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Why Software Architecture?

what the customer
really needed

how the customer
explained it

how the project
leader understood it

how the analyst
designed it

how the programmer
implemented it
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Lecture Overview

1. Introduction to Software Architecture

2. Modeling Structure with Component Diagrams

3. Common Architectural Patterns
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Introduction to Software Architecture



On the Role of Architecture
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Architecture Bridges the Gap

Large software systems . . .
� have numerous

requirements
� require many developers
� need separation of

concerns
(Trennung von Belangen)

“Weeks of coding can save you
hours of planning.” [anon]

Requirements ImplementationSoftware Architecture
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Analysis and Design
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Software Architecture

Architectural Design (Architekturentwurf)

“Architectural design is a creative process in
which you design a system organization that will
satisfy the functional and non-functional
requirements of a system.” [Sommerville]

Software Architecture

“A software architecture is a description of how
a software system is organized. Properties of a
system such as performance, security, and
availability are influenced by the architecture
used.” [Sommerville]

In Practice: [Sommerville]

“You might propose an abstract system
architecture where you associate groups of system
functions or features with large-scale components
or subsystems. You then use this decomposition
to discuss the requirements and more detailed
features of the system with stakeholders.”
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3 Goals of Software Architecture [Sommerville]

Goals of Software
Architectures

communication
of stakeholders

meet critical
requirements

support
software reuse
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4 Views in Software Architecture [Sommerville]

Architectural Views

logical view process view

development viewphysical view

Sommerville:

“A logical view, which shows the key abstractions in the
system as objects or object classes. It should be possible
to relate the system requirements to entities in this
logical view.
A process view, which shows how, at runtime, the
system is composed of interacting processes. This view
is useful for making judgments about non-functional
system characteristics such as performance and
availability.
A development view, which shows how the software is
decomposed for development; that is, it shows the
breakdown of the software into components that are
implemented by a single developer or development team.
This view is useful for software managers and
programmers.
A physical view, which shows the system hardware and
how software components are distributed across the
processors in the system. This view is useful for systems
engineers planning a system deployment.”
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Conway’s Law [Melvin E. Conway, 1968]

“Any organization that designs a system [...] will
produce a design whose structure is a copy of the
organization’s communication structure.”
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Introduction to Software Architecture

Lessons Learned

� What is software architecture?

� Why is software architecture so important?

� Further Reading: Sommerville, Chapter
6.0–6.2 (p. 167–175)

Practice

� Invest five minutes trying to understand the
Corona-Warn-App by inspecting the source
code of the Android client:
https://github.com/corona-warn-app/
cwa-app-android/tree/main/
Corona-Warn-App/src/main/java/de/rki/
coronawarnapp

� Summarize what you learned about the app
by answering a questionnaire in Moodle:
https://moodle.uni-ulm.de/mod/choice/
view.php?id=293405
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Modeling Structure with Component Diagrams



Recap: 14 Types of UML Diagrams [UML 2.5.1]

UML Diagrams

Structure
Diagrams

Component
Diagram

Class
Diagram

Profile
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Object
Diagram Package

Diagram

Behavior
Diagrams

Use Case
Diagram

Activity
Diagram

State
Machine
Diagram

Interaction
Diagrams

Sequence
Diagram

Communi-
cation

Diagram

Interaction
Overview
Diagram

Timing
Diagram
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Component Diagrams

Component Diagram (Komponentendiagramm)

A component is a replaceable part of a system
that conforms to and provides the realization of a
set of interfaces. An interface is a collection of
operations that specify a service that is provided
by or requested from a class or component. An
interface that a component realizes is called a
provided interface, meaning an interface that the
component provides as a service to other
components. The interface that a component
uses is called a required interface, meaning an
interface that the component conforms to when
requesting services from other components.
(Komponente, angebotene/benötigte
Schnittstelle) [adapted from UML User Guide]
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Example of a Component Diagram
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Hierarchical Component Diagrams

Nesting of Components (Verschachtelung)

Motivation: decompose/structure large systems
Nesting: A component may contain any number
of subcomponents. (Teilkomponenten)
Ports and Delegates: A port is an explicit
window into an encapsulated component. A
delegate connects provided or required interfaces
with ports. [adapted from UML User Guide]
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Rules for Component Diagrams

Rules for Component Diagrams

� component names are unique
� a component may have any number of

required or provided interfaces
� every required interface is connected to

provided interface
� every component is directly or indirectly

connected to every other component
� subcomponents may be nested to any level
� when subcomponents communicate to a

higher-level component, they need to
communicate via ports
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Gordon Bell:

“The cheapest, fastest, and most reliable
components are those that aren’t there.”
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Modeling Structure with Component Diagrams

Lessons Learned

� How to describe architectures with UML
component diagrams?

� How to decompose large systems with
nesting?

� Further Reading: UML User Guide,
Chapter 15

Practice

� Design the architecture of a contract tracing
app with a component diagram and submit
it in Moodle:
https://moodle.uni-ulm.de/mod/
moodleoverflow/discussion.php?d=1991

� Give a positive vote for one other diagram
and give feedback to others if you find any
potential problems.
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Architectural Patterns

Architectural Pattern (Architekturmuster)

“Architectural patterns capture the essence of an
architecture that has been used in different
software systems. [...] Architectural patterns are
a means of reusing knowledge about generic
system architectures.” [Sommerville]

Goals

� preserve knowledge of
software architects

� reuse of established
architectures

� enable efficient
communication
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Layered Architecture (Schichtenarchitektur)

Layered Architecture [Sommerville]

� Problem: subsystems are hard to adapt and
replace

� Idea: decomposition into layers (Schichten)
� layer provides services to layers above
� layer delegates subtasks to layers below
� strict layers: every layer can only access the

next layer
� relaxed layers: every layer can access all

layers below
� information hiding: layers hide

implementation details behind interface
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Client-Server Architecture (2-Schichten-Architektur)

Client-Server Architecture (aka. 2-Tier)

� Problem: several clients need to access the
same data

� Idea: separation of application (client) and
data management (server)

� clients initiate the communication with a
server

� typical: multiple clients of the same kind
� optional: multiple clients of different kinds

[Sommerville]

Example

a browser uses a URL to connect to a server in
the world wide web and receives an HTML page
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3-Tier Architecture (3-Schichten-Architektur)

3-Tier Architecture

� Problem: clients with same functionality but
different presentation needed

� Idea: separation of data presentation,
application logic, and data management

� thin-client application: application logic on
the server

� rich-client application: application logic in
the client

Rule of Thumb

If you can use the application offline, then it is
most likely a rich-client application.
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Peer-to-Peer Architecture

Peer-to-Peer Architecture

� Problem: high load on server and high risk
of failure when transmitting all client data to
the server

� Idea: decentralized transmission of data
� peers connect to each other and transfer

data directly
� peers take over client or server roles
� arbitrary, dynamic topology

In Practice

often combined with a client-server architecture
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Peer-to-Peer Architecture in Windows 10



Model-View-Controller Architecture
Model-View-Controller Architecture

� Context: data is presented and manipulated
over several views

� Problem: data inconsistent and new views
hard to add

� Idea: separation into three components
� model: stores the relevant data independent

of their presentation
� view: shows (a part of) the data

independent of manipulations
� controller: user interface for the

manipulation of data [Sommerville]

Example

In a spreadsheet, data is presented in tables and
diagrams. Changing values in a table leads to an
update of affected diagrams and tables.
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Pipe-and-Filter Architecture
Pipe-and-Filter Architecture [Sommerville]

� Problem: data is processed in numerous
processing steps, which are prone to change

� Idea: modularization of each processing step
into a component

� filter components process a stream of data
continously

� pipes transfer data unchanged from filter
output to filter input

Pipe Operator in UNIX

“ls -al | grep ’2020’ | grep -v ’Nov’ |
more” searches files in a folder from the year
2020 except those from November and delivers
the results in pages.
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Common Architectural Patterns

Lessons Learned

� What are architectural patterns?

� What is the difference between common
architectures? layered architecture,
client-server, 3-tier, peer-to-peer,
model-view-controller, pipe-and-filter

� Further Reading: Sommerville, Chapter 6.3
(p. 175–184)

Practice

� Describe a further example for one of the
discussed architectures (or a combination
thereof) in Moodle:
https://moodle.uni-ulm.de/mod/
moodleoverflow/discussion.php?d=1999

� Vote for at least one other example.
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