
Lattice-Based Information Flow Control-by-Construction
for Security-by-Design

Tobias Runge

TU Braunschweig

Germany

tobias.runge@tu-bs.de

Alexander Knüppel

TU Braunschweig

Germany

a.knueppel@tu-bs.de

Thomas Thüm

University of Ulm

Germany

thomas.thuem@uni-ulm.de

Ina Schaefer

TU Braunschweig

Germany

i.schaefer@tu-bs.de

ABSTRACT
Many software applications contain confidential information, which

has to be prevented from leaking through unauthorized access. To

enforce confidentiality, there are language-based security mecha-

nisms that rely on information flow control. Typically, these mech-

anisms work post-hoc by checking whether confidential data is

accessed unauthorizedly after the complete program is written.

The disadvantage is that incomplete programs cannot be inter-

preted properly and information flow properties cannot be built

in constructively. In this work, we present a methodology to con-

struct programs incrementally using refinement rules to follow

a lattice-based information flow policy. In every refinement step,

confidentiality and functional correctness of the program is guar-

anteed, such that insecure programs are prohibited by construction.

Our contribution is fourfold. We formalize refinement rules for the

constructive information flow control methodology, prove sound-

ness of the refinement rules, show that our approach is at least as

expressive as standard language-based mechanisms for informa-

tion flow, and implement it in a graphical editor called CorC. Our

methodology is also usable for integrity properties, which are dual

to confidentiality.

KEYWORDS
correctness-by-construction, information flow control, security-

by-design

ACM Reference Format:
Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer. 2020.

Lattice-Based Information Flow Control-by-Construction for Security-by-

Design. In 8th International Conference on Formal Methods in Software Engi-
neering (FormaliSE ’20), October 7–8, 2020, Seoul, Republic of Korea. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3372020.3391565

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7071-4/20/05. . . $15.00

https://doi.org/10.1145/3372020.3391565

1 INTRODUCTION
Today, customers have a high demand for secure software. An im-

portant security property of data is confidentiality, which means

that no confidential information is leaked to unauthorized or ex-

ternal systems. Another important property is integrity to ensure

that critical software is functionally correct and is not influenced

by other untrusted software parts. To improve the process of de-

veloping secure software, security-by-design techniques have been

proposed. These techniques provide guidelines for the overall de-

velopment process to design and implement secure software. For

example, a well-known process is the Security Development Life-
cycle (SDL) by Microsoft [16]. At implementation level, SDL relies

on post-hoc program analysis techniques (i.e., techniques applied

after the creation of the program) to ensure confidentiality and

integrity [13].

The information flow between variables on source code level is

mostly analyzedwith language-based static analysis techniques [28].

Such techniques specify security policies to determine the permitted

information flow between variables in the program. For example,

we may define a policy with two confidentiality levels, high and

low, arranged in a lattice where variables are categorized into either

of the two. To prevent information leaks, the lattice-based informa-

tion flow policy prohibits a flow from high to low variables. The

same applies for trusted and untrusted variables with a policy that

prohibits an information flow from untrusted to trusted variables

(i.e., to preserve integrity). As shown by Biba [12], integrity can be

seen as a dual to confidentiality, which means that either of them

can be checked with the same information flow analysis techniques.

Standard information flow analyses are based on security types

systems [28, 31]. Such a type system assigns to every variable and

expression an explicit security type. A set of typing rules describes

the allowed information flow and discards programs that violate

the security policy.

In contrast to post-hoc analyses that cannot ensure informa-

tion flow properties during program construction, but only check

programs after their creation, we propose to develop programs

that are secure by construction analogous to the correctness-by-

construction (CbC) approach for functional correctness [18]. Guided

by a pre-/postcondition specification, an abstract program is re-

fined stepwise to a concrete implementation. By applying a sound

https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1145/3372020.3391565

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer

set of refinement rules, the resulting program is correct by con-

struction. In this paper, we propose Information Flow Control-by-

Construction (IFbC) to create functionally correct programs, which

also satisfy a lattice-based information flow policy for capturing

confidentiality and integrity. The information flow policy can be

specified in any bounded upper semi-lattice (i.e., security levels

are arranged in a partially ordered set representing the allowed

direction of information flow).

In every step of the program construction in IFbC, the security

levels associated with variables are updated according to our refine-

ment rules, and therefore prevent a violation of the information

flow policy. Furthermore, the current status of all variables can be

observed in (partial) programs after each refinement step. To give

programmers more flexibility while constructing a program, we

allow to reverse the information flow in appropriate cases. We intro-

duce a declassify operation, which can be used if the programmer

encrypts or otherwise disguises the confidential information. As

the refinement rules also take functional correctness into account,

programmers using our methodology create programs that meet

two properties, namely functional correctness and security.

In this paper, we demonstrate the strengths of a constructive

methodology to develop secure and correct programs. We give

two examples to emphasize the advantage of ensuring confiden-

tiality and integrity throughout the development process, rather

than having to check this property afterwards. With a sound set of

refinement rules, developers can never construct an insecure pro-

gram, contrary to security type systems that only discard insecure

programs. Therefore, IFbC can reduce the post-hoc analysis effort

or even make it obsolete, as developers are guided by constructive

rules to an already secure program [32]. The IFbC approach con-

tributes to the security-by-design paradigm to close the gap of a

constructive process at implementation level. It can be used sup-

plementary to existing processes and analyses for security-critical

programs during development.

IFbC presented in this paper extends C14bC by Schaefer et al. [29].

C14bC uses a confidentiality specification with only two levels,

high and low, and refinement rules to ensure the confidentiality of

programs written in a simple while-language without method calls.

Moreover, Schaefer et al. [29] discussed potential tool support for

this approach. Finally, we list the four contributions of this work.

• We create an IFbC methodology to construct functionally

correct and secure programs regarding a lattice-based con-

fidentiality and integrity policy. Confidentiality, integrity,

and functional correctness are ensured simultaneously while

constructing the program. The underlying language of IFbC

is also extended by method calls to support more meaningful

programs.

• We prove the soundness of the proposed refinement rules,

such that a program constructed by IFbC never violates our

information flow policy.

• We show that IFbC is at least as expressive as a type sys-

tem for lattice-based information flow control to justify that

IFbC can be used supplementary in a program development

process.

• We implement the IFbC methodology in a tool called CorC

and discuss applicability of our approach.

{P} S {Q} can be refined to

Skip : {P} skip {Q} iff P implies Q (1)

Assignment : {P} x := E {Q} iff P implies Q[x := E] (2)

Composition : {P} S1 ; S2 {Q} iff there is M such that (3)

{P} S1 {M} and {M} S2 {Q}

Selection : {P} if G then S1 else S2 fi {Q} iff (4)

{P ∧ G} S1 {Q} and{P ∧ ¬G} S2 {Q}

Repetition : {P} do G → S od {Q} iff there is an (5)

invariant I and a variant V such that

(P implies I) and (I ∧ ¬G implies Q)

and {I ∧ G} S {I} and

{I ∧ G ∧ V = V0} S {I ∧ 0 ≤ V < V0}

Weaken pre : {P′} S {Q} iff P implies P′ (6)

Strengthen post : {P} S {Q′} iff Q′ implies Q (7)

Method call : {P} M(a1 . . . an) {Q} for a method (8)

{P′} M(z1 . . . zn) {Q
′} iff P = P′[zi\ai]

and Q = Q′[zoldi , zi\a
old
i , ai]

Figure 1: Correctness-by-construction refinement rules [18]

2 FOUNDATIONS
In this section, we provide the background on correctness-by-

construction and information flow in order to introduce IFbC in

the subsequent section. We also introduce lattices as underlying

mathematical structure for lattice-based information flow policies.

2.1 Functional Correctness-by-Construction
Correctness-by-construction (CbC) [18] is an approach to construct

programs guided by a pre-/postcondition specification. CbC starts

with an abstract Hoare triple {P} S {Q} consisting of a precondition
P, an abstract statement S, and a postcondition Q. This triple is

successively refined using a set of refinement rules to a concrete

implementation, which satisfies the specification. For simplicity in

this paper, we consider the guarded command language introduced

by Dijkstra [15]. Each of the refinement rules takes an abstract state-

ment and replaces it with a more concrete guarded command lan-

guage statement. Every refinement rule preserves the correctness

of the program if a discharged side condition is proven correct [25].

The eight considered refinement rules are shown in Fig. 1. As

concrete instructions, we have skip, assignment, and method call
with call by value-result. Composition is used for a sequence of

statements. Selection and repetition are used for the control flow

of the program. In Fig. 1, the side conditions for applicability of a

refinement rule are shown. For example, when refining to a method

call, it has to be proven that the pre-/postcondition specification of

the refined triple is equal to the specification of the called method.

This refinement rule also requires that the parameters of themethod

are correctly passed where ai are the actual parameters and zi are
the formal parameters. The parameters with superscript old refer

to parameters before the execution of the method.

Lattice-Based Information Flow Control-by-Construction for Security-by-Design FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Private
Front

Private
Back

Secret
Front

Secret
Back

Public
Top

Secret

Figure 2: Example of a lattice of confidentiality levels

2.2 Information Flow Control
Information flow control mechanisms [28, 31] are used to specify

programs with respect to a security policy. The policy can establish

confidentiality of processed information to prevent leaks of unau-

thorized information, or it can guarantee integrity of the processed

information by ensuring that trusted parts are not influenced by

untrusted parts. Both properties can be analyzed by considering

the information flow, as confidentiality can be modeled as dual to

integrity [12, 28]. Confidentiality requires that information flow to

specific destinations is prevented. Similarly, integrity requires that

a flow from specific sources is prevented to ensure that the system

is not harmed by untrusted sources. Integrity also requires a func-

tionally correct program because incorrect methods can violate the

integrity by computing wrong data. Correctness can be achieved

with the presented CbC approach of Section 2.1.

To give an example of a security policy for confidentiality, we

consider a company with two different departments. A front office

that should know personal information of customers (e.g., their

name and age) and a back office that should know critical financial

information of customers. The back office does not know other

personal information to make unbiased decisions. The front office

on the other hand should treat the customers without being influ-

enced by their financial status. To establish this policy, a lattice as in

Fig. 2 can be used. This lattice also includes Public data for general
access, and Top Secret data for access by the management. The

front and back office are also divided into two levels, Private and

Secret, for data with different confidentiality levels. The arrows

in the graph show the allowed flow directions.

Lattice. Bell, LaPadula [11], and Denning [14] were the first

to arrange confidentiality levels in a lattice. This arrangement of

confidentiality levels in our example fulfills the requirements of a

bounded upper semi-lattice. A lattice is a structure ⟨L, ≤, lub,⊤,⊥⟩
where L is a set of levels and ≤ is a partial order (e.g., Public ≤

Private Front). The relation operator is reflexive, antisymmetric,

and transitive, but per definition not every pair of elements need to

be comparable. An upper bound in the lattice is defined as follows:

for a set of elements X ⊆ L, an upper bound y exists if ∀x ∈ X :

x ≤ y. The element u is the least upper bound (lub : P(X) → X),
of all x ∈ X if u ≤ y for all upper bounds y. We restrict the lattice

to be a bounded upper semi-lattice, which has the greatest element

⊤ and the least element ⊥, (i.e., ⊥ ≤ a ≤ ⊤ for every a ∈ L). For
every combination of levels, a unique least upper bound (lub) must

exist. The lub is used to calculate the least security level such that

violations of the information flow policy are prevented (e.g., that

no financial information flows to a member of the front office).

We distinguish between two information flow types. Information

can flow directly through an assignment statement, which assigns

(1) ⊢ x : τ var (2)
τ ≤ τ ′

⊢ τ ⊆ τ ′
(3)

⊢ p : ρ ⊢ ρ ⊆ ρ ′

⊢ p : ρ ′

(4)
⊢ τ ⊆ τ ′

⊢ τ ′ cmd ⊆ τ cmd
(5)

⊢ x : τ var ⊢ e′ : τ

⊢ x := e′ : τ cmd

(6)
⊢ c : τ cmd ⊢ c′ : τ cmd

⊢ c; c′ : τ cmd
(7)

⊢ e : τ ⊢ c : τ cmd
⊢ while e do c : τ cmd

(8)
⊢ e : τ ⊢ c : τ cmd ⊢ c′ : τ cmd

⊢ if e then c else c′ : τ cmd

Figure 3: Security type system [31]

data to another variable. Here, we have to ensure that the assigned

variable gets a security level of at least the lub of all variables

used in the expression to prevent a leak. Information can also flow

indirectly through conditional or loop statements. If confidential

data is used in a guard of a conditional statement, the chosen branch

gives information about the variables in the guard. Therefore, the

confidentiality level in the branches must be the least upper bound

of the levels in the guards, too.

Security Type System. A security type system [28] ensures the

compliance of a program with an information flow policy. A set of

typing rules determine the allowed information flow and discard

programs, which violate the security policy. An excerpt of a type

system by Volpano et al. [31] is shown in Fig. 3. Here, we have

security levels τ that are arranged in a lattice L ⟨L, ≤⟩ with τ ∈ L.
The language consists of statements c that are typed with τ cmd ,
expressions e that are typed with a security level τ , and variables x
that are typed with τ var (Rule 1). The typing of expressions should
prevent a leak through direct information flow, and the typing of

statements is used for the indirect information flow. Variables are

expressions. Expressions and statements are both phrases p. The
different types τ cmd , τ var , and τ are all phrase types ρ. The partial
order of confidentiality levels (≤) is extended to a subtype relation

⊆ (rules 2–4) to use subtyping in the other typing rules 5–8. Typ-

ing Rule 5 shows a secure assignment. To assign expression e′ to
x, both expressions must agree on their security level. Through

subtyping (2–4), an assignment from a lower to a higher security

level is allowed. The rules 6–8 describe the standard program flow

constructs for sequence, conditional, and repetition. Here, the secu-

rity levels of the commands c, c′, and guards e have to be equal or

subtyping has to be used.

3 INFORMATION FLOW
CONTROL-BY-CONSTRUCTION

To motivate the IFbC approach, we give two examples. The first

example creates a confidential program, and the second example

uses an information flow policy to ensure integrity of a program.

Auction Example for Confidentiality. To illustrate IFbC for con-

fidentiality, we construct a program for an auction. The input is

an array of bids for an item, and the goal is to find the maximum

bid that wins the auction. The array of bids is traversed to find

this maximum, which is published. We assume three security levels

public, private, and secret with public < private < secret
and each variable is labeled with one of these security levels.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer

1 pre: publishBid = 0
2 post: \forall int x; ((x >= 0
3 & x < bids.length)
4 -> (publishBid >= bids[x]))
5 void auction(private int[] bids,
6 public int publishBid) {
7 public int i = 0;
8 secret int highestBid = 0;
9 do (i < bids.length) {
10 if (highestBid < bids[i]) {
11 highestBid = bids[i];
12 else {
13 skip
14 } fi
15 i = i + 1;
16 } od
17 publishBid = declassify(highestBid);
18 }

Listing 1: Program of the auction example

The auction method is specified such that it gets as input a

private array bids and a public variable publishBid (pB). The
method sets pB to the maximum bid of the auction. In IFbC, param-

eters are passed by value-result. The security levels of other local

variables used in the code are not specified yet. If needed, program-

mers can add additional variables with an initially chosen security

level while constructing the program, where the resulting security

level of the variables can be changed in the program to prevent

leaks. Additionally, a functional specification of the program can be

given to construct a functionally correct program. The refinement

rules of Fig. 1 are used to guarantee the functional correctness.

Simultaneously, refinement rules of IFbC are used to ensure the

specified confidentiality policy.

To construct the program with IFbC, we start with a provided

IFbC triple {Vpre, P} S {Vpost, Q}[η]. This specification indicates

the security levels of variables before (labeling function Vpre
) and

after (Vpost
) program execution. An instance would be the specifi-

cation of the auction problem as above: Vpre,Vpost
:= public pB,

private bids. The security context η is used to reason about in-

direct information flow. It tracks the security level of guards used

in conditional or loop statements. Furthermore, the triple includes

the abstract statement S that is refined to a concrete program. The

functional specification is provided as logical precondition P and
postcondition Q (cf. pre and post in Listing 1). In the following, we

construct the program and refer to the functional refinement rules

that are applied. By refining the program, we can also guarantee

that the security specification is met by construction.

In Fig. 4, we show the refinement steps for the auction example in

a graphical notation. Here, we omit the functional specification to fo-

cus on the information flow. The postcondition contains the public
variable publishBid (indicated by the predicate public(pB) in the

graphic), the private variables bids and i (a control variable of

the loop), and the secret variable highestBid (hB) (a temporary

variable for the maximum bid). The precondition specifies that

publishBid is public and bids has a private security level. The

additional variables i and hB, which do not occur in the specifi-

cation above, are added by the programmer while constructing

S

{public(i,pB) private(bids)
 secret(hB)}[public]

 i = 0; hB = 0;
{public(pB) private(bids,i)

 secret(hB)}[public]

 do i < bids.length → RS od pB = declassify(hB);

{public(i,pB) private(bids)
 secret(hB)}[private]

 i = i + 1; if hB < bids[i] → S1 else S2 fi

 hB = bids[i]; skip

Ref(1)

Ref(2) Ref(3)

Ref(5)Ref(4)

Ref(6) (private context)

Ref(7) Ref(10)

Ref(8) (secret context) Ref(9) (secret context)

{public(pB) private(bids)}
{public(pB) private(bids,i)

secret(hB)}[public]

S1 S2

S22S21

RS1 RS2

Figure 4: Refinement steps for the auction example

the program. Their resulting confidentiality levels are determined

through the application of the refinement rules.

To construct the algorithm as in Listing 1, we want to divide the

problem into three parts, an initialization of some temporary vari-

ables, the loop through the array of bids to search for the highest

bid, and the assignment of the highest bid to the public variable pB.
The first split into the initialization and the rest of the program is

done with Refinement (1). It introduces a composition statement (cf.

Rule 3 in Fig. 1), splitting the problem in two abstract subproblems

S1 and S2 with an intermediate specification, which is calculated

by IFbC while refining the program. The intermediate specification

presents the security level of variables between statements.

In Refinement (2), the initialization of the temporary variables

is done with the assignment statement i = 0; hB = 0; (cf. Rule 2,
indeed it is a multi-step refinement with Rule 3 and 2). The state-

ment initializes i as public and highestBid as secret variable, as
declared by the programmer. In the declarations, the variables are

initially labeled by the programmer, and further refinement rules

ensure that these labeled variables are correctly adjusted during

the refinements. In the postcondition of statement S2, which is the

postcondition of the starting triple, the variable i has a private se-
curity level. Here, we can see that the security level of i is updated

from public to private in the program to prevent a leak.

In Refinement (3), we further split the second part of the program

with the composition rule to iterate through the array of bids first,

and then, to assign the highest bid to a public variable with the

use of a declassify operation. Refinement (5) assigns the highest bid

and is explained after the refinement of the loop.

Refinement (4) creates the loop to iterate through the array

of bids searching for the maximum as long as the control vari-

able i is smaller than the length of the array (cf. Rule 5 for func-

tional correctness). As the variable bids in the guard of the loop

(i < bids.length) has a private security level, the security con-

text of the loop body has to be increased to private to prevent leaks
through indirect information flow. That means, sub-statements of

the repetition can only assign information to variables of at least

the security level of the new security context. For example, if we

would assign to a public variable in the loop body, an attacker

Lattice-Based Information Flow Control-by-Construction for Security-by-Design FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

could deduce that the guard was evaluated to true by reading that

public variable (e.g., bids.length is bigger than i).
The refinements (6)–(10) create the loop body which compares

the next element of the arraywith the current highest bid. If the next

element is greater, we update the highest bid. Refinement (6) splits

the loop bodywith a composition into a check of the next bid and the

increment of the loop variable. The refinements (7)–(9) establish the

selection to check whether the next bid is higher than the current

highest bid. As hB is used in the guards, the security context inside

the selection statement is increased to secret. In Refinement (8),

we assign a new highest bid to our variable (hB = bids[i];). As
hb is already secret, the security level stays the same, otherwise

the security level of the variable has to be increased to secret
because of the secret security context. In the case that the next

bid is smaller or equal to the highest bid, Refinement (9) introduces

a skip statement to not alter the program state.

The assignment in Refinement (10) increments the loop counter.

Here, we increase the security level of i through the private se-
curity context. The security level of the public variable i is set

to private. This increase of the security level propagates through

the program, and therefore the security level of i is private in the

initial triple of the program.

In Refinement (5), we construct the last part of the program, the

assignment to the variable pB. Normally, by assigning secret data

to a public variable, the public security level has to be increased

to secret. This prevents a leak through direct information flow, as

secret data would be accessible through a public variable. With

a declassify operation, programmers can prevent the increase of

the security level (e.g., if they are sure that the confidential data is

allowed to be published, or the data is encrypted beforehand).

Banking Example for Integrity. In Fig. 5, we show a second exam-

ple demonstrating how IFbC works for integrity. A user withdraws

money from a bank account and the balance should be updated if

the withdrawal is trustworthy. In the other case, the balance is not

updated to secure the integrity of the bank. The precondition of the

program specifies that it gets two trusted variables balance and
checked (checked is used as parameter to return the result of the

method), and an untrusted variable withdraw as input. The post-
condition specifies that these security levels must not be altered.

The allowed flow is from trusted to untrusted. The complete

program with a functional specification is shown in Listing 2. The

balance is reduced by the value of withdraw if the value of vari-
able checked is true. In the other case, the balance is not altered.
The Boolean variable checked is set by a method call to check.

To construct the program, we use a composition Refinement (1)

to split the problem into a check whether the withdrawal is allowed

and the update of the balance variable. Refinement (2) introduces

a method call to check whether the system can trust the input

variable withdraw. If this is the case, the variable checked is set to

a true value. When calling the method, all parameters are passed

by value-result, and therefore their security level can be changed.

For example, the method check could be specified that it returns

balance with an untrusted security level, as we allow an update

of the security levels from trusted to untrusted. Then, the bank
method would have to proceed with an untrusted variable. In our

case, the security levels stay the same because we assume that

S

{trusted(balance, checked)
untrusted(withdraw)}[trusted]

check(balance, withdraw, checked); if checked → S1 else S2 fi

balance = declassify(balance – withdraw); skip

Ref(1)

Ref(2) Ref(3)

Ref(5)Ref(4)

{trusted(balance, checked)
untrusted(withdraw)}

{trusted(balance, checked)
untrusted(withdraw)}[trusted]

S1 S2

Figure 5: Refinement steps for the banking example

1 pre: true
2 post: (! checked -> balance ==
3 \old(balance)) & (checked -> balance
4 == \old(balance) - withdraw);
5 void bank(trusted int balance,
6 trusted boolean checked,
7 untrusted int withdraw) {
8 check(balance, withdraw, checked);
9 if (checked) {
10 balance = declassify(balance - withdraw);
11 } else {
12 skip
13 } fi
14 }

Listing 2: Program of the banking example

the method check is specified that way. To verify that the method

check fulfills its specification, it would be created with IFbC.

Refinements (3)–(5) introduce the selection statement to set the

new balance of the bank account. As a trusted variable is used in

the guard, the security context stays the same. With the declassify

operation, we can calculate the new balance in the then-branch.

Without declassify, it is not permitted to assign an untrusted value
to the trusted variable balance. In the else-branch, a skip state-

ment is used that does not alter the program.

For clarity, we give individual examples for confidentiality and

integrity, but both policies can be ensured in the same program

simultaneously by construction, as the IFbC refinement rules oper-

ate on any lattice of security levels. Practically, the variables would

be labeled with a confidentiality and an integrity level, which are

updated individually. Another possibility is to create the power

set of both lattices and label every variable with a combination of

security levels [31].

4 FORMALIZING INFORMATION FLOW
CONTROL-BY-CONSTRUCTION

In this section, we formalize IFbC for the construction of function-

ally correct and secure programs. With this approach, programmers

can incrementally construct programs, where the security levels

are organized in a lattice structure to guarantee a variety of con-

fidentiality and integrity policies. IFbC defines seven refinement

rules to create secure programs. As these rules are based on re-

finement rules for correctness-by-construction, programmers can

create programs that are functionally correct and secure.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer

Vars Set of program variables

S Statement (from the GCL [15])

x ∈ Vars Program variable

E Expressions over the program

variables in Vars
vars(E) ⊆ Vars Set of variables occurring in

expression E
L Bounded upper semi-lattice (L, ≤)

of security levels

Vpre,Vpost, l : Vars → L Labeling function to map a

variable to a security level

lubL : P(L) → L Least upper bound of the security

levels in L
η ∈ L Security context

{Vpre, P} S {Vpost, Q}[η] IFbC triple

Figure 6: Basic notations for IFbC

4.1 Refinement Rules for Program
Construction

To formalize the IFbC rules, we introduce in Fig. 6 basic notations for

variables and security levels, which are used in the refinement rules.

Every variable of the program is associated to one security level.

Levels are arranged in a bounded upper semi-lattice with one great-

est and one least level. The functional and security specification of a

program is defined by an IFbC triple {Vpre, P} S {Vpost, Q}[η]. As
a Hoare triple, the IFbC triple consists of a precondition {Vpre, P},
an abstract statement S, and a postcondition {Vpost, Q}. The func-
tional specification is declared in the logical formulas P and Q. In
the following, we focus on security, so the functional specification

will be omitted. The labeling function Vpre
assigns security levels

to all variables before the statement S is executed andVpost
assigns

security levels to all variables after the execution. The label η is used
to capture the security context of the IFbC triple. This security con-

text is used to reason about implicit information flow by tracking

the security levels of guards in conditional or loop statements. The

refinement rules replace an abstract statement by a more concrete

statement. In the refined triple, the security levels of the variables

are updated to implement the security policy of the program.

Skip. The first IFbC rule introduces a skip statement, which does

not alter the program. It refines an IFbC triple {Vpre} S {Vpost }[η]
to a skip. The rule is applicable if the variables and their associated

security levels stay the same.

Rule 1 (Skip).

{Vpre} S {Vpost }[η] is refinable to {Vpre} skip {Vpost }[η] iff
Vpost (x) = Vpre(x) for all x ∈ Vars .

Assignment. With the assignment rule, an abstract statement S
is refined to an assignment of the form x := E. This represents
explicit information flow from the variables in the expression E to

the variable x on the left-hand side. This direct flow can cause a

leak if data with a higher security level is assigned to x. We can

prevent this leak by enforcing the security level of x.
To apply the refinement, the labeling functionVpost

has to be

altered. The new security level of the variable x is determined

by the least upper bound of the security levels of all variables in

the expression, the security level of the context to consider the

indirect information flow and the security level of x itself. This new
security level is assigned to x in the labeling function Vpost

in the

postcondition of the IFbC triple. So, the only difference ofVpre
and

Vpost
is the update of the security level of variable x.

Rule 2 (Assignment).

{Vpre} S {Vpost }[η] is refinable to {Vpre} x := E {Vpost }[η] iff
Vpost (y) = Vpre(y) for all y ∈ Vars \ {x}, and Vpost (x) =
lub({Vpre(v) | v ∈ vars(E)} ∪ {Vpre(x),η}).

Composition.With the composition rule, an abstract IFbC triple

{Vpre} S {Vpost }[η] is refined to two triples {Vpre} S1 {V
′

}[η]

and {V
′

} S2 {Vpost }[η], which are executed sequentially. Both

triples can be further refined. To apply the rule, a labeling function

V
′

is introduced, which assigns a security level to all program

variables after the execution of the first statement and before the

execution of the second statement. The exact labeling function

V
′

is determined by refining S1 and S2 to concrete statements.

The labeling functionsVpre
andVpost

and the security context η
are not changed. For all variables, the security level can only be

increased by the program. To capture a reverse information flow in

specific cases, the declassify operation and new variables are used.

Rule 3 (Composition).

{Vpre} S {Vpost }[η] is refinable to {Vpre} S1; S2 {Vpost }[η] iff
there exists a labeling function V ′

: Vars → L such that {Vpre} S1

{V
′

}[η] and {V
′

} S2 {Vpost }[η] and for all v ∈ Vars : Vpre(v) ≤

V
′

(v) ≤ Vpost (v).

Selection. The selection rule refines an abstract statement S to an

if statement if(G) → S1 else S2 fi. Here, an implicit leak can

occur as the selected branch reveals information about the guard.

To prevent this, the statements in the branches have to be labeled

with at least the security level of the guard. As selection statements

can be nested, a security context is used to track the current security

level that is needed to prevent an implicit leak.

By applying the refinement rule, the security context of the sub-

statements have to be adjusted to the least upper bound of the

security level of the if-guard and the security context of the outer

selection statement. Both sub-statements with the new security

context can be further refined.

Rule 4 (Selection).

{Vpre} S {Vpost }[η] is refinable to {Vpre} if G → S1 else S2 fi
{Vpost }[η] iff {Vpre} S1 {Vpost }[η′] and {Vpre} S2 {Vpost }[η′]
with η′ = lub({Vpre(v) | v ∈ vars(G)} ∪ {η}).

Repetition. The repetition rule introduces a classic while loop. By

executing the loop, information about the guard is revealed. To

prohibit this indirect leak, the security context of the inner loop

statement is adjusted to the least upper bound of the security levels

of the loop-guard and the security context of the outer repetition

statement.

Rule 5 (Repetition).

{Vpre} S {Vpost }[η] is refinable to {Vpre} do G → S1 od {Vpost }

[η] iff {Vpre} S1 {Vpost }[η′]withη′ = lub({Vpre(v) | v ∈ vars(G)}
∪{η})

Lattice-Based Information Flow Control-by-Construction for Security-by-Design FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

4.2 Method Call Rule
In a method call, all variables are passed by value-result and appear

in the specification of the method. The security level of these passed

variables may change, while the security level of other variables

remains the same. By calling the method, the parameters of the

caller are assigned to the parameters of the called method and the

reverse assignment is done when returning from the method. It has

to be ensured that in the beginning the security levels of variables

of the called method are higher than or equal to the security levels

of variables of the caller to prevent flows from higher to lower

security levels. It also has to be ensured that the security levels in the

postcondition of the caller are higher than or equal to the security

levels of the called method for the same reason. For example, a

secure value of the method has to be assigned to a variable with at

least this security level in the program of the caller. Additionally,

the called method has to satisfy its specification, which can be

shown in a separate IFbC refinement.

Rule 6 (Method Call).

{Vpre} S {Vpost }[η] is refinable to {Vpre} M(a1, . . . , an) {V
post }[η]

iff for a method {V
pre
call } M(z1, . . . , zn) {V

post
call }[η] and for all param-

eters: Vpre(ai) ≤ V
pre
call (zi) ∧ V

post
call (zi) ≤ Vpost (ai) where ai

are the actual parameters and zi are the formal parameters.

4.3 Declassification
With our information flow policy, we are not allowed to assign an

expression with a higher security level to a variable with a lower

security level without increasing the security level of the variable.

This restricts the possibility to develop meaningful programs; in

some cases the information flow from a more secure variable to a

less secure one should be possible. For example, if a password is

saved into a secure variable, an encrypted or hashed version of the

password should be assignable to a less confidential variable. A de-

classification operator [22, 33] can be used to allow the assignment,

but it should only be used if the programmer is sure that no secure

information is leaked.

The declassification rule is a specialized assignment rule, where

an expression E assigned to variable x is surrounded by the declas−
sify operator. With this rule, the security level of the assigned

variable is only set to the least upper bound of its security level and

the security context. The difference to the standard assignment rule

is that the security levels of variables of the assigned expression are

not used to determine the new security level. The declassification

refinement rule is only meaningful if the assigned expression would

increase the security level of the assigned variable. If the security

levels of all variables of the expression are lower than the security

level of the assigned variable, the standard assignment rule and the

declassification rule behave the same.

Rule 7 (Declassification Assignment).

{Vpre} S {Vpost }[η] is refinable to {Vpre} x := declassify(E)
{Vpost }[η] iff Vpost (y) = Vpre(y) for all y ∈ Vars \ {x}, and
Vpost (x) = lub({Vpre(x),η}).

5 PROOF OF SOUNDNESS AND
EXPRESSIVENESS OF IFBC

We want to ensure that programs constructed with IFbC are secure.

We assume that declassify is correctly used by the programmer

because IFbC can detect the use of declassify, but it can not prevent

an inappropriate application. In the following, we prove soundness

of our IFbC rules.

Definition 1 (Secure program).

Let S be an IFbC program and {Vpre} x := E {Vpost }[η] be an arbi-
trary IFbC triple in program S. Moreover, let G be the (possibly empty)
set of all defined guards along the refinements from the root to that
triple (i.e., in conditional statements and loops). We say that program
S is secure (denoted by secure(S)) iff for all such triples the following
two conditions hold:

∀v ∈ vars(E) : Vpost (x) ≥ Vpre(v) (No direct leak)
∀v ∈ vars(G) : Vpost (x) ≥ Vpre(v) (No indirect leak)

The variable x must have a security level that is greater than or

equal to all security levels of variables that are in the expression E to
prevent an assignment of secure information to an insecure variable.

Indirect information flow leaks are prevented if no information can

be deduced by analyzing the guards of conditional statements or

loops. The variable x must have at least the security level of all

guards used in the refinement branch.

To verify the soundness of IFbC, we start with a lemma to reason

about indirect information flow. By assigning an expression E to

a variable x, we know that x has at least the security level of the

security context η that captures the current security level to prevent
indirect leaks (i.e., η is used to track the security levels of guards

used in the refinement branch).

Lemma 1 (Confinement).

Let {Vpre} x := E {Vpost }[η] be an IFbC triple, thenVpost (x) ≥ η.

Proof. Confinement is proven by the definition of the refine-

ment Rule 2 (Assignment). The new security level of x is com-

puted by Vpost (x) = lub({Vpre(v) | v ∈ vars(E)} ∪ {Vpre(x),η}),
and therefore Vpost (x) ≥ η by the definition of the least upper

bound. �

Soundness. With this lemma, we can prove the soundness theo-

rem, which states that a program is secure, if it is constructed using

our refinement rules.

Theorem 1 (Soundness).

If an IFbC triple {Vpre} S {Vpost }[η] is refined to {Vpre} C {Vpost }[η]
with the IFbC refinement rules without declassify, and C is a concrete
program, then secure(C) holds.

Proof. We prove the soundness with structural induction. Skip,
assignment, and method call are the basis steps because they are

the leaves of the refinement tree, and selection, repetition, and com-
position are proven in the induction step.

Induction Base:
• Assignment: {Vpre} S {Vpost }[η] is refined to {Vpre} x := E
{Vpost }[η]. By using the assignment rule, the new security level

of x is Vpost (x) = lub({Vpre(v) | v ∈ vars(E)} ∪ {Vpre(x),η}).
We have to show the absence of direct and indirect information

flow leaks.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer

– Case direct information flow: We have to ensure that ∀v ∈

vars(E) : Vpost (x) ≥ Vpre(v). The assignment rule sets the

security level of x at least to lub({Vpre(v) | v ∈ vars(E)}). With

the definition of lub, we know that ∀v ∈ vars(E) : Vpost (x) ≥
Vpre(v), and therefore no leaks can occur.

– Case indirect information flow: We have to ensure that ∀v ∈

vars(G) of guards G in the refinement branch: Vpost (x) ≥

Vpre(v). As we are at the start of the induction no refinement

rule is used so far and no guards G exist. Using Lemma 1, we

know thatVpost (x) ≥ η, so no leaks can occur.

• Skip: {Vpre} S {Vpost }[η] is refined to {Vpre} skip {Vpost } [η].
As the skip statement has no assignment to a variable, no direct

or indirect information flow can exist.

• Method Call: Given a method {V
pre
call } M(z1, . . . , zn) {V

post
call }[η],

the method call rule assigns the parameters zi to the actual

parameters and ensures that the security levels are only increased.

Therefore, with the assumption that the method itself satisfies its

IFbC triple, the method call does not violate the security policy.

Induction Hypothesis: For each IFbC triple {Vpre} T {Vpost }[η]
that was created in n refinement steps from an abstract IFbC triple

{Vpre} S {Vpost }[η] (denoted as T = refined(S)), secure(T) holds.
Induction Step:
• Repetition: {Vpre} S {Vpost }[η] is refined to {Vpre} do G → S1
od {Vpost }[η] with {Vpre} S1 {Vpost }[η′]. By using the repe-

tition rule, the security context for the statement S1 is set to

η′ = lub({Vpre(v) | v ∈ vars(G)} ∪ {η}). By using the induction

hypothesis, we know that secure(S1) holds before introducing
the loop. We have to show that the refinement preserves security.

– Case direct information flow: Since the repetition statement

does not introduce an assignment, no direct leak can occur.

– Case indirect information flow: The repetition statement in-

troduces a guard G. To prevent an indirect leak, each assigned

variable x in the refinement branch of S1 needs at least the

security level of G (∀v ∈ vars(G) : Vpost (x) ≥ Vpre(v)). There-
fore, the repetition rules sets the security context from η to

η′ as shown above, where η′ is greater than or equal to every

security level of variables in the guard G. With the correctly

updated security context η′ and the Confinement Lemma 1

(Vpost (x) ≥ η′), we know that every assignment in the re-

finement tree of S1 has at least the security level of η′, and
therefore the complete program with the repetition statement

has no leaks.

• Selection: Selection is similar to repetition. A new guard is in-

troduced and the security context is correctly adjusted. The dif-

ference is that the adjusted security context applies for two sub-

statements.

• Composition: {Vpre} S {Vpost }[η] is refined to {Vpre} S1; S2

{Vpost }[η] with an intermediate labeling function V
′

. From the

induction hypothesis we know that both triples {Vpre} S1 {V
′

}

[η] and {V
′

} S2 {Vpost }[η] are secure. Since the following ap-

plies for all v ∈ Vars : Vpre(v) ≤ V
′

(v) ≤ Vpost (v), the security
levels can only be increased. No assignment or guard is intro-

duced, so no new direct or indirect leak can occur and the rest of

the program is secure through the induction hypothesis. There-

fore, we can deduce that secure(S) holds.

�

Expressiveness. We prove that IFbC is at least as expressive as

the information flow type system by Volpano et al. [31]. The type

system was already introduced in Section 2.2. Now, we prove that

every program, which is type safe (denoted as typesafe(C)), can also

be constructed using IFbC. Note that the statement c of the typing

rules and our statements S are analogous constructs for abstract

statements. The security context η of our IFbC approach is also

analogous to the type τ cmd of the statement in the type system.

Theorem 2 (Expressiveness).

For all programs C, if typesafe(C) holds, then there exists {Vpre} S
{Vpost }[η] as a starting IFbC triple which is refined to the same
program C (refined(S) = C) and secure(C) holds.

Proof. We prove the expressiveness with structural induction

on the type derivation. The typing rule for assignments (cf. typing

Rule 5 in Fig. 3) is the typing rule for the start of the induction and

typing rules 6, 7, and 8 are proven in the induction step.

Induction Base:

• Assignment: If x := e′ is type safe, where x is of type τ var and
e′ is of type τ , then we can refine a triple {Vpre} S {Vpost }[η] to
{Vpre} x := e′ {Vpost }[η], where x and e′ have the same security

levels. Subtyping is allowed through typing Rule 2, which is

analogous to our lattice-based definition of lub.

Induction Hypothesis: For each type safe program C that was

typed by n typing rules, the following holds: C = refined(S) and
secure(C).
Induction Step:

• Typing Rule 6: The rule ensures that if C and C′ are type safe,
C; C′ is also type safe. With the induction hypothesis, we know

that C and C′ are type safe and also the triples {Vpre} C {V ′}[η]
and {V ′} C′ {Vpost }[η] are secure. By using the composition

refinement rule, also {Vpre} C; C′ {Vpost }[η] is secure as the re-
finement rule ensures thatV ′

is the same in both triples.

• Typing Rule 7: The rule ensures that if C and e are type safe,

(while e doC : τ cmd) is also type safe. With the induction hy-

pothesis, we know that C is type safe and also the triple {Vpre} C
{Vpost }[η] is secure. To prove that the triple {Vpre} do G → C
od {Vpost }[η′] is secure, we review the adjustment of the secu-

rity context in the type system and in our approach. The type

τ cmd of the statement C can have any type that is more secure

than the type of e (cf. typing rules 4 and 7). This relation is anal-

ogously ensured by our repetition rule, which sets the security

context η to lub({Vpre(v) | v ∈ vars(G)} ∪ {η′}). The security
level of the context has at least the security level of the guard.

• Typing Rule 8: This rule is similar to repetition. The only differ-

ence is that this rule needs two sub-statements C and C′.

�

6 TOOL SUPPORT AND APPLICATIONS
Instead of proving post-hoc that a program is secure, we create

with IFbC programs that are secure by construction. IFbC is at

least as expressive as standard type systems and security is guaran-

teed through the sound set of refinement rules. In order to make

IFbC amenable for programmers, we implemented tool support. We

discuss the applicability of IFbC at the end.

Lattice-Based Information Flow Control-by-Construction for Security-by-Design FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Tool Support. We implemented tool support for IFbC, so that

programmers can construct programs, which follow a lattice-based

information flow policy. The tool guides a programmer to a secure

program with the help of the IFbC refinement rules. In every step

of the program refinement, a violation of the information flow

policy is prevented by updating the security levels of variables.

Simultaneously, refinement rules for correctness-by-construction

guarantee the functional correctness of the program.

IFbC is implemented in a graphical editor CorC.
1
The editor is

implemented in Java as an Eclipse modeling project. By tracking

variables and their security levels, programs can be constructed

that are secure with respect to the information flow policy. CorC

represents the refinement hierarchy of an IFbC program in a tree

structure. Every node represents an IFbC triple consisting of a pre-

/postcondition specification and a statement; a leaf is a concrete

statement and intermediate nodes are abstract statements. A refine-

ment is visualized as an edge between two nodes. If the program is

fully refined, it can be exported as Java code.

In Fig. 7, we show on the left-hand side an excerpt of the auction

example in CorC (cf. Line 14 in Listing 1). We zoomed in to focus on

the main features of the editor rather than showing the complete

program. The leaf node is selected, which contains the assignment i
= i + 1;. In the properties view, we show the security levels of the

variables in the pre- and postcondition and the context. As we can

see, we have an assignment to the public variable i. The calculated
least upper bound is private, as we are in a private context,

and therefore the security level of i is updated to private in the

postcondition. The outcome of the tool is equal to our calculated

security levels in the example above (cf. Fig. 4). In the middle of

the graphic, the palette of CorC is shown to add refinements per

drag and drop. On the right-hand side, the constructed program in

textual form is shown, which is generated automatically by CorC.

This IFbC implementation extends the CorC [25] tool for correct-

ness-by-construction. Besides information flow, CorC reasons about

the functional correctness using a functional specification. By re-

fining a program, the pre-/postcondition specification is updated

according to the refinement rules and the side conditions are dis-

charged automatically. To separate the functional conditions and

the security levels graphically, we decide for a properties view to

visualize the information flow at each step in the program. This

fits the separation of concerns because the conditions for the func-

tional correctness can be altered by the user, but the information

flow is calculated automatically by CorC. By using the refinement

rules and analyzing the declared variables, the security level of each

variable at each step in the program can be computed. Users do not

have to find invariants for loops or other specifications to ensure

compliance with the information flow policy. If the user detects

an inconsistency in the program, the exact spot where a variable

deviates from the intended behavior can be pinpointed.

Applicability of IFbC. To demonstrate applicability of IFbC, we

have conducted smaller case studies. Users already familiar with

CorCwere able to create secure programs while ensuring functional

correctness simultaneously. As the IFbC rules are applied automati-

cally, users only noticed the security mechanisms whenever they

were prevented from writing insecure code.

1
https://github.com/TUBS-ISF/CorC

We emphasize that correctness-by-construction is intended to

be used in correctness-critical applications [18]. Therefore, the

scope of this extension to prevent information leaks is the same.

Mostly small security-critical programs will be constructed with

IFbC. However, the approach also supports constructing larger

programs by splitting them into smaller ones using method calls.

An advantage of IFbC is the constructive nature. Instead of check-

ing that the information flow policy is not violated after writing

the program, users can directly construct programs to comply with

the policy. In every step of the program, even in partial programs,

all variables and their security levels can be observed without exe-

cuting the program. Another advantage is that the security (confi-

dentiality as well as integrity) and functional correctness are guar-

anteed simultaneously, as a secure program that does not have the

intended behavior is insufficient for the users. Functional correct-

ness is also a mandatory requirement for integrity.

IFbC can be used supplementary to existing standard quality

control mechanisms (e.g., a type system, provided that the type

system has the same expressiveness, or testing) to increase trust

in the created program. A program is constructed with IFbC, and

afterwards or at certain points, other mechanisms are used to cross-

check the correctness of the program. Overall, the IFbC approach is

feasible for creating critical software. As finished programs can be

automatically exported to Java, IFbC can be embedded into existing

concepts or processes for secure Java development.

The functional CbC tool without information flow was already

evaluated qualitatively with a user study [26]. In comparison to a

post-hoc verification tool, the participants appreciated the good

feedback of CorC to find defects in the code. The additional effort

for using the refinement rules, was not mentioned negatively.

7 RELATEDWORK
In the following, we discuss the differences to prior work and dis-

tinguish IFbC from other Hoare-style logics for information flow

control. We also discuss information flow type systems and func-

tional correctness-by-construction.

C14bC. We build on top of existing work. Schaefer et al. [29]

introduced C14bC as a constructive approach to reason about in-

formation flow. They introduced a Hoare-style confidentiality spec-

ification with two levels, high and low, and developed refinement

rules to create programs that ensure this specification. The pro-

grams are written in a simple while-language without method calls.

IFbC extends the specification of C14bC from high and low confi-

dentiality levels to a lattice of security levels. We adapted the refine-

ment rules to preserve the security of constructed programs for any

input of user defined security levels. Confidentiality, integrity, as

well as functional correctness can be ensured simultaneously in one

program. We also extended the underlying language with a method

call to improve the scalability of the approach, andwe proved sound-

ness of all refinement rules. Furthermore, IFbC is implemented as

tool support that ensures the lattice-based information flow policy.

Hoare-Style Logics for Information Flow. Previous works that use
Hoare-style program logics with information flow control analyze

the programs after construction, instead of guaranteeing the secu-

rity during construction. The work of Andrews and Reitman [5] is

https://github.com/TUBS-ISF/CorC

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer

Figure 7: Excerpt of the auction example in CorC

similar to our approach, but they directly encode the information

flow in a logical form. They support multiple security levels for

parallel programs. Amtoft and Banerjee [3] also use Hoare-style

program logics and abstract interpretation to reason about infor-

mation flow leaks. They can give failure explanations based on the

derivation of strongest postconditions. This work is the basis for

specifying and checking information flow in SPARK Ada [4].

Program Analysis for Information Flow. Static and dynamic pro-

gram analysis is used to enforce information flow policies [23, 27,

28]. Examples are taint analysis [6] or security type systems [10, 17,

19, 31]. IFbC checks the compliance with an information flow policy

similar to a type system, but if necessary our approach updates

security levels of variables to prevent leaks in the program (cf. the

update of the security level of a variable in the assignment rule).

JFlow [21] is a related approach that extends Java to check in-

formation flow. In contrast to other languages, JFlow supports lan-

guage features such as objects, subclassing, and exceptions. With

our proposed security-by-construction method, we are more re-

strictive, but we created a concept to create secure and functionally

correct programs by construction that can be extended for richer

languages. If a similar expressiveness is given, IFbC can be used

supplementary to established program analysis tools to increase

the security of programs.

To discover security flaws early, Tuma et al. [30] proposed an

approach to analyze the information flow in a system at design

level using security data flow diagrams. Their technique is inspired

by type systems to detect violations of an information flow policy.

Functional Correctness-by-Construction. Correctness-by-construc-
tion is mostly used to ensure functional correctness. A specification

is refined stepwise to actual programs. The Event-B framework [1]

is an approach to refine specified automata-based systems to con-

crete and functionally correct implementations. The Event-B

method is implemented in the Rodin platform [2]. This approach

differs by another abstraction level. Our underlying functional

correctness-by-construction approach uses code and logical specifi-

cation rather than automata-based systems. The CbC approaches

of Back [9] and Morgan [20] are also related. Both can be used to

refine abstract programs into functionally correct programs. Im-

plementations are ArcAngel [24] for Morgan’s refinement calculus

and SOCOS for the refinement approach proposed by Back [7, 8].

All discussed approaches are limited to the functional correctness

and cannot reason about security.

8 CONCLUSION
In this work, we presented IFbC, a constructive approach for se-

cure lattice-based information flow control. This approach enables

security-by-design processes to guarantee the security of programs

during construction. We formalized the refinement rules of IFbC

and proved their soundness. We also showed that IFbC is at least

as expressive as a type system for information flow [31]. IFbC is

implemented in the open-source tool CorC. CorC support the infor-

mation flow rules presented in this paper, and it can also guarantee

the functional correctness of a program. With the tool support, we

evaluated our methodology by implementing some examples and

discussed the applicability of IFbC.

For future work, we can convert IFbC to be flow- and path-

sensitive to make it less pessimistic. By transforming the program

to eliminate false flow dependencies and by using dependent types

to better reason about branches in the control flow, more secure

programs can be accepted [19].

Lattice-Based Information Flow Control-by-Construction for Security-by-Design FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

REFERENCES
[1] Jean-Raymond Abrial. 2010. Modeling in Event-B - System and Software Engineer-

ing. Cambridge University Press.

[2] Jean-RaymondAbrial, Michael Butler, StefanHallerstede, Thai SonHoang, Farhad

Mehta, and Laurent Voisin. 2010. Rodin: An Open Toolset for Modelling and

Reasoning in Event-B. STTT 12, 6 (2010), 447–466.

[3] Torben Amtoft and Anindya Banerjee. 2004. Information FlowAnalysis in Logical

Form. In SAS (LNCS), Vol. 3148. Springer, 100–115.
[4] Torben Amtoft, John Hatcliff, Edwin Rodríguez, Robby, Jonathan Hoag, and

David A. Greve. 2008. Specification and Checking of Software Contracts for

Conditional Information Flow. In FM. Springer, 229–245.

[5] Gregory R. Andrews and Richard P. Reitman. 1980. An Axiomatic Approach to

Information Flow in Programs. TOPLAS 2, 1 (1980), 56–76.
[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.

FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware

Taint Analysis for Android Apps. In PLDI, Vol. 49. ACM, 259–269.

[7] Ralph-Johan Back. 2009. Invariant Based Programming: Basic Approach and

Teaching Experiences. FAOC 21, 3 (2009), 227–244.

[8] Ralph-Johan Back, Johannes Eriksson, and Magnus Myreen. 2007. Testing and

Verifying Invariant Based Programs in the SOCOS Environment. In TAP (LNCS),
Vol. 4454. Springer, 61–78.

[9] Ralph-Johan Back and Joakim Wright. 2012. Refinement Calculus: A Systematic
Introduction. Springer Science & Business Media.

[10] Anindya Banerjee and David A Naumann. 2002. Secure Information Flow and

Pointer Confinement in a Java-like Language.. In CSFW, Vol. 2. 253.

[11] D Elliott Bell and Leonard J La Padula. 1976. Secure Computer System: Unified
Exposition and Multics Interpretation. Technical Report. MITRE Corp Bedford

MA.

[12] Kenneth J Biba. 1977. Integrity Considerations for Secure Computer Systems.
Technical Report. MITRE Corp Bedford MA.

[13] Bart De Win, Riccardo Scandariato, Koen Buyens, Johan Grégoire, and Wouter

Joosen. 2009. On the Secure Software Development Process: CLASP, SDL and

Touchpoints Compared. InfSof 51, 7 (2009), 1152–1171.

[14] Dorothy E Denning. 1976. A Lattice Model of Secure Information Flow. CACM
19, 5 (1976), 236–243.

[15] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice Hall.
[16] Michael Howard, Steve Lipner, U Index, U Part, U Chapter, U Why In, U First

Steps, U New Threats, U Windows, U Seeking Scalability, et al. 2006. The Security
Development Lifecycle: SDL: A Process for Developing Demonstrably More Secure

Software. Microsoft Press.

[17] Sebastian Hunt and David Sands. 2006. On Flow-Sensitive Security Types. SIG-
PLAN Not. 41, 1 (Jan. 2006), 79–90.

[18] Derrick G. Kourie and Bruce W. Watson. 2012. The Correctness-By-Construction
Approach to Programming. Springer.

[19] Peixuan Li andDanfeng Zhang. 2017. Towards a Flow-and Path-Sensitive Informa-

tion Flow Analysis. In 2017 IEEE 30th Computer Security Foundations Symposium
(CSF). IEEE, 53–67.

[20] Carroll Morgan. 1994. Programming from Specifications (2nd ed.). Prentice Hall.

[21] Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information Flow Control.

ACM, New York, NY, USA, 228–241.

[22] Andrew C. Myers and Barbara Liskov. 2000. Protecting Privacy Using the Decen-

tralized Label Model. TOSEM 9, 4 (2000), 410–442.

[23] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of
Program Analysis. Springer.

[24] Marcel Vinicius Medeiros Oliveira, Ana Cavalcanti, and Jim Woodcock. 2003.

ArcAngel: A Tactic Language for Refinement. FAOC 15, 1 (2003), 28–47.

[25] Tobias Runge, Ina Schaefer, Loek Cleophas, Thomas Thüm, Derrick Kourie, and

Bruce W Watson. 2019. Tool Support for Correctness-by-Construction. In FASE
(LNCS), Vol. 11424. Springer, 25–42.

[26] Tobias Runge, Thomas Thüm, Loek Cleophas, Ina Schaefer, and Bruce WWatson.

2019. Comparing Correctness-by-Construction with Post-Hoc Verification - A

Qualitative User Study. In Refine. Springer. To appear.

[27] Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. Static Flow-Sensitive

Security Analysis. In 2010 23rd IEEE Computer Security Foundations Symposium.

IEEE, 186–199.

[28] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-Based Information-Flow

Security. J-SAC 21, 1 (2003), 5–19.

[29] Ina Schaefer, Tobias Runge, Alexander Knüppel, Loek Cleophas, Derrick Kourie,

and Bruce W Watson. 2018. Towards Confidentiality-by-Construction. In ISoLA
(LNCS), Vol. 11244. Springer, 502–515.

[30] Katja Tuma, Riccardo Scandariato, and Musard Balliu. 2019. Flaws in Flows:

Unveiling Design Flaws via Information Flow Analysis. In ICSA. IEEE, 191–200.
[31] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type

System for Secure Flow Analysis. JCS 4, 2/3 (1996), 167–188.
[32] Bruce W. Watson, Derrick G. Kourie, Ina Schaefer, and Loek Cleophas. 2016.

Correctness-by-Construction and Post-hoc Verification: A Marriage of Conve-

nience?. In ISoLA (LNCS), Vol. 9952. Springer, 730–748.
[33] Steve Zdancewic and Andrew C. Myers. 2001. Robust Declassification. In CSFW.

IEEE, 15–23.

	Abstract
	1 Introduction
	2 Foundations
	2.1 Functional Correctness-by-Construction
	2.2 Information Flow Control

	3 Information Flow Control-by-Construction
	4 Formalizing Information Flow Control-by-Construction
	4.1 Refinement Rules for Program Construction
	4.2 Method Call Rule
	4.3 Declassification

	5 Proof of Soundness and Expressiveness of IFbC
	6 Tool Support and Applications
	7 Related Work
	8 Conclusion
	References

