
A BDD for Linux?
The Knowledge Compilation Challenge for Variability

Thomas Thüm
University of Ulm, Germany
thomas.thuem@uni-ulm.de

Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.

CCS CONCEPTS
• Software and its engineering � Formal software verifica-
tion; Software testing and debugging; Software verification;
Automated static analysis; Consistency; Software configura-
tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
KEYWORDS
software product line, configurable system, software configuration,
product configuration, feature models, decision models, artificial
intelligence, satisfiability solving, knownledge compilation, binary
decision diagrams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montreal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414943

ACM Reference Format:
Thomas Thüm. 2020. A BDD for Linux?: The Knowledge Compilation Chal-
lenge for Variability. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, Montreal, QC, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414943

1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature

https://doi.org/10.1145/3382025.3414943
https://doi.org/10.1145/3382025.3414943

SPLC ’20, October 19–23, 2020, Montreal, QC, Canada Thomas Thüm

models and failed for 98% of them (i.e., 100% of models having more
than 550 features) [80]. Furthermore, even though other knowledge
compilation techniques scaled to many large feature models, not a
single knowledge compilation tool scaled to Linux when we tried to
compute the number of valid configurations [80]. Similarly, t-wise
sampling algorithms typically do not scale to Linux [69].

Second, there is a considerable amount of research that is based
on the translation of the feature model into a BDD. In the past
two decades, researchers proposed the use of BDDs to count the
number of valid configurations [8, 10, 47, 61, 70, 80], to compute
feature-model slices [1] and differences [2], for interactive prod-
uct configuration [44], to check whether product-line artifacts are
consistent [29, 79], to parse preprocessor-based product lines [41],
to simplify preprocessor annotations [91, 93], and to lift test-suite
generation [15], data-flow analyses [12, 13], or model checking [5,
7, 17, 18, 20, 22–25, 43, 90, 91] to product lines. If we aim to apply
that research to Linux or similarly complex configuration spaces, it
is an open question whether BDDs can be created for them.

Third, there are many advantages of having a BDD. While it is
widely accepted that satisfiability solving scales well for product
lines [62, 87], the potential advantage of a BDD is that one-time
effort for the construction can pay-off when the BDD is later em-
ployed in follow-up analyses. The potential is amplified by several
factors. First, a feature model is typically changed less frequently
than implementation artifacts [42, 54, 69]. As a consequence, a new
BDD only needs to be created when the feature model changes.
Second, for every new revision of the product line there are several
analyses needed of which each typically is reduced to numerous
satisfiability problems. It is likely that a large portion of the satisfi-
ability problems can be solved more efficiently using a BDD.

What is the goal of this challenge?
While our claim about the holy grail is focused on BDDs and

Linux, there is a more general challenge behind this specific one.
Linux is just one example of a large-scale configuration space. A
BDD is just one example of a knowledge compilation technique [31].
The goal of this challenge is to promote the problem of knowledge
compilation for large-scale configuration spaces. In particular, this
challenge is not only focused on software configuration, but also
configurable systems and product configuration. Furthermore, any
representation of the configuration space that invests offline com-
putations (i.e., compilation) in favor of faster online computations
would fall into the scope of this challenge.

What is the problem of the current situation? Many product-
line researchers seem to address very similar problems for various
reasons, but largely without documenting their failed attempts.
Other researchers are most likely repeating the same mistakes
again. The goal of this challenge is to make this problem explicit,
to give researchers a forum to discuss attempts, and to exchange
ideas on possible solutions.

2 STATE-OF-THE-ART
Knowledge compilation is the process of translating a propositional
formula into a target language offline, which is then used online to
answer numerous queries more efficiently (i.e., in polytime) [31].
Ideally, such a target language fulfills three properties, namely

the target representation is small, many classes of queries run
efficiently, and it can be efficiently translated into other target
representations. Besides BDDs, there are numerous other target
languages of knowledge compilation which are typically variations
of conjunctive normal form or disjunctive normal form [31].

Valid combinations of features in product lines or configura-
tion options in configurable software are typically represented
by feature models, decision models, or other kinds of variability
models [4, 6, 26, 27, 33, 39, 45, 48, 64, 73]. To reason about these
constraints, variability models are typically translated into proposi-
tional logic [6, 30, 46]. In the past three decades, amyriad of analyses
have been proposed that require reasoning about constraints. These
include automated analyses of feature models [9, 38] and analyses
also incorporating other domain artifacts [86, 92]. In particular,
a logical representation has been used for feature-model evolu-
tion [67, 87], feature-model interfaces and slicing [1, 74], computa-
tion of implicit constraints [3], product configuration [44, 72] includ-
ing staged configuration [28], parsing [50], dead-code analysis [83],
code simplification [93], type checking [85], consistency check-
ing [29], dataflow analyses [56], model checking [19], testing [16]
including variability-aware execution [66] and sampling [58, 89], op-
timization of non-functional properties [78], and variant-preserving
refactoring [35]. Each of these analyses may profit from knowledge
compilation. As it is likely that numerous of such analyses are com-
bined in practice, it is even more beneficial to invest in some offline
computations if those help to speed-up several analyses later on.

Knowledge compilation has been used to reason about configura-
tion spaces for about two decades now. Already in 2004, Hadzic et al.
reported on the use of BDDs to speed-up interactive product con-
figurators [44]. However, the algorithms to create BDDs are part of
Configit’s commercial products and not available to the research
community. As their algorithms have never been applied to publicly
available benchmarks, the actual scalability of Configit’s algorithms
is questionable. Czarnecki and Pietroszek used BDDs for consis-
tency checking in model-based product lines and evaluated their
approach on an e-commerce platform with about 200 features [29].
Numerous authors used BDDs to compute the number of valid
configurations [10, 55, 70, 80]. Benavides et al. employed multiple
solvers, such as SAT, CSP, and BDDs for the analysis of feature mod-
els in the FaMa framework [8, 10]. Mendonça investigated heuristics
to scale BDDs to product lines in his dissertation [60, 63]. Besides
randomly generated feature models with up-to 3,000 features, he
exercised academic product lines from the SPLOT repository with
up-to 200 features. Kübler et al. applied existing knowledge com-
pilation techniques and a proprietary compilation technique to
compute the number of valid configurations as well as the relative
frequency of components [55]. They evaluated those techniques on
automotive product lines from Mercedes-Benz with between 5,000
to 10,000 features. Only the proprietary technique was able to scale
to 10,000 features with a runtime of about two hours. Pohl et al.
investigated nine knowledge compilation techniques, including
BDDs, CSP, and SAT solvers to compute the number of valid con-
figurations [70]. While they only evaluated small academic product
lines from the SPLOT repository, we recently extended their study
with the largest known feature models from open-source projects
and proprietary models [80]. While some knowledge compilation
techniques scaled to all systems except Linux and one automotive

A BDD for Linux? The Knowledge Compilation Challenge for Variability SPLC ’20, October 19–23, 2020, Montreal, QC, Canada

product line, BDDs did not scale for almost all models. In July 2020,
after the preliminary version of this challenge has been published in
March 2020, Fernandez-Amoros et al. proposed a special treatment
for alternative groups, which helped to scale BDDs to BusyBox,
EmbToolKit, and Automotive02 with 604, 2,325, and 17,365 features,
respectively [36]. However, all these product lines have under-
constrained configuration spaces (i.e., only few features appear
in constraints) and are therefore not representative. Even though
Fernandez-Amoros et al. were aware of benchmarks with other
models, they have not discussed why they excluded those and the
most likely reason is that BDDs did not scale. In summary, when
knowledge compilation is applied to product lines, significantly
smaller or less-constrained product lines than Linux are used and
negative results are rarely published.

Nevertheless, BDDs have indeed be used for the analysis of Linux
and other large product lines [40, 41, 51, 66, 79, 84, 93]. However,
in these cases the BDDs were only used to represent presence
conditions or path conditions, which contain only a tiny portion of
the product-line features. For those analyses, the feature model has
either been ignored or was queried by means of SAT solvers.

3 CALL FOR CONTRIBUTIONS
Knowledge compilation can have a significant positive effect on
the performance of hundreds of existing analyses. In particular, a
BDD for Linux could help to scale many analyses, including t-wise
sampling, uniform random sampling, or even to count the number
of configurations. While it seems that numerous researchers have
attempted to build a BDD for Linux, these attempts have not been
successful so far and are typically not documented in the literature.
We call for a community effort to advance the state-of-the-art on
knowledge compilation for product lines. Besides a BDD for Linux,
we call for related submissions:

• BDDs for parts of Linux or older versions containing fewer
features and BDDs for Linux ignoring some constraints.

• BDDs for real-world configuration spaces (cf. existing bench-
marks [52, 69]) or randomly generated models with thou-
sands of features (cf. existing generators [62, 75, 76, 87]).

• Application of existing knowledge compilation techniques
beyond BDDs [31] to variability or development of new
knowledge compilation techniques dedicated to variability.

• Strategies for incremental knowledge compilation to cope
with the evolution of configuration spaces.

• Attempts to solve any of the above challenges, as this docu-
mentation can prevent others from redundant research.

For comparability of solutions, we recommend using one or
several of the following three benchmarks. We have translated
the KConfig model of Linux in more than 400 revisions between
November 2013 and January 2018 [69]. That is, not every commit of
Linux is considered, but only those that actually alter the KConfig
model. The models have been translated into several formats using
KConfigReader [49] and the FeatureIDE library [53, 59] and are
available in an online repository.1 Nevertheless, the benchmark has
two disadvantages. First, as the translation with KConfigReader
uses the Tseytin transformation [88], the models contain more than
60,000 variables. Second, the feature models are flat and do not
1https://github.com/PettTo/Feature-Model-History-of-Linux

preserve the hierarchy of the features in KConfig. To the best of
our knowledge, there is no better translation by now.

With support of Thorsten Berger, we translated more than 100
models from KConfig and the Component Definition Language
(CDL) [52].2 These models have been translated with an extension
of the Linux Variability Analysis Tools (LVAT) [11].3 The advantage
over the previous benchmark is that the hierarchy of features is
available and that models are available in a version without newly
introduced variables. While the benchmark also contains Linux, the
feature model represents version 2.6.33.3, which has been released
in April 2010 and used for illustration in Figure 1.

In our collaborations with industry, we have been able to publish
feature models of commercial models [67, 69, 74].4 The Automo-
tive02 models [74] and FinancialServices01 models [67] origin from
the automotive and financial services industry, respectively. These
models are available as monthly snapshots and feature names are
obfuscated. The obfuscation algorithm being used ensures that fea-
ture names are consistently replaced over the evolution history. In
four revisions, Automotive02 grew from 14,010 features and 666
constraints to a version with 18,616 features and 1,339 constraints.
Similarly, FinancialServices01 grew from 557 features and 1,001
constraints to a product line with 771 features and 1,080 constraints
in ten revisions.

We ask submitters to accompany their solution with a number
of metrics for later comparisons. Besides the target product line,
we ask about the actual source and its version. If translations were
used to translate variability models into another language or into a
logical representation, solutions should describe the techniques or
tools being used. For the target product lines, statistics should be
reported, such as the number of features, constraints, and clauses
(i.e., in conjunctive or disjunctive normal form). If only a subset of
the feature model is compiled, the percentage of covered features,
constraints, and clauses is to be specified. For the compilation,
time and memory consumption with respect to the used hardware
and software should be specified. In case of success, we also expect
metrics on the result of knowledge compilation, such as the number
of nodes for a BDD or the number of literals of a normal form.

We explicitly invite researchers and practitioners to document
their efforts with knowledge compilation for product lines.

ACKNOWLEDGMENTS
In the past years, I have had numerous fruitful discussions on this
topic with other researchers. In particular, I would like to thank
Tobias Heß, Chico Sundermann, Sebastian Krieter, Tobias Pett, Ina
Schaefer, Christian Kästner, Jeffrey Young, Eric Walkingshaw, Eric
Bodden, Andrzej Wąsowski, and Leopoldo Teixeira. Special thanks
goes to Thorsten Berger and Alexander Knüppel for retrieving
real-world feature models with hierarchy. Their efforts resulted
in a benchmark published in 2017 [52] and one of those models is
illustrated in Figure 1. This work has been supported by the German
Research Foundation within the project VariantSync (TH 2387/1-1).

2https://github.com/AlexanderKnueppel/is-there-a-mismatch/tree/master/Data/
LargeFeatureModels
3https://code.google.com/archive/p/linux-variability-analysis-tools/
4https://github.com/PettTo/SPLC2019_The-Scalability-Challenge_Product-Lines

https://github.com/PettTo/Feature-Model-History-of-Linux
https://github.com/AlexanderKnueppel/is-there-a-mismatch/tree/master/Data/LargeFeatureModels
https://github.com/AlexanderKnueppel/is-there-a-mismatch/tree/master/Data/LargeFeatureModels
https://code.google.com/archive/p/linux-variability-analysis-tools/
https://github.com/PettTo/SPLC2019_The-Scalability-Challenge_Product-Lines

SPLC ’20, October 19–23, 2020, Montreal, QC, Canada Thomas Thüm

REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2011.

Slicing Feature Models. In Proc. Int’l Conf. on Automated Software Engineering
(ASE). IEEE, Washington, DC, USA, 424–427. https://doi.org/10.1109/ASE.2011.
6100089

[2] Mathieu Acher, Patrick Heymans, Philippe Collet, Clément Quinton, Philippe
Lahire, and Philippe Merle. 2012. Feature Model Differences. In Proc. Int’l Conf.
on Advanced Information Systems Engineering (CAiSE) (Gdansk, Poland). Springer,
Berlin, Heidelberg, 629–645. https://doi.org/10.1007/978-3-642-31095-9_41

[3] Sofia Ananieva, Matthias Kowal, Thomas Thüm, and Ina Schaefer. 2016. Implicit
Constraints in Partial Feature Models. In Proc. Int’l Workshop on Feature-Oriented
Software Development (FOSD) (Amsterdam, Netherlands). ACM, New York, NY,
USA, 18–27. https://doi.org/10.1145/3001867.3001870

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer, Berlin, Heidelberg.

[5] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk
Beyer. 2013. Strategies for Product-Line Verification: Case Studies and Experi-
ments. In Proc. Int’l Conf. on Software Engineering (ICSE) (San Francisco, USA).
IEEE, Piscataway, NJ, USA, 482–491. https://doi.org/10.1109/ICSE.2013.6606594

[6] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas.
In Proc. Int’l Systems and Software Product Line Conf. (SPLC). Springer, Berlin,
Heidelberg, 7–20.

[7] Shoham Ben-David, Baruch Sterin, Joanne M. Atlee, and Sandy Beidu. 2015.
Symbolic Model Checking of Product-Line Requirements Using SAT-Based Meth-
ods. In Proc. Int’l Conf. on Software Engineering (ICSE) (Florence, Italy). IEEE,
Piscataway, NJ, USA, 189–199.

[8] David Benavides. 2007. On the Automated Analysis of Software Product Lines
Using Feature Models - A Framework for Developing Automated Tool Support. Ph.D.
Dissertation. University of Seville, Spain.

[9] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615–708.

[10] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. 2007.
FAMA: Tooling a Framework for the Automated Analysis of Feature Models.
In Proc. Int’l Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS) (Limerick, Ireland). Technical Report 2007-01, Lero, Limerick, Ireland,
129–134.

[11] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Trans. on Software Engineering (TSE) 39, 12 (2013), 1611–
1640. https://doi.org/10.1109/TSE.2013.34

[12] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and
Mira Mezini. 2013. SPLLIFT: Statically Analyzing Software Product Lines in
Minutes Instead of Years. In Proc. ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI) (Seattle, Washington, USA). ACM, New York,
NY, USA, 355–364. https://doi.org/10.1145/2491956.2491976

[13] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, Johnni Winther, and Paulo Borba.
2013. Intraprocedural Dataflow Analysis for Software Product Lines. Trans.
Aspect-Oriented Software Development 10 (2013), 73–108. https://doi.org/10.1007/
978-3-642-36964-3_3

[14] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Ma-
nipulation. IEEE Trans. on Computers C-35, 8 (Aug. 1986), 677–691. https:
//doi.org/10.1109/tc.1986.1676819

[15] Johannes Bürdek, Malte Lochau, Stefan Bauregger, Andreas Holzer, Alexander
von Rhein, Sven Apel, and Dirk Beyer. 2015. Facilitating Reuse in Multi-Goal Test-
Suite Generation for Software Product Lines. In Proc. Int’l Conf. on Fundamental
Approaches to Software Engineering (FASE). Springer, Berlin, Heidelberg, 84–99.
https://doi.org/10.1007/978-3-662-46675-9_6

[16] Ivan Do Carmo Machado, John D. McGregor, Yguaratã Cerqueira Cavalcanti, and
Eduardo Santana De Almeida. 2014. On Strategies for Testing Software Product
Lines: A Systematic Literature Review. J. Information and Software Technology
(IST) 56, 10 (2014), 1183–1199. https://doi.org/10.1016/j.infsof.2014.04.002

[17] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves
Schobbens. 2012. Model Checking Software Product Lines with SNIP. Int’l J.
Software Tools for Technology Transfer (STTT) 14, 5 (2012), 589–612.

[18] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-
Yves Schobbens. 2014. Formal Semantics, Modular Specification, and Symbolic
Verification of Product-Line Behaviour. Science of Computer Programming (SCP)
80, Part B, 0 (Feb. 2014), 416–439. https://doi.org/10.1016/j.scico.2013.09.019

[19] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-Francois Raskin. 2013. Featured Transition Systems: Foundations
for Verifying Variability-Intensive Systems and Their Application to LTL Model
Checking. IEEE Trans. on Software Engineering (TSE) 39, 8 (Aug. 2013), 1069–1089.
https://doi.org/10.1109/TSE.2012.86

[20] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. 2011.
Symbolic Model Checking of Software Product Lines. In Proc. Int’l Conf. on
Software Engineering (ICSE) (Waikiki, Honolulu, HI, USA). ACM, New York, NY,

USA, 321–330. https://doi.org/10.1145/1985793.1985838
[21] The Kernel Development Community. 2018. KConfig Language. Website. Avail-

able online at https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.
html; visited on March 13th, 2020.

[22] Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and
Axel Legay. 2013. ProVeLines: A Product Line of Verifiers for Software Product
Lines. In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Tokyo, Japan).
ACM, New York, NY, USA, 141–146. https://doi.org/10.1145/2499777.2499781

[23] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2012.
Behavioural Modelling and Verification of Real-Time Software Product Lines. In
Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Salvador, Brazil). ACM,
New York, NY, USA, 66–75. https://doi.org/10.1145/2362536.2362549

[24] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2013.
Beyond Boolean Product-Line Model Checking: Dealing with Feature Attributes
and Multi-Features. In Proc. Int’l Conf. on Software Engineering (ICSE) (San Fran-
cisco, CA, USA). IEEE, Piscataway, NJ, USA, 472–481.

[25] Maxime Cordy, Marco Willemart, Bruno Dawagne, Patrick Heymans, and Pierre-
Yves Schobbens. 2014. An Extensible Platform for Product-Line Behavioural
Analysis. In Proc. Workshop on Software Product Line Analysis Tools (SPLat) (Flo-
rence, Italy). ACM, New York, NY, USA, 102–109. https://doi.org/10.1145/2647908.
2655973

[26] Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Meth-
ods, Tools, and Applications. ACM/Addison-Wesley, New York, NY, USA.

[27] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability
Modeling Approaches. In Proc. Int’l Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS) (Leipzig, Germany). ACM, NewYork, NY, USA, 173–182.
https://doi.org/10.1145/2110147.2110167

[28] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Staged Config-
uration through Specialization and Multi-Level Configuration of Feature Models.
Software Process: Improvement and Practice 10, 2 (2005), 143–169.

[29] Krzysztof Czarnecki and Krzysztof Pietroszek. 2006. Verifying Feature-Based
Model Templates Against Well-Formedness OCL Constraints. In Proc. Int’l Conf.
on Generative Programming and Component Engineering (GPCE) (Portland, Ore-
gon, USA). ACM, New York, NY, USA, 211–220.

[30] Krzysztof Czarnecki and Andrzej Wąsowski. 2007. Feature Diagrams and Logics:
There and Back Again. In Proc. Int’l Systems and Software Product Line Conf.
(SPLC). IEEE, Washington, DC, USA, 23–34.

[31] Adnan Darwiche and Pierre Marquis. 2002. A Knowledge Compilation Map. J.
Artificial Intelligence Research (JAIR) 17, 1 (Sept. 2002), 229–264.

[32] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. 2012. A Robust Approach for Variability Extraction from the Linux
Build System. In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Sal-
vador, Brazil). ACM, New York, NY, USA, 21–30. https://doi.org/10.1145/2362536.
2362544

[33] Holger Eichelberger and Klaus Schmid. 2015. Mapping the Design Space of
Textual Variability Modeling Languages: A Refined Analysis. Int’l J. Software
Tools for Technology Transfer (STTT) 17, 5 (2015), 559–584. https://doi.org/10.
1007/s10009-014-0362-x

[34] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2015. Analysing the
KConfig Semantics and its Analysis Tools. In Proc. Int’l Conf. on Generative
Programming: Concepts & Experiences (GPCE) (Pittsburgh, PA, USA). ACM, New
York, NY, USA, 45–54. https://doi.org/10.1145/2814204.2814222

[35] Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter
Saake. 2017. Variant-Preserving Refactorings for Migrating Cloned Products to a
Product Line. In Proc. Int’l Conf. on Software Analysis, Evolution and Reengineering
(SANER). IEEE, Piscataway, NJ, USA, 316–326.

[36] David Fernández-Amorós, Sergio Bra, Ernesto Aranda-Escolástico, and Ruben
Heradio. 2020. Using Extended Logical Primitives for Efficient BDD Building.
Mathematics 8, 8 (2020), 1253:1–1253:17.

[37] David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander
Egyed. 2019. A KConfig Translation to Logic with One-Way Validation System.
In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Paris, France). ACM,
New York, NY, USA, 303–308. https://doi.org/10.1145/3336294.3336313

[38] José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-
Fernández, and Antonio Ruiz-Cortés. 2019. Automated Analysis of Feature
Models: Quo Vadis? Computing 101, 5 (May 2019), 387–433. https://doi.org/10.
1007/s00607-018-0646-1

[39] José A. Galindo, Deepak Dhungana, Rick Rabiser, David Benavides, Goetz Bot-
terweck, and Paul Grünbacher. 2015. Supporting Distributed Product Config-
uration by Integrating Heterogeneous Variability Modeling Approaches. J.
Information and Software Technology (IST) 62, C (June 2015), 78–100. https:
//doi.org/10.1016/j.infsof.2015.02.002

[40] Paul Gazzillo. 2017. Kmax: Finding All Configurations of Kbuild Makefiles
Statically. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE) (Paderborn, Germany). ACM, New York, NY, USA, 279–
290. https://doi.org/10.1145/3106237.3106283

https://doi.org/10.1109/ASE.2011.6100089
https://doi.org/10.1109/ASE.2011.6100089
https://doi.org/10.1007/978-3-642-31095-9_41
https://doi.org/10.1145/3001867.3001870
https://doi.org/10.1109/ICSE.2013.6606594
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1145/2491956.2491976
https://doi.org/10.1007/978-3-642-36964-3_3
https://doi.org/10.1007/978-3-642-36964-3_3
https://doi.org/10.1109/tc.1986.1676819
https://doi.org/10.1109/tc.1986.1676819
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1016/j.infsof.2014.04.002
https://doi.org/10.1016/j.scico.2013.09.019
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1145/1985793.1985838
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://doi.org/10.1145/2499777.2499781
https://doi.org/10.1145/2362536.2362549
https://doi.org/10.1145/2647908.2655973
https://doi.org/10.1145/2647908.2655973
https://doi.org/10.1145/2110147.2110167
https://doi.org/10.1145/2362536.2362544
https://doi.org/10.1145/2362536.2362544
https://doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1145/2814204.2814222
https://doi.org/10.1145/3336294.3336313
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1016/j.infsof.2015.02.002
https://doi.org/10.1016/j.infsof.2015.02.002
https://doi.org/10.1145/3106237.3106283

A BDD for Linux? The Knowledge Compilation Challenge for Variability SPLC ’20, October 19–23, 2020, Montreal, QC, Canada

[41] Paul Gazzillo and Robert Grimm. 2012. SuperC: Parsing All of C by Taming the
Preprocessor. In Proc. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI) (Beijing, China). ACM, New York, NY, USA, 323–334.
https://doi.org/10.1145/2254064.2254103

[42] Karine Gomes, Leopoldo Teixeira, Thayonara Alves, Márcio Ribeiro, and Rohit
Gheyi. 2019. Characterizing Safe and Partially Safe Evolution Scenarios in Product
Lines: An Empirical Study. In Proc. Int’l Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS) (Leuven, Belgium). ACM, New York, NY, USA,
Article Article 15, 9 pages. https://doi.org/10.1145/3302333.3302346

[43] Joel Greenyer, Amir Molzam Sharifloo, Maxime Cordy, and Patrick Heymans.
2013. Features Meet Scenarios: Modeling and Consistency-Checking Scenario-
Based Product Line Specifications. Requirements Engineering 18, 2 (2013), 175–198.
https://doi.org/10.1007/s00766-013-0169-4

[44] Tarik Hadzic, Sathiamoorthy Subbarayan, Rune M. Jensen, Henrik R. Andersen,
Jesper Møller, and Henrik Hulgaard. 2004. Fast Backtrack-Free Product Configu-
ration using a Precompiled Solution Space Representation. In Proc. Int’l Conf. on
Economic, Technical and Organisational Aspects of Product Configuration Systems.
Gamez Publishing, Kongens Lyngby, Denmark, 131–138.

[45] Arnaud Hubaux, Dietmar Jannach, Conrad Drescher, Leonardo Murta, Tomi
Männistö, Krzysztof Czarnecki, Patrick Heymans, Tien N. Nguyen, and Markus
Zanker. 2012. Unifying Software and Product Configuration: A Research
Roadmap. In Proc. ConfigurationWorkshop (ConfWS) (Montpellier, France). CEUR-
WS.org, Aachen, Germany, 31–35. https://doi.org/10.5555/3053577.3053583

[46] Mikoláš Janota, Joseph Kiniry, and Goetz Botterweck. 2008. Formal Methods
in Software Product Lines: Concepts, Survey, and Guidelines. Technical Report
Lero-TR-SPL-2008-02. Lero, University of Limerick.

[47] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. 2011. Properties
of Realistic Feature Models Make Combinatorial Testing of Product Lines Feasible.
In Proc. Int’l Conf. on Model Driven Engineering Languages and Systems (MODELS).
Springer, Berlin, Heidelberg, 638–652. https://doi.org/10.1007/978-3-642-24485-
8_47

[48] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Software Engineering Institute.

[49] Christian Kästner. 2017. Differential Testing for Variational Analyses: Experience
from Developing KConfigReader. Technical Report arXiv:1706.09357. Cornell
University Library. http://arxiv.org/abs/1706.09357

[50] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-Aware Parsing in the Presence
of Lexical Macros and Conditional Compilation. In Proc. Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA) (Portland, Oregon,
USA). ACM, New York, NY, USA, 805–824. https://doi.org/10.1145/2048066.
2048128

[51] Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven
Apel, Tillmann Rendel, and Klaus Ostermann. 2012. Toward Variability-Aware
Testing. In Proc. Int’l Workshop on Feature-Oriented Software Development (FOSD)
(Dresden, Germany). ACM, New York, NY, USA, 1–8. https://doi.org/10.1145/
2377816.2377817

[52] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and Ina
Schaefer. 2017. Is There a Mismatch Between Real-World Feature Models and
Product-Line Research?. In Proc. Europ. Software Engineering Conf./Foundations
of Software Engineering (ESEC/FSE) (Paderborn, Germany). ACM, New York, NY,
USA, 291–302. https://doi.org/10.1145/3106237.3106252

[53] Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey, Christopher
Sontag, Thomas Thüm, Thomas Leich, and Gunter Saake. 2017. FeatureIDE:
Empowering Third-Party Developers. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC) (Sevilla, Spain). ACM, New York, NY, USA, 42–45. https:
//doi.org/10.1145/3109729.3109751

[54] Christian Kröher, Lea Gerling, and Klaus Schmid. 2018. Identifying the Intensity
of Variability Changes in Software Product Line Evolution. In Proc. Int’l Systems
and Software Product Line Conf. (SPLC) (Gothenburg, Sweden). ACM, New York,
NY, USA, 54–64. https://doi.org/10.1145/3233027.3233032

[55] Andreas Kübler, Christoph Zengler, and Wolfgang Küchlin. 2010. Model Count-
ing in Product Configuration. In Proc. Int’l Workshop on Logics for Component
Configuration (LoCoCo) (Edinburgh, UK). Open Publishing Association, Waterloo,
Australia, 44–53. https://doi.org/10.4204/EPTCS.29.5

[56] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and
Christian Lengauer. 2013. Scalable Analysis of Variable Software. In Proc. Europ.
Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE) (Saint
Petersburg, Russia). ACM, New York, NY, USA, 81–91. https://doi.org/10.1145/
2491411.2491437

[57] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wąsowski. 2010. Evolution of the Linux Kernel Variability Model. In Proc. Int’l Sys-
tems and Software Product Line Conf. (SPLC) (Jeju Island, South Korea). Springer,
Berlin, Heidelberg, 136–150.

[58] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In
Proc. Int’l Conf. on Software Engineering (ICSE) (Austin, Texas). ACM, New York,

NY, USA, 643–654. https://doi.org/10.1145/2884781.2884793
[59] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,

and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-319-61443-4

[60] Marcílio Mendonça. 2009. Efficient Reasoning Techniques for Large Scale Feature
Models. Ph.D. Dissertation. University of Waterloo, Canada.

[61] Marcílio Mendonça, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T.: Soft-
ware Product Lines Online Tools. In Proc. Conf. on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA). ACM, New York, NY, USA, 761–
762.

[62] Marcílio Mendonça, Andrzej Wąsowski, and Krzysztof Czarnecki. 2009. SAT-
Based Analysis of Feature Models is Easy. In Proc. Int’l Systems and Software
Product Line Conf. (SPLC) (San Francisco, California). Software Engineering
Institute, Pittsburgh, PA, USA, 231–240.

[63] Marcílio Mendonça, Andrzej Wąsowski, Krzysztof Czarnecki, and Donald Cowan.
2008. Efficient Compilation Techniques for Large Scale Feature Models. In Proc.
Int’l Conf. on Generative Programming and Component Engineering (GPCE). ACM,
New York, NY, USA, 13–22.

[64] Andreas Metzger, Klaus Pohl, Patrick Heymans, Pierre-Yves Schobbens, and Ger-
main Saval. 2007. Disambiguating the Documentation of Variability in Software
Product Lines: A Separation of Concerns, Formalization and Automated Analysis.
In Proc. Int’l Conf. on Requirements Engineering (RE). IEEE, Washington, DC, USA,
243–253.

[65] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. 2019.
Uniform Random Sampling Product Configurations of Feature Models That Have
Numerical Features. In Proc. Int’l Systems and Software Product Line Conf. (SPLC)
(Paris, France). ACM, New York, NY, USA, 289–301. https://doi.org/10.1145/
3336294.3336297

[66] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring
Variability-Aware Execution for Testing Plugin-Based Web Applications. In Proc.
Int’l Conf. on Software Engineering (ICSE) (Hyderabad, India). ACM, New York,
NY, USA, 907–918. https://doi.org/10.1145/2568225.2568300

[67] Michael Nieke, Jacopo Mauro, Christoph Seidl, Thomas Thüm, Ingrid Chieh Yu,
and Felix Franzke. 2018. Anomaly Analyses for Feature-Model Evolution. In
Proc. Int’l Conf. on Generative Programming and Component Engineering (GPCE)
(Boston, MA, USA). ACM, New York, NY, USA, 188–201. https://doi.org/10.1145/
3278122.3278123

[68] Jeho Oh, Paul Gazzillo, Don Batory, Marijn Heule, and Maggie Myers. 2019.
Uniform Sampling from Kconfig Feature Models. Technical Report TR-19-02. The
University of Texas at Austin, Department of Computer Science.

[69] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau, and
Ina Schaefer. 2019. Product Sampling for Product Lines: The Scalability Challenge.
In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Paris, France). ACM,
New York, NY, USA, 78–83. https://doi.org/10.1145/3336294.3336322

[70] Richard Pohl, Kim Lauenroth, and Klaus Pohl. 2011. A Performance Comparison
of Contemporary Algorithmic Approaches for Automated Analysis Operations
on Feature Models. In Proc. Int’l Conf. on Automated Software Engineering (ASE).
IEEE, Washington, DC, USA, 313–322. https://doi.org/10.1109/ASE.2011.6100068

[71] Valentin Rothberg, Nicolas Dintzner, Andreas Ziegler, and Daniel Lohmann. 2016.
Feature Models in Linux: From Symbols to Semantics. In Proc. Int’l Workshop
on Variability Modelling of Software-Intensive Systems (VaMoS) (Salvador, Brazil).
ACM, New York, NY, USA, 65–72. https://doi.org/10.1145/2866614.2866624

[72] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar. 2013.
Scalable Product Line Configuration: A Straw to Break the Camel’s Back. In Proc.
Int’l Conf. on Automated Software Engineering (ASE) (Silicon Valley, CA, USA).
IEEE, Piscataway, NJ, USA, 465–474. https://doi.org/10.1109/ASE.2013.6693104

[73] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. 2007. Generic Semantics of Feature Diagrams. Computer Networks 51,
2 (2007), 456–479.

[74] Reimar Schröter, Sebastian Krieter, Thomas Thüm, Fabian Benduhn, and Gunter
Saake. 2016. Feature-Model Interfaces: The Highway to Compositional Analyses
of Highly-Configurable Systems. In Proc. Int’l Conf. on Software Engineering (ICSE)
(Austin, Texas). ACM, New York, NY, USA, 667–678. https://doi.org/10.1145/
2884781.2884823

[75] Sergio Segura, José A. Galindo, David Benavides, José A. Parejo, and Antonio
Ruiz-Cortés. 2012. BeTTy: Benchmarking and Testing on the Automated Analysis
of Feature Models. In Proc. Int’l Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS) (Leipzig, Germany). ACM, New York, NY, USA, 63–71.
https://doi.org/10.1145/2110147.2110155

[76] Sergio Segura, José A. Parejo, Robert M. Hierons, David Benavides, and Antonio
Ruiz-Cortés. 2014. Automated Generation of Computationally Hard Feature
Models Using Evolutionary Algorithms. Expert Systems with Applications: An
Int’l J. (EXWA) 41, 8 (June 2014), 3975–3992. https://doi.org/10.1016/j.eswa.2013.
12.028

[77] Steven She and Thorsten Berger. 2010. Formal Semantics of the Kconfig Language.
Technical Report. University of Waterloo, Canada.

[78] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner,
Sven Apel, and Gunter Saake. 2012. SPL Conqueror: Toward Optimization of

https://doi.org/10.1145/2254064.2254103
https://doi.org/10.1145/3302333.3302346
https://doi.org/10.1007/s00766-013-0169-4
https://doi.org/10.5555/3053577.3053583
https://doi.org/10.1007/978-3-642-24485-8_47
https://doi.org/10.1007/978-3-642-24485-8_47
http://arxiv.org/abs/1706.09357
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1145/2377816.2377817
https://doi.org/10.1145/2377816.2377817
https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1145/3109729.3109751
https://doi.org/10.1145/3109729.3109751
https://doi.org/10.1145/3233027.3233032
https://doi.org/10.4204/EPTCS.29.5
https://doi.org/10.1145/2491411.2491437
https://doi.org/10.1145/2491411.2491437
https://doi.org/10.1145/2884781.2884793
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/2568225.2568300
https://doi.org/10.1145/3278122.3278123
https://doi.org/10.1145/3278122.3278123
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1109/ASE.2011.6100068
https://doi.org/10.1145/2866614.2866624
https://doi.org/10.1109/ASE.2013.6693104
https://doi.org/10.1145/2884781.2884823
https://doi.org/10.1145/2884781.2884823
https://doi.org/10.1145/2110147.2110155
https://doi.org/10.1016/j.eswa.2013.12.028
https://doi.org/10.1016/j.eswa.2013.12.028

SPLC ’20, October 19–23, 2020, Montreal, QC, Canada Thomas Thüm

Non-functional Properties in Software Product Lines. Software Quality Journal
(SQJ) 20, 3-4 (Sept. 2012), 487–517. https://doi.org/10.1007/s11219-011-9152-9

[79] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolfgang Schröder-
Preikschat. 2010. Efficient Extraction and Analysis of Preprocessor-Based Vari-
ability. In Proc. Int’l Conf. on Generative Programming and Component Engineer-
ing (GPCE) (Eindhoven, The Netherlands). ACM, New York, NY, USA, 33–42.
https://doi.org/10.1145/1868294.1868300

[80] Chico Sundermann, Thomas Thüm, and Ina Schaefer. 2020. Evaluating #SAT
Solvers on Industrial Feature Models. In Proc. Int’l Working Conf. on Variability
Modelling of Software-Intensive Systems (VaMoS) (Magdeburg, Germany). ACM,
New York, NY, USA, Article 3, 9 pages. https://doi.org/10.1145/3377024.3377025

[81] Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. 2014. Static Analysis of Variability in System Software:
The 90,000 #Ifdefs Issue. In Proc. USENIX Annual Technical Conference (ATC)
(Philadelphia, PA). USENIX Association, Berkeley, CA, USA, 421–432.

[82] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and
Julio Sincero. 2012. Configuration Coverage in the Analysis of Large-Scale
System Software. ACM SIGOPS Operating Systems Review 45, 3 (Jan. 2012), 10–14.
https://doi.org/10.1145/2039239.2039242

[83] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. 2011. Feature Consistency in Compile-Time-Configurable System
Software: Facing the Linux 10,000 Feature Problem. In Proc. Europ. Conf. on Com-
puter Systems (EuroSys) (Salzburg, Austria). ACM, New York, NY, USA, 47–60.
https://doi.org/10.1145/1966445.1966451

[84] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. 2009. Dead or Alive: Finding Zombie Features in the Linux Ker-
nel. In Proc. Int’l Workshop on Feature-Oriented Software Development (FOSD)
(Denver, Colorado, USA). ACM, New York, NY, USA, 81–86.

[85] Sahil Thaker, Don Batory, David Kitchin, and William Cook. 2007. Safe Com-
position of Product Lines. In Proc. Int’l Conf. on Generative Programming and
Component Engineering (GPCE). ACM, New York, NY, USA, 95–104.

[86] Thomas Thüm, SvenApel, Christian Kästner, Ina Schaefer, andGunter Saake. 2014.
A Classification and Survey of Analysis Strategies for Software Product Lines.
Comput. Surveys 47, 1 (June 2014), 6:1–6:45. https://doi.org/10.1145/2580950

[87] Thomas Thüm, Don Batory, and Christian Kästner. 2009. Reasoning about Edits
to Feature Models. In Proc. Int’l Conf. on Software Engineering (ICSE) (Vancouver,
Canada). IEEE, Washington, DC, USA, 254–264. https://doi.org/10.1109/ICSE.
2009.5070526

[88] G. S. Tseytin. 1983. On the Complexity of Derivation in Propositional Calculus.
Springer, Berlin, Heidelberg, 466–483. https://doi.org/10.1007/978-3-642-81955-
1_28

[89] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. 2018. A Classification of Product Sam-
pling for Software Product Lines. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC) (Gothenburg, Sweden). ACM, New York, NY, USA, 1–13.
https://doi.org/10.1145/3233027.3233035

[90] Mahsa Varshosaz and Ramtin Khosravi. 2013. Discrete Time Markov Chain
Families: Modeling and Verification of Probabilistic Software Product Lines. In
Proc. Int’l Workshop on Formal Methods and Analysis in Software Product Line
Engineering (FMSPLE) (Tokyo, Japan). ACM, New York, NY, USA, 34–41. https:
//doi.org/10.1145/2499777.2500725

[91] Alexander von Rhein. 2016. Analysis Strategies for Configurable Systems. Ph.D.
Dissertation. University of Passau, Germany.

[92] Alexander von Rhein, Sven Apel, Christian Kästner, Thomas Thüm, and Ina
Schaefer. 2013. The PLA Model: On the Combination of Product-Line Analyses.
In Proc. Int’l Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS) (Pisa, Italy). ACM, New York, NY, USA, 14:1–14:8. https://doi.org/10.
1145/2430502.2430515

[93] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk
Beyer, and Thorsten Berger. 2015. Presence-Condition Simplification in Highly
Configurable Systems. In Proc. Int’l Conf. on Software Engineering (ICSE) (Florence,
Italy). IEEE, Piscataway, NJ, USA, 178–188.

https://doi.org/10.1007/s11219-011-9152-9
https://doi.org/10.1145/1868294.1868300
https://doi.org/10.1145/3377024.3377025
https://doi.org/10.1145/2039239.2039242
https://doi.org/10.1145/1966445.1966451
https://doi.org/10.1145/2580950
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/2499777.2500725
https://doi.org/10.1145/2499777.2500725
https://doi.org/10.1145/2430502.2430515
https://doi.org/10.1145/2430502.2430515

	Abstract
	1 Motivation
	2 State-of-the-Art
	3 Call for Contributions
	Acknowledgments
	References

