Diagrams

Software Engineering — 4. Software A

State
Machine
Diagram Sequence
Diagram
Interaction
Diagrams i
Communi-
cation
Diagram
Interaction
Timing O\l/erview
Diagram Diagram



https://www.omg.org/spec/UML/2.5.1/PDF

Component Diagrams

Component Diagram (Komponentendiagramm)

A component is a replaceable part of a system
that conforms to and provides the realization of a
set of interfaces. An interface is a collection of
operations that specify a service that is provided
by or requested from a class or component. An
interface that a component realizes is called a
provided interface, meaning an interface that the
component provides as a service to other
components. The interface that a component
uses is called a required interface, meaning an
interface that the component conforms to when
requesting services from other components.
(Komponente, angebotene/benétigte
Schnittstelle) [adapted from UML User Guide]

Thomas Thiim Software Engineering — 4. Software Architecture


https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/

Example of a Component Diagram

Thomas Thiim Software Engineering — 4. Software Architecture



Hierarchical Component Diagrams

Nesting of Components (Verschachtelung)

Motivation: decompose/structure large systems
Nesting: A component may contain any number
of subcomponents. (Teilkomponenten)

Ports and Delegates: A port is an explicit
window into an encapsulated component. A
delegate connects provided or required interfaces
with ports. [adapted from UML User Guide]

Software Engineering — 4. Software Architecture


https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/

Rules for Component Diagrams

Rules for Component Diagrams

= component names are unique

= a component may have any number of
required or provided interfaces

= every required interface is connected to
provided interface

= every component is directly or indirectly
connected to every other component

= subcomponents may be nested to any level

= when subcomponents communicate to a
higher-level component, they need to
communicate via ports

Software Engineering — 4. Software Architecture



Gordon Bell:

“The cheapest, fastest, and most reliable
components are those that aren’t there.”



https://en.wikipedia.org/wiki/File:Gordon_Bell.jpg
https://dl.acm.org/doi/10.1145/1968.381154
https://dl.acm.org/doi/10.1145/1968.381154

Modeling Structure with Component Diagrams

Lessons Learned

= How to describe architectures with UML
component diagrams?

= How to decompose large systems with
nesting?

= Further Reading: UML User Guide,
Chapter 15

Practice

= Design the architecture of a contract tracing
app with a component diagram and submit
it in Moodle:
https://moodle.uni-ulm.de/mod/
moodleoverflow/discussion.php?d=1991

= Give a positive vote for one other diagram
and give feedback to others if you find any
potential problems.



https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1991
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1991

Lecture Contents

1. Introduction to Software Architecture

2. Modeling Structure with Component Diagrams
Recap: 14 Types of UML Diagrams
Component Diagrams
Hierarchical Component Diagrams
Rules for Component Diagrams
Lessons Learned

3. Common Architectural Patterns



I Common Architectural Patterns



Architectural Patterns

Architectural Pattern (Architekturmuster) Goals

= preserve knowledge of

“Architectural patterns capture the essence of an
software architects

architecture that has been used in different
software systems. [...] Architectural patterns are
a means of reusing knowledge about generic
system architectures.” [Sommerville]

= reuse of established
architectures

= enable efficient
communication

Software Engineering — 4. Software Architecture


https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://pixabay.com/de/datenbank-lagerung-datenspeicherung-152091/

Layered Architecture (scichienarchitektur)

Layered Architecture [Sommerville]

Problem: subsystems are hard to adapt and
replace

Idea: decomposition into layers (Schichten)
layer provides services to layers above
layer delegates subtasks to layers below

strict layers: every layer can only access the
next layer

relaxed layers: every layer can access all
layers below

information hiding: layers hide
implementation details behind interface

Software Architecture



https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

Client-Server Architecture (>-scichten-Architektur)

Client-Server Architecture (aka. 2-Tier)
= Problem: several clients need to access the
same data

= |dea: separation of application (client) and
data management (server)

clients initiate the communication with a
server

= typical: multiple clients of the same kind

optional: multiple clients of different kinds
[Sommerville]

Example

a browser uses a URL to connect to a server in
the world wide web and receives an HTML page

Software Engineering


https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

3-Tier Architecture g schichten Architektur)

3-Tier Architecture

= Problem: clients with same functionality but
different presentation needed

= |dea: separation of data presentation,
application logic, and data management

= thin-client application: application logic on
the server

= rich-client application: application logic in
the client

Rule of Thumb

If you can use the application offline, then it is
most likely a rich-client application.

Software Architecture




Peer-to-Peer Architecture

Peer-to-Peer Architecture

= Problem: high load on server and high risk
of failure when transmitting all client data to
the server

= |dea: decentralized transmission of data

= peers connect to each other and transfer
data directly

= peers take over client or server roles

= arbitrary, dynamic topology

In Practice

often combined with a client-server architecture

Software Engineering — 4. Softw:



https://commons.wikimedia.org/wiki/File:P2P-network.svg

Peer-to-Peer Architecture in Windows 10

Delivery Optimization

Delivery Optimization provides you with Windows and Store app
updates and other Microsoft products quickly and reliably.

Allow downloads from other PCs

If you have an unreliable Internet connection or are updating multiple
devices, allowing downloads from other PCs can help speed up the
process.

If you turn this on, your PC may send parts of previously downloaded
Windows updates and apps to PCs on your local network or on the
Internet. Your PC won't upload content to other PCs on the Internet

when you're on a metered network.
Learn more

Allow downloads from other PCs
@ on

@ PCs on my local network

O PCs on my local network, and PCs on the Internet

@ Advanced options

By default, we're dynamically optimizing the amount of bandwidth your
device uses to both download and upload Windows and app updates,
and other Microsoft products. But you can set a specific limit if you're
worried about data usage.

Download settings
[ Limit how much bandwidth is used for downloading updates in the background

45%

[ imit how much bandwidih is used for downloading updates in the foreground

90%

Upload settings
[ timit how much bandwidith is used for uploading updates to other PCs on the
Internet
50%
[] Monthly upload limit

500 GB

Note: when this limit is reached, your device will stop uploading to other PCs on the
Internet.

Monthly upload to date
N/A

Amount left
5000 GB



Model-View-Controller Architecture

Model-View-Controller Architecture

= Context: data is presented and manipulated
over several views

Problem: data inconsistent and new views
hard to add

Idea: separation into three components
model: stores the relevant data independent
of their presentation

view: shows (a part of) the data
independent of manipulations

controller: user interface for the
manipulation of data [Sommerville]

Example

In a spreadsheet, data is presented in tables and
diagrams. Changing values in a table leads to an
update of affected diagrams and tables.



https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

Pipe-and-Filter Architecture

Text terminal

Pipe-and-Filter Architecture [Sommerville]
= Problem: data is processed in numerous

processing steps, which are prone to change

= |dea: modularization of each processing step
into a component

filter components process a stream of data
continously

pipes transfer data unchanged from filter
output to filter input

Pipe Operator in UNIX

“ls -al | grep ’2020° | grep -v ’Nov’ |
more” searches files in a folder from the year
2020 except those from November and delivers
the results in pages.



https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://commons.wikimedia.org/wiki/File:Pipeline-notitle.svg

Common Architectural Patterns

Lessons Learned

= What are architectural patterns?

= What is the difference between common
architectures? layered architecture,
client-server, 3-tier, peer-to-peer,
model-view-controller, pipe-and-filter

= Further Reading: Sommerville, Chapter 6.3
(p. 175-184)

Practice

= Describe a further example for one of the
discussed architectures (or a combination
thereof) in Moodle:
https://moodle.uni-ulm.de/mod/
moodleoverflow/discussion.php?d=1999

= Vote for at least one other example.



https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1999
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1999

Lecture Contents

1. Introduction to Software Architecture
2. Modeling Structure with Component Diagrams

3. Common Architectural Patterns
Architectural Patterns
Layered Architecture
Client-Server Architecture (2-Schichten-Architektur)
3-Tier Architecture (3-Schichten-Architektur)
Peer-to-Peer Architecture
Model-View-Controller Architecture
Pipe-and-Filter Architecture
Lessons Learned



	Introduction to Software Architecture
	On the Role of Architecture
	Analysis and Design
	Software Architecture
	3 Goals of Software Architecture
	4 Views in Software Architecture
	Lessons Learned

	Modeling Structure with Component Diagrams
	Recap: 14 Types of UML Diagrams
	Component Diagrams
	Hierarchical Component Diagrams
	Rules for Component Diagrams
	Lessons Learned

	Common Architectural Patterns
	Architectural Patterns
	Layered Architecture
	Client-Server Architecture blue(2-Schichten-Architektur)
	3-Tier Architecture blue(3-Schichten-Architektur)
	Peer-to-Peer Architecture
	Model-View-Controller Architecture
	Pipe-and-Filter Architecture
	Lessons Learned




