
Software Engineering
4. Software Architecture | Thomas Thüm | November 26, 2020

Why Software Architecture?

what the customer
really needed

how the customer
explained it

how the project
leader understood it

how the analyst
designed it

how the programmer
implemented it

2Thomas Thüm Software Engineering – 4. Software Architecture

http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/
http://web.archive.org/web/20191029221320/http://www.projectcartoon.com/

Lecture Overview

1. Introduction to Software Architecture

2. Modeling Structure with Component Diagrams

3. Common Architectural Patterns

3Thomas Thüm Software Engineering – 4. Software Architecture

Introduction to Software Architecture

On the Role of Architecture

4Thomas Thüm Software Engineering – 4. Software Architecture

https://commons.wikimedia.org/wiki/File:Ulm,_M%C3%BCnster-001darker.jpg

Architecture Bridges the Gap

Large software systems . . .
� have numerous

requirements
� require many developers
� need separation of

concerns
(Trennung von Belangen)

“Weeks of coding can save you
hours of planning.” [anon]

Requirements ImplementationSoftware Architecture

5Thomas Thüm Software Engineering – 4. Software Architecture

https://pixnio.com/de/objekte/bucher/buecher-dokument-bildung-informationen-wissen-lesen-sie-forschung-schule-stapel-studie-arbeit
https://www.flickr.com/photos/christiaancolen/34247406926
https://commons.wikimedia.org/wiki/File:Policy_Admin_Component_Diagram.PNG

Analysis and Design

6Thomas Thüm Software Engineering – 4. Software Architecture

tthuem
Pencil

Software Architecture

Architectural Design (Architekturentwurf)

“Architectural design is a creative process in
which you design a system organization that will
satisfy the functional and non-functional
requirements of a system.” [Sommerville]

Software Architecture

“A software architecture is a description of how
a software system is organized. Properties of a
system such as performance, security, and
availability are influenced by the architecture
used.” [Sommerville]

In Practice: [Sommerville]

“You might propose an abstract system
architecture where you associate groups of system
functions or features with large-scale components
or subsystems. You then use this decomposition
to discuss the requirements and more detailed
features of the system with stakeholders.”

7Thomas Thüm Software Engineering – 4. Software Architecture

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

8Thomas Thüm Software Engineering – 4. Software Architecture

https://xkcd.com/2347/

3 Goals of Software Architecture [Sommerville]

Goals of Software
Architectures

communication
of stakeholders

meet critical
requirements

support
software reuse

9Thomas Thüm Software Engineering – 4. Software Architecture

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

4 Views in Software Architecture [Sommerville]

Architectural Views

logical view process view

development viewphysical view

Sommerville:

“A logical view, which shows the key abstractions in the
system as objects or object classes. It should be possible
to relate the system requirements to entities in this
logical view.
A process view, which shows how, at runtime, the
system is composed of interacting processes. This view
is useful for making judgments about non-functional
system characteristics such as performance and
availability.
A development view, which shows how the software is
decomposed for development; that is, it shows the
breakdown of the software into components that are
implemented by a single developer or development team.
This view is useful for software managers and
programmers.
A physical view, which shows the system hardware and
how software components are distributed across the
processors in the system. This view is useful for systems
engineers planning a system deployment.”

10Thomas Thüm Software Engineering – 4. Software Architecture

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

Conway’s Law [Melvin E. Conway, 1968]

“Any organization that designs a system [...] will
produce a design whose structure is a copy of the
organization’s communication structure.”

11Thomas Thüm Software Engineering – 4. Software Architecture

https://twitter.com/conways_law
http://www.melconway.com/Home/Committees_Paper.html
http://www.melconway.com/Home/Committees_Paper.html
http://www.melconway.com/Home/Committees_Paper.html

Introduction to Software Architecture

Lessons Learned

� What is software architecture?

� Why is software architecture so important?

� Further Reading: Sommerville, Chapter
6.0–6.2 (p. 167–175)

Practice

� Invest five minutes trying to understand the
Corona-Warn-App by inspecting the source
code of the Android client:
https://github.com/corona-warn-app/
cwa-app-android/tree/main/
Corona-Warn-App/src/main/java/de/rki/
coronawarnapp

� Summarize what you learned about the app
by answering a questionnaire in Moodle:
https://moodle.uni-ulm.de/mod/choice/
view.php?id=293405

12Thomas Thüm Software Engineering – 4. Software Architecture

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://github.com/corona-warn-app/cwa-app-android/tree/main/Corona-Warn-App/src/main/java/de/rki/coronawarnapp
https://github.com/corona-warn-app/cwa-app-android/tree/main/Corona-Warn-App/src/main/java/de/rki/coronawarnapp
https://github.com/corona-warn-app/cwa-app-android/tree/main/Corona-Warn-App/src/main/java/de/rki/coronawarnapp
https://github.com/corona-warn-app/cwa-app-android/tree/main/Corona-Warn-App/src/main/java/de/rki/coronawarnapp
https://moodle.uni-ulm.de/mod/choice/view.php?id=293405
https://moodle.uni-ulm.de/mod/choice/view.php?id=293405

Lecture Contents

1. Introduction to Software Architecture
On the Role of Architecture
Analysis and Design
Software Architecture
3 Goals of Software Architecture
4 Views in Software Architecture
Lessons Learned

2. Modeling Structure with Component Diagrams

3. Common Architectural Patterns

Modeling Structure with Component Diagrams

Recap: 14 Types of UML Diagrams [UML 2.5.1]

UML Diagrams

Structure
Diagrams

Component
Diagram

Class
Diagram

Profile
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Object
Diagram Package

Diagram

Behavior
Diagrams

Use Case
Diagram

Activity
Diagram

State
Machine
Diagram

Interaction
Diagrams

Sequence
Diagram

Communi-
cation

Diagram

Interaction
Overview
Diagram

Timing
Diagram

13Thomas Thüm Software Engineering – 4. Software Architecture

https://www.omg.org/spec/UML/2.5.1/PDF

Component Diagrams

Component Diagram (Komponentendiagramm)

A component is a replaceable part of a system
that conforms to and provides the realization of a
set of interfaces. An interface is a collection of
operations that specify a service that is provided
by or requested from a class or component. An
interface that a component realizes is called a
provided interface, meaning an interface that the
component provides as a service to other
components. The interface that a component
uses is called a required interface, meaning an
interface that the component conforms to when
requesting services from other components.
(Komponente, angebotene/benötigte
Schnittstelle) [adapted from UML User Guide]

14Thomas Thüm Software Engineering – 4. Software Architecture

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/

Example of a Component Diagram

15Thomas Thüm Software Engineering – 4. Software Architecture

Hierarchical Component Diagrams

Nesting of Components (Verschachtelung)

Motivation: decompose/structure large systems
Nesting: A component may contain any number
of subcomponents. (Teilkomponenten)
Ports and Delegates: A port is an explicit
window into an encapsulated component. A
delegate connects provided or required interfaces
with ports. [adapted from UML User Guide]

16Thomas Thüm Software Engineering – 4. Software Architecture

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/

Rules for Component Diagrams

Rules for Component Diagrams

� component names are unique
� a component may have any number of

required or provided interfaces
� every required interface is connected to

provided interface
� every component is directly or indirectly

connected to every other component
� subcomponents may be nested to any level
� when subcomponents communicate to a

higher-level component, they need to
communicate via ports

17Thomas Thüm Software Engineering – 4. Software Architecture

Gordon Bell:

“The cheapest, fastest, and most reliable
components are those that aren’t there.”

18Thomas Thüm Software Engineering – 4. Software Architecture

https://en.wikipedia.org/wiki/File:Gordon_Bell.jpg
https://dl.acm.org/doi/10.1145/1968.381154
https://dl.acm.org/doi/10.1145/1968.381154

Modeling Structure with Component Diagrams

Lessons Learned

� How to describe architectures with UML
component diagrams?

� How to decompose large systems with
nesting?

� Further Reading: UML User Guide,
Chapter 15

Practice

� Design the architecture of a contract tracing
app with a component diagram and submit
it in Moodle:
https://moodle.uni-ulm.de/mod/
moodleoverflow/discussion.php?d=1991

� Give a positive vote for one other diagram
and give feedback to others if you find any
potential problems.

19Thomas Thüm Software Engineering – 4. Software Architecture

https://learning.oreilly.com/library/view/unified-modeling-language/0321267974/
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1991
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1991

Lecture Contents

1. Introduction to Software Architecture

2. Modeling Structure with Component Diagrams
Recap: 14 Types of UML Diagrams
Component Diagrams
Hierarchical Component Diagrams
Rules for Component Diagrams
Lessons Learned

3. Common Architectural Patterns

Common Architectural Patterns

Architectural Patterns

Architectural Pattern (Architekturmuster)

“Architectural patterns capture the essence of an
architecture that has been used in different
software systems. [...] Architectural patterns are
a means of reusing knowledge about generic
system architectures.” [Sommerville]

Goals

� preserve knowledge of
software architects

� reuse of established
architectures

� enable efficient
communication

20Thomas Thüm Software Engineering – 4. Software Architecture

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://pixabay.com/de/datenbank-lagerung-datenspeicherung-152091/

Layered Architecture (Schichtenarchitektur)

Layered Architecture [Sommerville]

� Problem: subsystems are hard to adapt and
replace

� Idea: decomposition into layers (Schichten)
� layer provides services to layers above
� layer delegates subtasks to layers below
� strict layers: every layer can only access the

next layer
� relaxed layers: every layer can access all

layers below
� information hiding: layers hide

implementation details behind interface

21Thomas Thüm Software Engineering – 4. Software Architecture

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

Client-Server Architecture (2-Schichten-Architektur)

Client-Server Architecture (aka. 2-Tier)

� Problem: several clients need to access the
same data

� Idea: separation of application (client) and
data management (server)

� clients initiate the communication with a
server

� typical: multiple clients of the same kind
� optional: multiple clients of different kinds

[Sommerville]

Example

a browser uses a URL to connect to a server in
the world wide web and receives an HTML page

22Thomas Thüm Software Engineering – 4. Software Architecture

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

3-Tier Architecture (3-Schichten-Architektur)

3-Tier Architecture

� Problem: clients with same functionality but
different presentation needed

� Idea: separation of data presentation,
application logic, and data management

� thin-client application: application logic on
the server

� rich-client application: application logic in
the client

Rule of Thumb

If you can use the application offline, then it is
most likely a rich-client application.

23Thomas Thüm Software Engineering – 4. Software Architecture

Peer-to-Peer Architecture

Peer-to-Peer Architecture

� Problem: high load on server and high risk
of failure when transmitting all client data to
the server

� Idea: decentralized transmission of data
� peers connect to each other and transfer

data directly
� peers take over client or server roles
� arbitrary, dynamic topology

In Practice

often combined with a client-server architecture

24Thomas Thüm Software Engineering – 4. Software Architecture

https://commons.wikimedia.org/wiki/File:P2P-network.svg

Peer-to-Peer Architecture in Windows 10

Model-View-Controller Architecture
Model-View-Controller Architecture

� Context: data is presented and manipulated
over several views

� Problem: data inconsistent and new views
hard to add

� Idea: separation into three components
� model: stores the relevant data independent

of their presentation
� view: shows (a part of) the data

independent of manipulations
� controller: user interface for the

manipulation of data [Sommerville]

Example

In a spreadsheet, data is presented in tables and
diagrams. Changing values in a table leads to an
update of affected diagrams and tables.

26Thomas Thüm Software Engineering – 4. Software Architecture

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983

Pipe-and-Filter Architecture
Pipe-and-Filter Architecture [Sommerville]

� Problem: data is processed in numerous
processing steps, which are prone to change

� Idea: modularization of each processing step
into a component

� filter components process a stream of data
continously

� pipes transfer data unchanged from filter
output to filter input

Pipe Operator in UNIX

“ls -al | grep ’2020’ | grep -v ’Nov’ |
more” searches files in a folder from the year
2020 except those from November and delivers
the results in pages.

27Thomas Thüm Software Engineering – 4. Software Architecture

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://commons.wikimedia.org/wiki/File:Pipeline-notitle.svg

Common Architectural Patterns

Lessons Learned

� What are architectural patterns?

� What is the difference between common
architectures? layered architecture,
client-server, 3-tier, peer-to-peer,
model-view-controller, pipe-and-filter

� Further Reading: Sommerville, Chapter 6.3
(p. 175–184)

Practice

� Describe a further example for one of the
discussed architectures (or a combination
thereof) in Moodle:
https://moodle.uni-ulm.de/mod/
moodleoverflow/discussion.php?d=1999

� Vote for at least one other example.

28Thomas Thüm Software Engineering – 4. Software Architecture

https://ulm.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC00&sp=SAKSWB-IdNr1615420983
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1999
https://moodle.uni-ulm.de/mod/moodleoverflow/discussion.php?d=1999

Lecture Contents

1. Introduction to Software Architecture

2. Modeling Structure with Component Diagrams

3. Common Architectural Patterns
Architectural Patterns
Layered Architecture
Client-Server Architecture (2-Schichten-Architektur)
3-Tier Architecture (3-Schichten-Architektur)
Peer-to-Peer Architecture
Model-View-Controller Architecture
Pipe-and-Filter Architecture
Lessons Learned

	Introduction to Software Architecture
	On the Role of Architecture
	Analysis and Design
	Software Architecture
	3 Goals of Software Architecture
	4 Views in Software Architecture
	Lessons Learned

	Modeling Structure with Component Diagrams
	Recap: 14 Types of UML Diagrams
	Component Diagrams
	Hierarchical Component Diagrams
	Rules for Component Diagrams
	Lessons Learned

	Common Architectural Patterns
	Architectural Patterns
	Layered Architecture
	Client-Server Architecture blue(2-Schichten-Architektur)
	3-Tier Architecture blue(3-Schichten-Architektur)
	Peer-to-Peer Architecture
	Model-View-Controller Architecture
	Pipe-and-Filter Architecture
	Lessons Learned

