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Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.
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tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
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1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature
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models and failed for 98% of them (i.e., 100% of models having more
than 550 features) [80]. Furthermore, even though other knowledge
compilation techniques scaled to many large feature models, not a
single knowledge compilation tool scaled to Linux when we tried to
compute the number of valid configurations [80]. Similarly, t-wise
sampling algorithms typically do not scale to Linux [69].

Second, there is a considerable amount of research that is based
on the translation of the feature model into a BDD. In the past
two decades, researchers proposed the use of BDDs to count the
number of valid configurations [8, 10, 47, 61, 70, 80], to compute
feature-model slices [1] and differences [2], for interactive prod-
uct configuration [44], to check whether product-line artifacts are
consistent [29, 79], to parse preprocessor-based product lines [41],
to simplify preprocessor annotations [91, 93], and to lift test-suite
generation [15], data-flow analyses [12, 13], or model checking [5,
7, 17, 18, 20, 22–25, 43, 90, 91] to product lines. If we aim to apply
that research to Linux or similarly complex configuration spaces, it
is an open question whether BDDs can be created for them.

Third, there are many advantages of having a BDD. While it is
widely accepted that satisfiability solving scales well for product
lines [62, 87], the potential advantage of a BDD is that one-time
effort for the construction can pay-off when the BDD is later em-
ployed in follow-up analyses. The potential is amplified by several
factors. First, a feature model is typically changed less frequently
than implementation artifacts [42, 54, 69]. As a consequence, a new
BDD only needs to be created when the feature model changes.
Second, for every new revision of the product line there are several
analyses needed of which each typically is reduced to numerous
satisfiability problems. It is likely that a large portion of the satisfi-
ability problems can be solved more efficiently using a BDD.

What is the goal of this challenge?
While our claim about the holy grail is focused on BDDs and

Linux, there is a more general challenge behind this specific one.
Linux is just one example of a large-scale configuration space. A
BDD is just one example of a knowledge compilation technique [31].
The goal of this challenge is to promote the problem of knowledge
compilation for large-scale configuration spaces. In particular, this
challenge is not only focused on software configuration, but also
configurable systems and product configuration. Furthermore, any
representation of the configuration space that invests offline com-
putations (i.e., compilation) in favor of faster online computations
would fall into the scope of this challenge.

What is the problem of the current situation? Many product-
line researchers seem to address very similar problems for various
reasons, but largely without documenting their failed attempts.
Other researchers are most likely repeating the same mistakes
again. The goal of this challenge is to make this problem explicit,
to give researchers a forum to discuss attempts, and to exchange
ideas on possible solutions.

2 STATE-OF-THE-ART
Knowledge compilation is the process of translating a propositional
formula into a target language offline, which is then used online to
answer numerous queries more efficiently (i.e., in polytime) [31].
Ideally, such a target language fulfills three properties, namely

the target representation is small, many classes of queries run
efficiently, and it can be efficiently translated into other target
representations. Besides BDDs, there are numerous other target
languages of knowledge compilation which are typically variations
of conjunctive normal form or disjunctive normal form [31].

Valid combinations of features in product lines or configura-
tion options in configurable software are typically represented
by feature models, decision models, or other kinds of variability
models [4, 6, 26, 27, 33, 39, 45, 48, 64, 73]. To reason about these
constraints, variability models are typically translated into proposi-
tional logic [6, 30, 46]. In the past three decades, amyriad of analyses
have been proposed that require reasoning about constraints. These
include automated analyses of feature models [9, 38] and analyses
also incorporating other domain artifacts [86, 92]. In particular,
a logical representation has been used for feature-model evolu-
tion [67, 87], feature-model interfaces and slicing [1, 74], computa-
tion of implicit constraints [3], product configuration [44, 72] includ-
ing staged configuration [28], parsing [50], dead-code analysis [83],
code simplification [93], type checking [85], consistency check-
ing [29], dataflow analyses [56], model checking [19], testing [16]
including variability-aware execution [66] and sampling [58, 89], op-
timization of non-functional properties [78], and variant-preserving
refactoring [35]. Each of these analyses may profit from knowledge
compilation. As it is likely that numerous of such analyses are com-
bined in practice, it is even more beneficial to invest in some offline
computations if those help to speed-up several analyses later on.

Knowledge compilation has been used to reason about configura-
tion spaces for about two decades now. Already in 2004, Hadzic et al.
reported on the use of BDDs to speed-up interactive product con-
figurators [44]. However, the algorithms to create BDDs are part of
Configit’s commercial products and not available to the research
community. As their algorithms have never been applied to publicly
available benchmarks, the actual scalability of Configit’s algorithms
is questionable. Czarnecki and Pietroszek used BDDs for consis-
tency checking in model-based product lines and evaluated their
approach on an e-commerce platform with about 200 features [29].
Numerous authors used BDDs to compute the number of valid
configurations [10, 55, 70, 80]. Benavides et al. employed multiple
solvers, such as SAT, CSP, and BDDs for the analysis of feature mod-
els in the FaMa framework [8, 10]. Mendonça investigated heuristics
to scale BDDs to product lines in his dissertation [60, 63]. Besides
randomly generated feature models with up-to 3,000 features, he
exercised academic product lines from the SPLOT repository with
up-to 200 features. Kübler et al. applied existing knowledge com-
pilation techniques and a proprietary compilation technique to
compute the number of valid configurations as well as the relative
frequency of components [55]. They evaluated those techniques on
automotive product lines from Mercedes-Benz with between 5,000
to 10,000 features. Only the proprietary technique was able to scale
to 10,000 features with a runtime of about two hours. Pohl et al.
investigated nine knowledge compilation techniques, including
BDDs, CSP, and SAT solvers to compute the number of valid con-
figurations [70]. While they only evaluated small academic product
lines from the SPLOT repository, we recently extended their study
with the largest known feature models from open-source projects
and proprietary models [80]. While some knowledge compilation
techniques scaled to all systems except Linux and one automotive
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product line, BDDs did not scale for almost all models. In July 2020,
after the preliminary version of this challenge has been published in
March 2020, Fernandez-Amoros et al. proposed a special treatment
for alternative groups, which helped to scale BDDs to BusyBox,
EmbToolKit, and Automotive02 with 604, 2,325, and 17,365 features,
respectively [36]. However, all these product lines have under-
constrained configuration spaces (i.e., only few features appear
in constraints) and are therefore not representative. Even though
Fernandez-Amoros et al. were aware of benchmarks with other
models, they have not discussed why they excluded those and the
most likely reason is that BDDs did not scale. In summary, when
knowledge compilation is applied to product lines, significantly
smaller or less-constrained product lines than Linux are used and
negative results are rarely published.

Nevertheless, BDDs have indeed be used for the analysis of Linux
and other large product lines [40, 41, 51, 66, 79, 84, 93]. However,
in these cases the BDDs were only used to represent presence
conditions or path conditions, which contain only a tiny portion of
the product-line features. For those analyses, the feature model has
either been ignored or was queried by means of SAT solvers.

3 CALL FOR CONTRIBUTIONS
Knowledge compilation can have a significant positive effect on
the performance of hundreds of existing analyses. In particular, a
BDD for Linux could help to scale many analyses, including t-wise
sampling, uniform random sampling, or even to count the number
of configurations. While it seems that numerous researchers have
attempted to build a BDD for Linux, these attempts have not been
successful so far and are typically not documented in the literature.
We call for a community effort to advance the state-of-the-art on
knowledge compilation for product lines. Besides a BDD for Linux,
we call for related submissions:

• BDDs for parts of Linux or older versions containing fewer
features and BDDs for Linux ignoring some constraints.

• BDDs for real-world configuration spaces (cf. existing bench-
marks [52, 69]) or randomly generated models with thou-
sands of features (cf. existing generators [62, 75, 76, 87]).

• Application of existing knowledge compilation techniques
beyond BDDs [31] to variability or development of new
knowledge compilation techniques dedicated to variability.

• Strategies for incremental knowledge compilation to cope
with the evolution of configuration spaces.

• Attempts to solve any of the above challenges, as this docu-
mentation can prevent others from redundant research.

For comparability of solutions, we recommend using one or
several of the following three benchmarks. We have translated
the KConfig model of Linux in more than 400 revisions between
November 2013 and January 2018 [69]. That is, not every commit of
Linux is considered, but only those that actually alter the KConfig
model. The models have been translated into several formats using
KConfigReader [49] and the FeatureIDE library [53, 59] and are
available in an online repository.1 Nevertheless, the benchmark has
two disadvantages. First, as the translation with KConfigReader
uses the Tseytin transformation [88], the models contain more than
60,000 variables. Second, the feature models are flat and do not
1https://github.com/PettTo/Feature-Model-History-of-Linux

preserve the hierarchy of the features in KConfig. To the best of
our knowledge, there is no better translation by now.

With support of Thorsten Berger, we translated more than 100
models from KConfig and the Component Definition Language
(CDL) [52].2 These models have been translated with an extension
of the Linux Variability Analysis Tools (LVAT) [11].3 The advantage
over the previous benchmark is that the hierarchy of features is
available and that models are available in a version without newly
introduced variables. While the benchmark also contains Linux, the
feature model represents version 2.6.33.3, which has been released
in April 2010 and used for illustration in Figure 1.

In our collaborations with industry, we have been able to publish
feature models of commercial models [67, 69, 74].4 The Automo-
tive02 models [74] and FinancialServices01 models [67] origin from
the automotive and financial services industry, respectively. These
models are available as monthly snapshots and feature names are
obfuscated. The obfuscation algorithm being used ensures that fea-
ture names are consistently replaced over the evolution history. In
four revisions, Automotive02 grew from 14,010 features and 666
constraints to a version with 18,616 features and 1,339 constraints.
Similarly, FinancialServices01 grew from 557 features and 1,001
constraints to a product line with 771 features and 1,080 constraints
in ten revisions.

We ask submitters to accompany their solution with a number
of metrics for later comparisons. Besides the target product line,
we ask about the actual source and its version. If translations were
used to translate variability models into another language or into a
logical representation, solutions should describe the techniques or
tools being used. For the target product lines, statistics should be
reported, such as the number of features, constraints, and clauses
(i.e., in conjunctive or disjunctive normal form). If only a subset of
the feature model is compiled, the percentage of covered features,
constraints, and clauses is to be specified. For the compilation,
time and memory consumption with respect to the used hardware
and software should be specified. In case of success, we also expect
metrics on the result of knowledge compilation, such as the number
of nodes for a BDD or the number of literals of a normal form.

We explicitly invite researchers and practitioners to document
their efforts with knowledge compilation for product lines.
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