
Variational Satisfiability Solving
Jeffrey M. Young

youngjef@oregonstate.edu

Oregon State University

Corvallis, Oregon, USA

Eric Walkingshaw

walkiner@oregonstate.edu

Oregon State University

Corvallis, Oregon, USA

Thomas Thüm

thomas.thuem@uni-ulm.de

University of Ulm

Ulm, Germany

ABSTRACT
Incremental satisfiability (SAT) solving is an extension of classic

SAT solving that allows users to efficiently solve a set of related

SAT problems by identifying and exploiting shared terms. However,

using incremental solvers effectively is hard since performance is

sensitive to a problem’s structure and the order sub-terms are fed

to the solver, and the burden to track results is placed on the end

user. For analyses that generate sets of related SAT problems, such

as those in software product lines, incremental SAT solvers are

either not used at all, used but not explicitly stated so in the litera-

ture, or used but suffer from the aforementioned usability problems.

This paper translates the ordering problem to an encoding problem

and automates the use of incremental SAT solving. We introduce

variational SAT solving, which differs from incremental SAT solv-

ing by accepting all related problems as a single variational input

and returning all results as a single variational output. Our central

idea is to make explicit the operations of incremental SAT solv-

ing, thereby encoding differences between related SAT problems as

local points of variation. Our approach automates the interaction

with the incremental solver and enables methods to automatically

optimize sharing of the input. To evaluate our methods we con-

struct a prototype variational SAT solver and perform an empirical

analysis on two real-world datasets that applied incremental solvers

to software evolution scenarios. We show, assuming a variational

input, that the prototype solver scales better for these problems

than naive incremental solving while also removing the need to

track individual results.

CCS CONCEPTS
• Software and its engineering→ Software product lines; •Hard-
ware→ Theorem proving and SAT solving.

KEYWORDS
satisfiability solving, variation, choice calculus, software product

lines

ACM Reference Format:
Jeffrey M. Young, Eric Walkingshaw, and Thomas Thüm. 2020. Variational

Satisfiability Solving. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, MONTREAL, QC, Canada.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3382025.3414965

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00

https://doi.org/10.1145/3382025.3414965

1 INTRODUCTION
Satisfiability solving is a ubiquitous technology in software product

lines for a diverse set of analyses ranging from anomaly detection [2,

38, 46], dead code analysis [62], sampling [47, 65], and automated

analysis of feature models [10, 32, 64]. The general pattern is to

represent parts of the system or feature model as a propositional

formula [9, 25, 48], and reduce the analysis to a satisfiability (SAT)

problem. However, modern software is constantly evolving and

thus the translation step to a single SAT problem quickly becomes

a translation to a set of SAT problems.

Sets of SAT problems frequently arise, for example, when analyz-

ing changes to feature models over time. Consider a feature model

for some product version 𝑖 , represented as a conjunction of clauses

that describe the relationships among features: FMi = 𝑐0∧ 𝑐1 . . . 𝑐𝑛 .

One might perform a single analysis (e.g., dead feature analysis)

over several versions or commits yielding a set of SAT problems

(clauses that are altered from version FMi are underlined):

𝑆𝐴𝑇𝐹𝑀𝑖
= (𝑐0 ∧ 𝑐1 ∧ 𝑐2 ∧ 𝑐3 . . . 𝑐𝑛) ∧ dead_feat

𝑆𝐴𝑇𝐹𝑀𝑖+1 = (𝑐0 ∧ 𝑐1 ∧ 𝑐2 ∧ 𝑐3 . . . 𝑐𝑛) ∧ dead_feat
.
.
.

𝑆𝐴𝑇𝐹𝑀𝑖+𝑛 = (𝑐0 ∧ 𝑐1 ∧ 𝑐2 ∧ 𝑐3 . . . 𝑐𝑛) ∧ dead_feat

Or consider a case where several properties must be guaranteed

for every commit via a continuous integration tool:

𝑆𝐴𝑇𝐹𝑀𝑖_void
= (𝑐0 ∧ 𝑐1 ∧ 𝑐2 ∧ 𝑐3 . . . ∧ 𝑐𝑛)

𝑆𝐴𝑇𝐹𝑀𝑖_core
= ((𝑐0 ∧ 𝑐1 ∧ 𝑐2 ∧ 𝑐3 . . . ∧ 𝑐𝑛) ∧ ¬core_feat)

.

.

.
𝑆𝐴𝑇𝐹𝑀𝑖+𝑛_core = ((𝑐0 ∧ 𝑐1 ∧ 𝑐2 ∧ 𝑐3 . . . ∧ 𝑐𝑛) ∧ ¬other_core_feat)
In such cases, state-of-the-art methods do not make use of common-

alities among the set of formulas, perform redundant computation,

and lose learned information from previous SAT calls.

A concrete example of the above scenario involves the Linux

Foundation’s response to the meltdown and spectre security vul-

nerabilities [37, 45]. The response resulted in three kinds of Linux

kernel versions and three corresponding feature models: a model

that does not support exploit prevention features, a version that

supports several exploit prevention features but not a single, global

toggle, and a version that aggregates all prevention features to a

single feature. The different kernel versions were used throughout

the software industry, and many companies, such as cloud service

providers, employed products that simultaneously used each ver-

sion. Hence any SAT-based analysis on such products would lead

to a set of SAT problems, with one problem per supported kernel.

Analyzing such products thus leads to analyses over sets of

SAT problems, where performing an analysis over each feature

model becomes inefficient: We must either perform the analysis

on each feature model individually, thus not making any use of

apriori known commonalities, or try to reuse results by running

https://doi.org/10.1145/3382025.3414965
https://doi.org/10.1145/3382025.3414965

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Young, Walkingshaw, Thüm

the analysis on the feature model with no prevention features,

and apply the results to feature models that have some prevention

features. However, such a plan is spurious; changes between kernel

versions could have introduced significant cross-tree constraints

that would not be captured by reuse, and reusing results would

require domain knowledge and a high degree of manual effort.

An alternative is to use an incremental SAT solver, which allows

the user to hand-write a program to consider shared terms only

once, then direct the solver to solutions, one for each feature model,

in the search space. This is more efficient because it reuses knowl-

edge of shared terms, however, using an incremental SAT solver in

this way requires substantial manual effort and domain knowledge,

it produces a specific solution to a specific analysis, and it requires

extra infrastructure to manage results.

Our solution is to formalize a method of satisfiability solving that

makes use of known commonalities among propositional formulas

and automates the interaction with an incremental SAT solver, thus

providing efficiency benefits while reducing the usability problems

to an encoding problem. Our central idea is to translate the implicit

operations of incremental SAT solving into a static representation

that makes obvious the terms in the input formula that can change

(those indexed by one or several formulas) and terms that are not

subject to change (those shared among formulas). We call this

method variational satisfiability solving because it understands and
efficiently handles queries that differentiate between terms that are

constant with respect to a set of propositional formulas (i.e., plain
terms), and terms that are subject to change (i.e., variational terms).

Our approach has many benefits: (1) End-users are only required

to provide a single variational formula, which represents a set of

related propositional formulas, rather than a formula and a hand-

written program to direct the solver. (2) It is general; while vari-

ational satisfiability solving is applied to feature model analyses

in this work, it can be used for any analysis that can be encoded

as a variational formula. (3) With a variational formula, new kinds

of syntactic manipulations, such as factoring out shared terms, be-

come possible and can be automated. (4) A variational model may

be produced that encapsulates a set of satisfying assignments for all

variants of the variational formula, alleviating the need to track the

incremental solver’s results when satisfying assigments are needed.

We describe the process of variational SAT solving and the con-

struction of variational models in Section 4, and construct a proto-

type solver based on these ideas. We evaluate performance with a

variational void analysis, and demonstrate a variational dead and

core feature analysis. We perform these analyses on two variational

formulas, which represent four and ten versions of two real world

software artifacts’ feature models. For this work, we focus only on

variational satisfiability solving and assume a variational formula

as input, leaving other considerations such as the optimal encoding

of such formulas to future work. Our contributions are as follows:

• We give the syntax and semantics of an extension to propositional

logic that reasons about variation. (Section 3)

• We design and implement variational models. (Section 4)

• We present an algorithm that solves formulas in the extended

logic using off-the-shelf incremental solvers as black boxes. The

prototype solver is publicly available.
1
(Section 4)

1
https://github.com/lambda-land/VSat-Papers/tree/master/SPLC2020

• We report a performance improvement over standard methods

when solving many variants, and demonstrate variational void,

core, and dead feature analyses. (Section 5.2)

2 BACKGROUND
Variational SAT solving depends on incremental SAT solving. In

this section, we describe the underlying data structures and opera-

tions that variational satisfiability solving exploits, using the Linux

Kernel as the running example. Our description, and the interface

between variational SAT solving and incremental SAT conforms to

the SMTLIB2 [8] standard.

After the discovery of the meltdown and spectre security vul-

nerabilities, there were multiple versions of the Linux kernel that

dealt with these vulnerabilities (or not) in different ways. Suppose,

for example, we have kernel versions 𝐿0, 𝐿1, and 𝐿2 with corre-

sponding feature models FM0, FM1, and FM2. FM0 contains no

spectre/meltdown-related features; FM1 contains a set of new fea-

tures named spectre_v2, nospec_store_bypass_disable, l1tf,
and pti; and FM2 contains a single feature mitigations that com-

bines all of the exploit prevention features from FM1.
2

We introduce some notation to track particular features and

propositional formulas across multiple feature models. For features

we use fi.j to refer to the 𝑖th feature in the 𝑗th feature model. For

formulas, we use 𝑐𝑖 . 𝑗 to refer to the formula that encodes the 𝑖th

feature’s relationships to other features in the 𝑗th feature model.

When the feature model version is omitted, e.g., 𝑐𝑖 , we assume that

𝑐𝑖 is unchanged and present in all feature models. Thus, the feature

models can be represented by the following formulas:

FM0 = 𝑐0.0 ∧ 𝑐1.0 ∧ . . . ∧ 𝑐𝑛

FM1 = (spectre_v2 ∨ l1tf) ↔ (𝑐0.0 ∧ (nospec_store_bypass-disable
→ 𝑓𝑗) ∧ 𝑐1.0 ∧ (pti → 𝑐𝑖 .0) ∧ . . . ∧ 𝑐𝑛)

FM2 = mitigations ↔ (𝑐0.0 ∧ 𝑐1.0 ∧ . . . ∧ 𝑐𝑛)
FM0 is a conjunction of formulas that describe the relationship of

features in 𝐿0. In FM1 we can see exactly how several clauses have

been changed. New features have been introduced, e.g., pti, 𝑐0.0 is
constrained with a new conjunction, and there are three new formu-

las: (pti → 𝑐𝑖 .0), (spectre_v2∨l1tf), (nospec_store_bypass-disable →
𝑓𝑗 , two of which affect a relationship or feature from FM0. In FM2,

the features and constraints introduced in FM1 are replaced by a

single new mitigations feature that is added to an unchanged copy

of FM0.

Suppose one wants to find a satisfying assignment (i.e., a model)

for each formula. If done with a classic SAT solver, then the proce-

dure illustrated in Figure 1a results; where SAT solving is a batch

process and no information is reused. Alternatively, a procedure

using an incremental SAT solver is illustrated in Figure 1b; in this

scenario, all of the formulas are solved by single solver instance

where terms are programmatically added and removed from the

solver throughout the process. The ability to add and remove terms

from the solvers is enabled by a data structure within the incremen-

tal SAT solver called an assertion stack. The assertion stack is a stack
of declarations, definitions, or formulas that determine the context
of the solver. A solver context is the union of all global variable

2
The feature names are from the actual Linux kernel, see [42].

https://github.com/lambda-land/VSat-Papers/tree/master/SPLC2020

Variational Satisfiability Solving SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

𝑆𝐴𝑇

𝑆𝐴𝑇

𝑆𝐴𝑇FM2

FM1

FM0

𝑟𝑒𝑠𝑢𝑙𝑡FM1

𝑟𝑒𝑠𝑢𝑙𝑡FM2

𝑟𝑒𝑠𝑢𝑙𝑡FM0

(a) Brute force procedure, no reuse between solver calls.

𝑆𝐴𝑇

𝑆𝐴𝑇

𝑆𝐴𝑇

FM0

pop (𝑐𝑖 .0)
pop (𝑐0.0)
push pti → 𝑐𝑖 .0

push (spectre_v2 ∨ l1tf) ↔
(𝑐0.0 ∧ (nospec_store_bypass-disable → 𝑓𝑗)

resetAssertionStack

push mitigations ↔ (𝑐0 ∧ 𝑐1 ∧ . . . 𝑐𝑛)

𝑟𝑒𝑠𝑢𝑙𝑡FM1

𝑟𝑒𝑠𝑢𝑙𝑡FM2

𝑟𝑒𝑠𝑢𝑙𝑡FM0

(b) Incremental procedure, reuse defined by pop and push calls.

Figure 1

definitions and everything on the assertion stack. A program may

add an assertion to the stack via the push operation and remove

from the top via a pop operation [51].

In an efficient process one would initially add as many shared

terms as possible, FM0 in this example. Then request a model, and

manipulate the assertion stack to reach the next problem of interest,

FM1 in this case. Notice that to reach the next problem, FM1, from

FM0, several operations are required: 𝑐0.0 and 𝑐𝑖 .0 must be removed,

𝑐0.0 must be updated, and the new sub-formulas must be introduced.

To reach FM2 from FM1 all assertions would need to be popped to

add mitigation, then re-pushed.

3 VPL: VARIATION + PROPOSITIONAL LOGIC
In this section, we present the logic of variational satisfiability prob-

lems. The logic is a conservative extension of classic two-valued

logic (C2) with a choice construct from the choice calculus [29, 68], a

formal language for describing variation. We call the new logic VPL,

short for variational propositional logic, and refer to VPL expres-

sions as variational formulas. This section defines the syntax and

semantics of VPL and uses it to encode the example from Section 2.

Syntax. The syntax of variational propositional logic is given in

Figure 2a. It extends the propositional formula notation of C2 with

a single new connective called a choice from the choice calculus. A

choice D⟨𝑓1, 𝑓2⟩ represents either 𝑓1 or 𝑓2 depending on the Boolean

value of its dimension 𝐷 . We call 𝑓1 and 𝑓2 the alternatives of the
choice. Although dimensions are Boolean variables, the set of di-

mensions is disjoint from the set of variables from C2, which may

be referenced in the leaves of a formula. We use lowercase letters

to range over variables and uppercase letters for dimensions.

𝑡 F 𝑟 | T | F Variables and Boolean literals

𝑓 F 𝑡 Terminal
| ¬𝑓 Negate
| 𝑓 ∨ 𝑓 Or
| 𝑓 ∧ 𝑓 And
| D⟨𝑓 , 𝑓 ⟩ Choice

(a) Syntax of VPL.

J·K : 𝑓 → 𝐶 → 𝑓 where 𝐶 = 𝐷 → B⊥
J𝑡K𝐶 = 𝑡

J¬𝑓 K𝐶 = ¬J𝑓 K𝐶
J𝑓1 ∧ 𝑓2K𝐶 = J𝑓1K𝐶 ∧ J𝑓2K𝐶
J𝑓1 ∨ 𝑓2K𝐶 = J𝑓1K𝐶 ∨ J𝑓2K𝐶

JD⟨𝑓1, 𝑓2⟩K𝐶 =

J𝑓1K𝐶 𝐶 (𝐷) = true

J𝑓2K𝐶 𝐶 (𝐷) = false

D⟨J𝑓1K𝐶 , J𝑓2K𝐶 ⟩ 𝐶 (𝐷) = ⊥

(b) Configuration semantics of VPL.

D⟨𝑓 , 𝑓 ⟩ ≡ 𝑓 Idemp

D⟨D⟨𝑓1, 𝑓2⟩, 𝑓3⟩ ≡ D⟨𝑓1, 𝑓3⟩ Dom-L

D⟨𝑓1,D⟨𝑓2, 𝑓3⟩⟩ ≡ D⟨𝑓1, 𝑓3⟩ Dom-R

D1⟨D2 ⟨𝑓1, 𝑓2⟩,D2 ⟨𝑓3, 𝑓4⟩⟩ ≡ D2 ⟨D1⟨𝑓1, 𝑓3⟩,D1⟨𝑓2, 𝑓4⟩⟩ Swap

D⟨¬𝑓1,¬𝑓2⟩ ≡ ¬D⟨𝑓1, 𝑓2⟩ Neg

D⟨𝑓1 ∨ 𝑓3, 𝑓2 ∨ 𝑓4⟩ ≡ D⟨𝑓1, 𝑓2⟩ ∨ D⟨𝑓3, 𝑓4⟩ Or

D⟨𝑓1 ∧ 𝑓3, 𝑓2 ∧ 𝑓4⟩ ≡ D⟨𝑓1, 𝑓2⟩ ∧ D⟨𝑓3, 𝑓4⟩ And

D⟨𝑓1 ∧ 𝑓2, 𝑓1⟩ ≡ 𝑓1 ∧ D⟨𝑓2, T⟩ And-L

D⟨𝑓1 ∨ 𝑓2, 𝑓1⟩ ≡ 𝑓1 ∨ D⟨𝑓2, F⟩ Or-L

D⟨𝑓1, 𝑓1 ∧ 𝑓2⟩ ≡ 𝑓1 ∧ D⟨T, 𝑓2⟩ And-R

D⟨𝑓1, 𝑓1 ∨ 𝑓2⟩ ≡ 𝑓1 ∨ D⟨F, 𝑓2⟩ Or-R

(c) VPL equivalence laws

Figure 2: Formal definition of VPL.

The syntax of VPL does not include derived logical connectives,

such as → and ↔. However, such forms can be defined from other

primitives and are assumed throughout the paper.

Semantics. Conceptually, a variational formula represents sev-

eral propositional logic formulas at once, which can be obtained by

resolving all of the choices. For software product-line researchers,

it is useful to think of VPL as analogous to #ifdef-annotated C2,

where choices correspond to a disciplined [43] application of #ifdef

annotations. From a logical perspective, following the many-valued

logic of Kleene [56], the intuition behind VPL is that a choice is a

placeholder for two equally possible alternatives that is determin-

istically resolved by reference to an external environment. In this

sense, VPL deviates from other many-valued logics, such as modal

logic [33], because a choice waits until there is enough information

to choose an alternative (i.e., until the formula is configured).
The configuration semantics of VPL is given in Figure 2b and de-

scribes how choices are eliminated from a formula. The semantics is

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Young, Walkingshaw, Thüm

parameterized by a configuration𝐶 , which is a partial function from

dimensions to Boolean values. The first four cases of the seman-

tics simply propagate configuration down the formula, terminating

at the leaves. The case for choices is the interesting one: if the

dimension of the choice is defined in the configuration, then the

choice is replaced by its left or right alternative corresponding to

the associated value of the dimension in the configuration. If the

dimension is undefined in the configuration, then the choice is left

intact and configuration propagates into the choice’s alternatives.

If a configuration𝐶 eliminates all choices in a formula 𝑓 , we call

𝐶 total with respect to 𝑓 . If 𝐶 does not eliminate all choices in 𝑓

(i.e., a dimension used in 𝑓 is undefined in𝐶), we call𝐶 partial with
respect to 𝑓 . We call a choice-free formula plain, and call the set of

all plain formulas that can be obtained from 𝑓 (by configuring it

with every possible total configuration) the variants of 𝑓 .
To illustrate the semantics of VPL, consider the formula 𝑝 ∧

A⟨𝑞, 𝑟 ⟩, which has two variants: 𝑝 ∧ 𝑞 when 𝐶 (𝐴) = true and 𝑝 ∧ 𝑟

when 𝐶 (𝐴) = false. From the semantics, it follows that choices in

the same dimension are synchronized while choices in different

dimensions are independent. For example, A⟨𝑝, 𝑞⟩ ∧ B⟨𝑟, 𝑠⟩ has four
variants, while A⟨𝑝, 𝑞⟩ ∧ A⟨𝑟, 𝑠⟩ has only two (𝑝 ∧ 𝑟 and 𝑞 ∧ 𝑠). It

also follows from the semantics that nested choices in the same

dimension contain redundant alternatives; that is, inner choices are

dominated by outer choices in the same dimension. For example,

A⟨𝑝,A⟨𝑟, 𝑠⟩⟩ is equivalent toA⟨𝑝, 𝑠⟩ since the alternative 𝑟 cannot be
reached by any configuration. As the previous example illustrates,

the representation of a VPL formula is not unique; that is, the same

set of variants may be encoded by different formulas. Figure 2c

defines a set of equivalence laws for VPL formulas. These laws

follow directly from the configuration semantics in Figure 2b and

can be used to derive semantics-preserving transformations of VPL

formulas. For example, we can simplify the formulaA⟨𝑝∨𝑞, 𝑝∨𝑟 ⟩ by
first applying the Or law to obtain A⟨𝑝, 𝑝⟩ ∨ A⟨𝑞, 𝑟 ⟩, then applying

the Idemp law to the first argument to obtain 𝑝 ∨ A⟨𝑞, 𝑟 ⟩ in which

the redundant 𝑝 has been factored out of the choice.

Running example. To demonstrate the application of VPL, we en-

code the evolving Linux kernel feature model from the background

as a variational formula. Recall that variation in this domain arises

from changes in the logical structure of the feature model between

kernel versions. Our goal is to construct a single variational for-

mula that encodes the set of all feature models as variants. Ideally,

this variational formula should also maximize sharing among the

feature models in order to avoid redundant analysis later.

Every set of plain formulas can be encoded as a variational for-

mula systematically by first constructing a nested choice containing

all of the individual variables as alternatives, then factoring out

shared subexpressions by applying the laws in Figure 2c. For sets of

feature models this would correspond to a nested choice containing

all of the individual feature models as alternatives, then factoring

out commonalities in the variational formula. Unfortunately, the

process of globally minimizing a variational formula in this way

is hard
3
since often we must apply an arbitrary number of laws

right-to-left in order to set up a particular sequence of left-to-right

applications that factor out commonalities.

3
We hypothesize that it is equivalent to BDD minimization, which is NP-complete,

but the equivalence has not been proved; see [69].

Due to the difficulty of minimization, we instead demonstrate

how one can build such a formula incrementally. Our variational
formula will use the dimensions 𝐿1, . . . , 𝐿𝑛 to refer to changes in-

troduced in the feature model in the corresponding version of the

Linux kernel. We begin by combining FM0 and FM2 since the dif-

ferences between the two are smaller than between other pairs of

feature models in our example. Feature models may be combined

in any order as long as the variants in the resulting formula corre-

spond to their plain counterparts. The only change between FM0

and FM2 is the addition of mitigations and is captured by a choice

in dimension 𝐿2. The change is nested in the left alternative so

that it will be included for any configuration where 𝐿2 is true. This
yields the following variational formula.

𝑓FM02
= L2 ⟨mitigations, T⟩ ↔ 𝑐0.0 ∧ 𝑐1 ∧ . . . ∧ 𝑐𝑛

We exploit the fact that ∧ forms a monoid with T to recover a

formula equivalent to FM0 for configurations where 𝐿2 is false.
Next we combine 𝑓FM02

with FM1 to obtain a variational formula

that captures the feature models of versions 𝐿0, 𝐿1, and 𝐿2. As

before, every change in FM1 is wrapped in a choice in dimension

𝐿1. The choice in 𝐿2 is nested in the right alternative of a choice in

𝐿1 because that change is not present in 𝐿1:

𝑓FM012
= L1⟨(spectre_v2 ∨ l1tf), L2 ⟨mitigations, T⟩⟩

↔ L1⟨(𝑐0.0 ∧ (nospec_store_bypass-disable → 𝑓𝑗), 𝑐0.0⟩
∧ L1⟨𝑐1.0, T⟩ ∧ 𝑐1 ∧ L1⟨(pti → 𝑐𝑖 .1), T⟩ ∧ . . . ∧ 𝑐𝑛

Now that we have constructed the variational formula we need to

ensure that it encodes all variants of interest and nothing else. In

this example, this is relatively easy to confirm by enumerating all

total configurations involving 𝐿1 and 𝐿2. However, we’ll return to

the general case in the discussion of variational models in Section 4.

4 VARIATIONAL SATISFIABILITY SOLVING
In this section, we provide an informal description of variational

satisfiability solving and variational models. A formal semantics is

available in an online appendix.
4
Throughout the section, we use

SMTLIB2 snippets to describe variational solving concepts in terms

of an incremental solver. While we target SMTLIB2, conforming

to the standard is not a requirement. Any solver that exposes an

incremental API as defined byminisat [51] can be used to implement

variational satisfiability solving.

We use a recursive approach to solve a VPL formula, decoupling

the handling of plain terms from the handling of variational terms.

The idea is to define a process to evaluate plain terms and skip

choices, then define another process that only configures choices

thus introducing new plain terms to the formula that can be recur-

sively processed. The base case is a variant, at which point a model

can be queried and the assertion stack can be popped to backtrack

to solve another variant.

We present an overview of a variational solver as a state diagram

in Figure 3a that operates on the input’s abstract syntax tree. Labels

on incoming edges denote inputs to a state and labels on outgoing

edges denote return values; we show only inputs for recursive

edges; labels separated by a comma share the edge. We omit labels

that can be derived from the logical properties of connectives, such

4
https://github.com/lambda-land/VSat-Papers/tree/master/SPLC2020

https://github.com/lambda-land/VSat-Papers/tree/master/SPLC2020

Variational Satisfiability Solving SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Reification

Engine

VModel

Constructor

Reduction

Engine

Base

Solver

Query
formula

variant
formula

VModel

plain models
𝑠 , 𝑣1 ∨ 𝑣2,

𝑣1 ∧ 𝑣2
VCore, •

𝑣 ∧ JD⟨𝑒1, 𝑒2⟩K𝐶
𝑣 ∧ JD⟨𝑒1, 𝑒2⟩K𝐶 ∪ {(𝐷,T) } ,
𝑣 ∧ JD⟨𝑒1, 𝑒2⟩K𝐶 ∪ {(𝐷,F) }

•

(a) System overview of a variational solver.

Query
formula to IL Evaluation

AccumulationBase

Solver

𝑟 ,
𝑠 ,
𝑡

¬𝑣
, 𝑣
1 ∨ 𝑣

2

𝑣1 ∧ 𝑣2 𝑠 , 𝑣1 ∨ 𝑣2,
𝑣1 ∧ 𝑣2

¬𝑣 ,
𝑣1 ∨ 𝑣2,

𝑣1 ∧ 𝑣2

𝑟 , ¬𝑠 ,
𝑠1 ∨ 𝑠2,

𝑠1 ∧ 𝑠2

𝑠
, 𝑣
1 ∧

𝑣
2 ,

𝑣
1 ∨

𝑣
2

•

VCore

(b) Overview of the reduction engine.

Figure 3

as commutativity of ∨ and ∧. Similarly, we omit base case edge

labels for choices and describe these cases in the text. The solver

has four subsystems: The reduction engine processes plain terms

and generates a formula ready for reification called a variational
core. The reification engine configures choices in a variational core.

The base solver is the incremental solver used to produce plain

models. Finally, the variational model constructor synthesizes a

single variational model from the set of plain models returned by

the base solver.

The solver takes a VPL formula, called a query formula, and an

optional input, called a variation context (vc). A vc is a propositional
formula of dimensions that restricts the solver to a subset of variants.

The variational solver translates the query formula to a formula

in an intermediate language (IL) that the reduction and reification

engines operate over; its syntax is given below.

𝑣 F • | 𝑡 | 𝑠 | ¬𝑣 | 𝑣 ∧ 𝑣 | 𝑣 ∨ 𝑣 | D⟨𝑒, 𝑒⟩
The IL includes two kinds of terminals not present in the input query

formulas: plain sub-terms that can be reduced symbolically will be

replaced by a symbolic reference 𝑠 , and sub-terms that have been

sent to the base solver will be represented by the unit value •. Note
that choices contain unprocessed expressions (𝑒) as alternatives.

Derivation of a Variational Core. A variational core is an IL for-

mula that captures the variational structure of a query formula.

Plain terms will either be placed on the assertion stack or will

be symbolically reduced, leaving only logical connectives, sym-

bolic references, and choices. Consider the query formula 𝑓 =

((𝑎 ∧ 𝑏) ∧ A⟨𝑒1, 𝑒2⟩) ∧ ((𝑝 ∧ ¬𝑞) ∨ B⟨𝑒3, 𝑒4⟩). Translated to an IL

formula, 𝑓 has four references (𝑎, 𝑏, 𝑝 , 𝑞) and two choices. The

reduction engine shown in Figure 3b will produce a variational core

that will assert (𝑎 ∧ 𝑏) in the base solver, thus pushing it onto the

assertion stack and create a symbolic reference for (𝑝 ∧ ¬𝑞). This
is done in two states: evaluation, which communicates to the base

solver to process plain terms, and accumulation which is called by

evaluation to create symbolic references.

Generating the core begins with evaluation. Evaluation will

match on the root node: ∧, of 𝑓 and recur following the 𝑣1∧𝑣2 edge,
where 𝑣1 = (𝑎 ∧ 𝑏) ∧ A⟨𝑒1, 𝑒2⟩ and 𝑣2 = (𝑝 ∧ ¬𝑞) ∨ B⟨𝑒3, 𝑒4⟩. The
recursion processes the left child first. Thus, evaluation will again

match on ∧ of 𝑣1 creating another recursive call with 𝑣 ′
1
= (𝑎 ∧ 𝑏)

and 𝑣 ′
2
= A⟨𝑒1, 𝑒2⟩. Finally, the base case is reached with a last

recursive call where 𝑣 ′′
1
= 𝑎, and 𝑣 ′′

2
= 𝑏. At the base case both 𝑎

and 𝑏 are references, thus evaluation will send 𝑎 to the base solver,

following the r, s, t edge, which returns • for the left child. The

right child follows the same process yielding • ∧ •; since the asser-
tion stack implicitly conjuncts all assertions, • ∧ • will be further
reduced to • and returned as the result of 𝑣 ′

1
, indicating that both

children have been pushed to the base solver. This leaves 𝑣 ′
1
= • and

𝑣 ′
2
= A⟨𝑒1, 𝑒2⟩. 𝑣 ′

2
is a base case for choices and cannot be reduced

in evaluation, and so • ∧ A⟨𝑒1, 𝑒2⟩, will be reduced to just A⟨𝑒1, 𝑒2⟩
as the result for 𝑣1.

In evaluation, conjunctions can be split because of the behavior

of the assertion stack and the and-elimination property of ∧. Dis-
junctions and negations cannot be split in this way because both

cannot be performed if a child node has been lost to the solver,

e.g., ¬ • . Thus, in accumulation, we construct symbolic terms to

represent entire sub-trees, ensuring information is not lost, but still

allowing for the sub-tree to be evaluated if it is sound to do so.

The right child, 𝑣2 = (𝑝 ∧ ¬𝑞) ∨ B⟨𝑒3, 𝑒4⟩ requires accumulation.

Evaluation will match on the root ∨, and send (𝑝∧¬𝑞)∨B⟨𝑒3, 𝑒4⟩ to
accumulation via the 𝑣1∨𝑣2 edge. Accumulation has two self-loops,

one to create symbolic references (with labels 𝑟, 𝑠, . . .), and one to

recur to values. Accumulation matches the root ∨ and recurs on

the self-loop with edge 𝑣1 ∨ 𝑣2, 𝑣1 = (𝑝 ∧ ¬𝑞), and 𝑣2 = B⟨𝑒3, 𝑒4⟩.
Processing the left child first, accumulation will recur again with

𝑣 ′
1
= 𝑝 and 𝑣 ′

2
= ¬𝑞. 𝑣 ′

1
= 𝑝 is a base case for references, thus a

unique symbolic reference 𝑠𝑝 is generated for 𝑝 , following the self-

loop with label 𝑟 and returned as the result for 𝑣 ′
1
. 𝑣 ′

2
will follow the

self-loop with label ¬𝑣 to recur through ¬ to 𝑞, where a symbolic

term 𝑠𝑞 will be generated and returned. This yields ¬𝑠𝑞 , which
follows the ¬𝑠 edge to be processed into a new symbolic term,

yielding the result for 𝑣 ′
2
as 𝑠¬𝑞 . With both results 𝑣1 = 𝑠𝑝 ∧ 𝑠¬𝑞 ,

accumulation will match on ∧ and both 𝑠𝑝 and 𝑠¬𝑞 to accumulate

the entire sub-tree to a single symbolic term, 𝑠𝑠𝑝∧𝑠¬𝑞 , which will be

returned as the result for 𝑣1. 𝑣2 is a base case, hence accumulation

will return 𝑠𝑠𝑝∧𝑠¬𝑞∨B⟨𝑒3, 𝑒4⟩ to evaluation. Evaluationwill conclude
with A⟨𝑒1, 𝑒2⟩ as the result for the left child of ∧ and 𝑠𝑠𝑝∧𝑠¬𝑞 ∨
B⟨𝑒3, 𝑒4⟩ for the right child, yielding A⟨𝑒1, 𝑒2⟩ ∧ 𝑠𝑠𝑝∧𝑠¬𝑞 ∨ B⟨𝑒3, 𝑒4⟩
as the variational core of f .

A variational core is derived to save redundant work. If solved

naively, plain sub-formulas of 𝑓 , such as 𝑎∧𝑏 and 𝑝 ∧¬𝑞, would be
processed once for each variant even though they are unchanged.

Evaluation moves sub-formulas into the solver state to be reused

among different variants. Accumulation caches sub-formulas that

cannot be immediately evaluated to be evaluated later.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Young, Walkingshaw, Thüm

Symbolic references are variables in the reduction engine’s mem-

ory that represent a set of statements in the base solver. For example,

𝑠𝑝𝑞 represents three declarations in the base solver:

(declare−const p Bool) ;; 𝑠𝑝𝑞 represents
(declare−const q Bool) ;; several declarations
(declare−fun 𝑠𝑎𝑏 () Bool (or p (not c)))

Similarly a variational core is a sequence of statements in the

base solver with holes ^. For example, the representation of VCoref :

(assert (and a b)) ;; 𝑎 ∧ 𝑏 on the assertion stack
(declare−const ^) ;; choice A
.
.
. ;; many declares may occur
(assert ^) ;; many assertions may occur
.
.
. ;; 𝑠𝑝𝑞
(declare−fun 𝑠𝑝𝑞 () Bool (and p q))
(declare−const ^) ;; choice B
.
.
.
(assert (or 𝑠𝑎𝑏 ^)) ;; assert waiting on JB⟨𝑒3, 𝑒4 ⟩K𝐶

Each hole is filled by configuring a choice and may require multiple

statements to process the alternative.

Solving the Variational Core. The reduction engine performs the

work at each recursive step. Whereas the reification engine defines

transitions between the recursive steps by manipulating the con-

figuration. In VPL, a configuration was formalized as a function,

for variational solvers we use a set of tuples {(D × B)}. Figure 3a
shows two self-loops for the reification engine corresponding to

the reification of choices. The edges from the reification engine to

the reduction engine are transitions taken after a choice is removed,

where new plain terms have been introduced and thus a new core

is derived. If the user supplied a variation context, then it is used

to construct an initial configuration. Finally, a model is called from

the base solver when the reduction engine returns •, indicating
that a variant has been found.

We display a subset of edges of the reification engine using the ∧
connective. In general, these edgeswill be duplicated for each binary

logical connective, e.g., ∨. The left edge, is taken when a choice is

observed in the variational core: 𝑣 ∧ JD⟨𝑒1, 𝑒2⟩K𝐶 and 𝐷 ∈ 𝐶 . This

edge reduces choices with dimension 𝐷 to an alternative, which are

then translated to IL. The right edge is dashed to indicate assertion

stack manipulation, and is taken when 𝐷 ∉ 𝐶 . For this edge, the

configuration is mutated for both alternatives: 𝐶 ∪ {(𝐷, T)}, and
𝐶∪{(𝐷, F)}, and the recursive call is wrapped with a push, and pop
command. To the base solver, this branching is a linear sequence of

assertion stack manipulations that performs backtracking behavior,

for example the representation of f is:

.

.

. ;; declares and assertions from VCore
(push 1) ;; a configuration on B has occurred
.
.
. ;; new declarations for left alternative
(declare−fun 𝑠 () Bool (or 𝑠𝑝𝑞 ^ [^ → 𝑠𝐵𝑇])) ;; fill
(assert 𝑠)
.
.
. ;; recursive processing
(pop 1) ;; return for the right alternative
(push 1) ;; repeat for right alternative

𝑓0 → T
.
.
.

𝑓𝑖 → F
.
.
.

𝑓𝑛 → F
𝐶𝐹𝐹 = {(𝐿1, F), (𝐿2, F)}

𝑓0 → T
.
.
.

𝑓𝑖 → T
.
.
.

𝑓𝑛 → F
mitigations → T

𝐶𝐹𝑇 = {(𝐿1, F), (𝐿2, T)}

𝑓0 → T
.
.
.

𝑓𝑖 → F
.
.
.

fn → F
nospec_ . . . → F
spectrev2 → T
l1tf → T
pti → F

𝐶𝑇𝑇 = {(𝐿1, T), (𝐿2, T)}

Figure 4: Possible plain models for variants of 𝑓FM02
.

_𝑆𝑎𝑡 → (𝐿1 ∧ 𝐿2) ∨ (¬𝐿1 ∧ ¬𝐿2) ∨ (¬𝐿1 ∧ 𝐿2)
𝑓0 → (𝐿1 ∧ 𝐿2) ∨ (¬𝐿1 ∧ ¬𝐿2) ∨ (¬𝐿1 ∧ 𝐿2)
.
.
.

𝑓𝑖 → (¬𝐿1 ∧ 𝐿2)
.
.
.

𝑓𝑛 → F
mitigations → (¬𝐿1 ∧ 𝐿2)
nospec_ . . . → F
spectrev2 → (𝐿1 ∧ 𝐿2)
l1tf → (𝐿1 ∧ 𝐿2)
pti → F

Figure 5: Variational model of the plain models in Figure 4.

Where the hole ^, will be filled with a newly defined variable 𝑠𝐷𝑇

that represents the left alternative’s formula.

Variational Models. Plain models map variables to Boolean val-

ues; variational models map variables to variation contexts that

record the variants where the variable was assigned T. We denote

the variation context for a variable 𝑟 as vc𝑟 , and maintain a variable

called _𝑆𝑎𝑡 to track which configurations are satisfiable. As an ex-

ample, consider the query formula (𝑓FM012
) from the Linux example

in Section 2. If each variant is satisfiable, there are three models,

as illustrated in Figure 4; the corresponding variational model is

shown in Figure 5. vc
_𝑆𝑎𝑡

consists of three disjuncted terms, one

for each satisfiable variant. A satisfiable assignment of the query

formula can be found by calling SAT on vc
_𝑆𝑎𝑡

. Assuming the model

𝐶𝐹𝑇 = {(𝐿1, F), (𝐿2, T)} is returned, substitution on vc𝑓𝑖 yields 𝑓𝑖 ’s
value in 𝐶𝐹𝑇 :

𝑓𝑖 → (¬𝐿1 ∧ 𝐿2) vc for 𝑓𝑖
𝑓𝑖 → (¬F ∧ T) Substitute F for 𝐿1, T for 𝐿2

𝑓𝑖 → T Result

Furthermore, finding variants where a variable 𝑓𝑗 is satisfiable

reduces to SAT (vcfj)
Variational models are constructed incrementally by merging

each new plain model returned by the solver into the variational

model. A merge requires the current configuration, the plain model,

and current vc of a variable. Variables are initialized to F. For each
variable 𝑖 in the model, if 𝑖’s assignment is T in the plain model,

Variational Satisfiability Solving SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

then the configuration is translated to a variation context and dis-

juncted with vc𝑖 . For example, to merge the 𝐶𝐹𝑇 ’s plain model to

the variational model in Figure 5, 𝐶𝐹𝑇 ’s configuration is converted

to ¬𝐿1 ∧𝐿2. This clause is disjuncted for variables assigned T in the

plain model: vc0, vc𝑖 , and vcmitigations , even if they are new (e.g.,

mitigations). Variables assigned F are skipped, thus vc𝑛 remains F.
In the next model𝐶𝑇𝑇 , 𝑓𝑖 is F thus vc𝑖 remains unaltered. Variables

such as 𝑓𝑛 , whose vc ’s stay F are called constant.

5 QUANTITATIVE EVALUATION
Section 4 provides a technique for variational solving that enables

sharing work on subterms that are common across several variants.

However, the technique also involves substantial overhead, so it is

not obvious that it leads to performance gains in realistic problems.

To investigate, we construct a prototype variational solver, VSAT in

the Haskell programming language [35] and quantitatively compare

it to incremental and non-incremental SAT solving. We reuse real-

world data from a previous study by Nieke et al. [53]. Nieke et al.’s

study provides two datasets, automotive02 and financialServices1,
which encode the evolution histories of two feature models as

propositional formulas.
5
We refer to these as the auto dataset, and

fin dataset for the remainder of the paper.

5.1 Experimental Methodology
It is important to distinguish between concepts in the application

domain, such as a void or core analysis, and concepts in the solver

domain, such as a query or choice.When it is potentially ambiguous,

we use {brackets} to refer to concepts in the application domain.

We use the phrase version variant to refer to a variant that is a

{version or snapshot} of a sound feature model in the application

domain. Choices in different dimensions can be used to encode

several different application-domain concepts simultaneously, but

they are all interpreted identically in the solver domain.

For example, and to demonstrate the flexibility of variational

solving, we construct a VPL formula that encodes both a dead

analysis and core analysis over all features 𝑓 in a query formula

𝑞 by introducing a choice with a new dimension DC that does not
correspond to any version: q_DC = 𝑞 ∧ DC⟨∧𝑓 ∈𝑞 𝑓 ,

∧
𝑓 ∈𝑞 ¬𝑓 ⟩.

If 𝑞 encodes several variants identified by dimensions 𝑉0, . . . ,𝑉𝑛 ,

then q_DC contains dimensions that correspond to two different

concepts in the application domain (𝑉𝑖 for versions and DC for

the kind of analysis. Selecting an analysis is then performed by a

vc :6 𝑒𝑥𝑎𝑐𝑡𝑙𝑦1 (𝑉0, . . . ,𝑉𝑛). The vc selects exactly one version variant
with 𝑒𝑥𝑎𝑐𝑡𝑙𝑦1 (𝑉0, . . . ,𝑉𝑛) but leaves the dimension DC undefined.

With DC undefined, VSAT will try both DC set to T and DC set to

F. Thus, the vc selects exactly two variants per version variant, one

for the core analysis and one for the dead analysis. To include a

void analysis, in addition to the core and dead analyses, another

choice is required: q_VDC = 𝑞 ∧ Void⟨DC⟨∧𝑓 ∈𝑞 𝑓 ,
∧

𝑓 ∈𝑞 ¬𝑓 ⟩, T⟩.
We assess the performance characteristics VSAT by attempting

to answer the following research questions using our datasets.

RQ1 How does variational solving scale as variation increases?

RQ2 What is the impact of sharing on performance?

RQ3 What is the cost of solving a plain formula on VSAT?

5
https://gitlab.com/evolutionexplanation/evolutionexplanation

6
We use a binomial encoding for the exact constraint, see [12, Section 2].

To investigateRQ1, we consider all variants of the VPL formulas

constructed for each dataset, rather than just the version variants

that are of interest in the application domain. This allows us to

better evaluate how VSAT scales to accomodate variability. For

RQ2, we hypothesize that VSAT will get faster as sharing increases,

which would validate our method of deriving a variational core.

To investigate this, we restrict the analysis to consecutive version

variants (i.e., {consecutive monthly snapshots of a feature model}),

and observe performance as sharing is left uncontrolled. Finally,

RQ3 provides insight on the overhead incurred by variational solv-

ing, which we investigate by inputting each version variant as a

propositional logic formula rather than a single variational formula.

Data Description and Encoding. Nieke et al.’s formulas collapse

sets of C2 formulas to a single formula using implications on an

SMT variable that represents a moment in time. A two-pass pro-

cess was used to translate Nieke et al.’s formulas into VPL—one

pass to parse to an internal representation and another to detect

and convert Nieke et al.’s temporal ranges to choices, nesting the

implied clauses into the true alternative. The two-pass process con-

serves Nieke et al.’s ordering of plain terms and encoding. The two

datasets differ in important ways. The auto dataset encodes four
monthly snapshots while the fin dataset encodes ten. Hence, the

auto’s query formula represents 16 variants, while the fin query

formula represents 1,024 variants. For RQ2 and RQ3, we construct
several vc ’s to restrict the analysis to version variants. The vcs
range from ones that enable only one version variant (for RQ3):
fmfauto_V1 = (𝑉1 ∧ ¬𝑉2 ∧ ¬𝑉3 ∧ ¬𝑉4) to vcs that enable only con-

secutive version variants (for RQ2): fmfauto_V12 = 𝑉1 ⊻ 𝑉2.
For RQ2 we decouple performance from the number of variants

by performing an initial pass over the query formula to replace

choices representing non-consecutive {versions} with their false

alternatives (which contain the value T). Then we constructed a

vc to forbid non-version variants. As an example, the auto dataset,
yields three data points by this process, the change from versions

𝑉1 to 𝑉2, 𝑉2 to 𝑉3, and 𝑉3 to 𝑉4.

Measuring Performance. To answer our research questions, we

construct four different solving algorithms using our prototype

tool. We use the notation <formula>→<solver> to describe, for each
algorithm, whether the query formulas and solver are plain (𝑝) or

variational (𝑣), respectively. The algorithms are: the baseline, p→p,
which runs plain formulas on a plain solver; variational case, v→v,
which runs a variational formula on the variational solver; the

overhead case, p→v, which runs plain formulas on the variational;

and and the exponential case, v→p, which runs the variational

formula on a plain solver. Inputs for each algorithm are constructed

by configuring the query formula, thus ensuring that the same

variation context is used across algorithms.

We construct the p→p algorithm by configuring the query for-

mula to its version variants before benchmarking begins. These

formulas are then sent to the base solver one-by-one, without the

solver maintaining information between queries. To assess the po-

tential overhead of solving a plain query on a variational solver,

the p→v case and corresponding to RQ3, we perform the same

pre-processing as the p→p case but send each plain formula to

VSAT instead. This provides insight into the cost incurred by the

reduction engine. For v→p, we configure the query formula to

https://gitlab.com/evolutionexplanation/evolutionexplanation

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Young, Walkingshaw, Thüm

Figure 6:Mostmodels found to be unsatisfiable. Only a small
portion of features ever flipped to T.

retrieve version variants during benchmarking. Each formula is

sent to the base solver with the solver maintaining information

between queries. This gives insight into the overhead incurred by

configuring a variational formula and the benefits of caching.

We construct a variational model for all algorithms since it is

unclear how to combine plain models otherwise, and since the

storage of plain models is an orthogonal concern to performance,

we sought to keep convolved variables constant.

Unless specified, all results are a bootstrapped statistical aver-

age.
7
For RQ2, we normalize the data to the baseline (v→p), fit

a linear model, and statistically assess differences of samples by

performing a one-way Kruskall-Wallis test [54] followed by a pair-

wise Wilcox test [70] with Bonferroni p-value correction [27]. For

RQ3, we retrieve the 10 raw measurements from the bootstrapped

average and assess statistical differences identically to RQ2. All
results, including variational models and statistical analysis scripts,

are available online.
8

5.2 Results and Discussion
Non-performance Results. The datasets yielded dissimilar query

formulas: the auto query formula consisted of 4,212 choice terms,

and 26,808 plain terms. In contrast, fin had 3,809 choice terms,

and 1,441 plain terms. Thus fin had larger changes between {ver-

sions}. Figure 6 shows the ratio of unsatisfiable models to total

plain models, and the ratio of constant features for each {version}

(as represented by variant count). For both datasets the number of

satisfiable models decreased as new {versions} were considered, and

the majority of features remained constant. Thus, the variational

model is likely a compressed version of the set of plain models.

Compression metrics were not calculated as this is an orthogonal

concern to the performance of variational satisfiability solving.

Variational models permit product analyses without a SAT solver.

Figure 6 shows such a purely syntactic analysis: counting disjuncted

clauses in the variational model as a representation of satisfiable

plain models. We believe post-hoc analyses such as this may be

useful to feature modelers as they direct attention to impactful

versions of the feature model. For example, the change to 𝑉8 from

7
Using v0.2.5 of the gauge [55] library and v5.7.1 of the z3 [26] SMT solver with a solver

seed set to 1729. All data was collected on a server running CentOS Linux release 7.7,

with two Intel(R) Xeon(R) Gold 5115 CPU @ 2.40GHz, 512GB RAM. We used stack

lts-15.7 (GHC 8.8.3) and tested with RTS options “-qg -A64m -AL128m -n8m”.

8
https://github.com/lambda-land/VSat-Papers/tree/master/SPLC2020

Figure 7: v→v shows a speedup of 2.2-2.5x (auto), and 1.84-
1.99x (fin). Overlapping x-axis labels elided.

𝑉7 (128 to 256 Variants) of fin clearly constrained the feature model,

decreasing the number of constant features.

RQ1: Performance of Variational Solving as Variation Scales. The
VSAT tool outperforms other algorithms as the count of variants to

solve increases. Figure 7 shows the time to solve the query formula

as variants increase from 2 to 16 for the auto dataset, and from 2 to

1,024 for the fin dataset. For the auto dataset, variational solving
is faster at 4 variants, with a speedup of 1.6x while for the fin
dataset variational solving only becomes performant when solving

64 or more variants, with a speedup of 1.56x. When the query

formula represents as many plain SAT problems as possible, we

observe a speedup of 2.2x for auto and 1.99x for fin. However, 87%
of results were found to be unsatisfiable for fin and 50% for auto,
thus the performance of variational solving for less constrained

formulas remains an open question. Furthermore, we only observed

a constant factor speedup; by this data, variational solving still

grows linearly in the number of variants being solved.

VSAT outperforms the other algorithms because the variational

core caches plain terms, thereby preventing the re-evaluation of

these terms for each variant. We observe that derivation of a core

only pays off after a particular threshold of the variants to solve is

passed. Estimating this threshold value without solving is likely to

be important for end-users and so is a topic for future work.

RQ2: Performance Impact of Plain Terms. We hypothesize that

the proportion of plain terms to total terms should increase the vari-

ational solver’s performance because as sharing grows, the query

formula’s variational core is reduced. We observe this behavior in

Figure 8. Both v→v and p→p showed a statistically significant fit

to a linear model. Furthermore, only v→v was found to be statis-

tically different from p→p and p→v with p-values of 4.67 × 10
−4

and 1.10 × 10
−4

thus confirming that sharing positively correlates

to speedups for variational solving in these datasets.

This result is further evidence that as the reduction engine re-

duces more of the query formula, more reuse occurs, such as ob-

served in the auto dataset where the sharing ratio is high. Hence,

an avenue of future work is to leverage the laws of the variational

logic to automatically refactor input formulas. The consequences

of this observation will be particular to the application domain.

https://github.com/lambda-land/VSat-Papers/tree/master/SPLC2020

Variational Satisfiability Solving SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Figure 8: Sharing positively correlates to speedup only for
v→v, where % SpeedUp =

Algorithm
v→p .

Figure 9: v→v incurs an average slowdown of 17% for auto,
and 60% for the fin, when solving a single {version}.

For software product lines this means that any method to increase

sharing between {versions} or SAT problems is desirable; this may

be smaller changes with respect to the entire feature model, more

frequent snapshots of the feature model, or syntactic manipulations

to mitigate the occurrence of new features.

RQ3: Overhead of a Plain Query on VSAT. Figure 9 displays the
bootstrapped averages of each version variant for each algorithm.

We omit the matrix of pairwise comparisons from the paper for

space, although it is available online. Of a total of 84 comparisons,

23 were significant in fin and 2 in auto. Given RQ2, and the com-

position of fin, we expect VSAT to show slowdowns for fin. This
is observed in Figure 9 and is statistically significant for all ver-

sions. For auto, the only differences were in 𝑉1, and between (p→v,
v→v) and (p→v, v→p). Notably, v→v did not differ from v→p, thus
VSAT did not exhibit significant overhead for the auto dataset.

9

That p→v was statistically different for 𝑉1 suggests particular for-

mulas may not respond well to the reduction engine. Similarly,

there is clearly overhead when solving plain formulas, although

9
The auto portion of Figure 9 suggests statistically significant differences for other

versions but omits variance, hence the discrepancy.

this overhead is particular to some formulas, suggesting certain

formula characteristics may have a large effect. Identifying these

characteristics requires a more robust dataset; that some variants

show no overhead suggests future work to recover performance.

Dataset v→v v→p p→v p→p
auto 211.70 288.66 363.16 378.69

fin 11.1 8.42 8.07 9.51

Table 1: Time to solve[s] Dead Core formula, v→v shows a
76% speedup for auto data, and a 36% slowdown for fin.

Variational Dead and Core Analysis. Table 1 displays the perfor-
mance results for the dead and core analyses. We observe a 76%

speedup for the auto dataset, and a 36% slowdown for fin dataset.

This difference is due to the threshold at which VSAT begins to

outperform other algorithms. For auto this threshold was low, at 4

variants, but was 64 variants for the fin dataset, thus the slowdown.

Following RQ1’s results, had a core, dead, and void analysis been

performed, v→v would still be under the speedup threshold.

Threats to Validity. Our results are subject to several threats to va-
lidity. Notably, we are unable to make absolute performance claims

because our study, with only two product lines, may not be represen-

tative. To mitigate this we reused real-world data fromNieke et al.’s

previous study [53] and chose dissimilar product lines. We inherit

encoding-based threats to validity by reusing Nieke et al.’s formu-

las but ensured each algorithm experienced identical ordering of

plain terms as described in Section 5.1.

Besides choice of dataset, our conclusions in the quantitative

analysis are only representative of the performance of the z3 [26]

SAT and SMT solver. While VSAT supports any SMTLIB2 [8] com-

pliant solver, our evaluation used only z3. Due to z3’s ubiquity we

believe it to be representative of conflict-driven clause-learning

SAT solvers, although other solvers could perform differently.

We have evinced the scalability claim with RQ1, and shown the

translation and automation of incremental solving in Section 4.

However, our results depend on a VPL formula as input. We believe

that VPL formulas can be incrementally and automatically con-

structed in practice, as described in Section 3, as new variants occur

or become known. However, assessing the usability and algorithmic

challenges of VPL construction is left to future work.

In this paper, we do not provide a proof of the soundness of our

methods. We mitigate this threat in several ways: we performed

property-based testing [22] on our prototype and verified that a

satisfiable variant was found to be satisfiable across all algorithms.

In addition, we define a property that ensures that for each plain

model 𝑝 , found with p→v, v→p, and p→p, an identical model 𝑝 ′

was found by substituting 𝑝 on the variational model returned from

VSAT. We performed the property-based tests with 3000 generated

VPL formulas, finding no counter-examples.

6 RELATEDWORK
Similar Solvers, Related Techniques. Our work is most similar to

Visser et al. [66], which also constructs a SAT solver that exploits

shared terms and prevents redundant computation. However, the

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Young, Walkingshaw, Thüm

projects differ in important ways. Visser et al.’s solver is oriented

for program analysis and does not use incremental SAT solving.

Rather, it uses heuristics to find canonical forms of sliced programs,

and caches solver results on these canonical forms in a key-value

store [41]. In contrast, variational SAT solving is domain agnostic,

solves SAT problems expressed in VPL, returns a variational model,

and uses incremental SAT solving.

Variational SAT solving is the latest in a line of work that uses the

choice calculus to investigate variation as a computational phenom-

ena. The choice calculus has been successfully applied to diverse

areas of computer science, such as databases [4, 5], graphics [28],

data structures [30, 49, 61, 69], type systems [14, 15, 20, 21], error

messages [17–20], and now satisfiability solving. Our use of choices

is similar to the concept of facets [6] and faceted execution [7, 50, 58],
which have been successfully applied to information-flow security

and policy-agnostic programming.

Applications for Variational Solving. Software variability, as ex-
plored in this paper, is a natural application domain for our work.

The variability of SPLs or configurable software is often reduced

to propositional logic [9, 25, 48] for analysis purposes [11, 32, 64].

Many analyses have been implemented using SAT solving [64],

including feature-model analysis [11, 32], parsing [36], dead-code

analysis [62], code simplification [67], type checking [63], consis-

tency checking [24], dataflow analysis [44], model checking [23],

variability-aware execution [52], testing [16], product sampling [47,

65], product configuration [57], optimization of non-functional

properties [60], and variant-preserving refactoring [31]. While each

of these analyses gives rise to multiple SAT problems for even a sin-

gle analysis run, the authors typically do not discuss how they are

solved. We argue that many could benefit from variational solving.

More generally, any scenario that involves solving many related

SAT problems, and where all of these problems are known or can

be generated in advance, is a potential application for variational

SAT solving. Such situations arise in program analysis [66], and

especially in speculative program analyses that involve generating

and exploring huge numbers of variations of a program, for ex-

ample, as in counterfactual [17] and migrational [14, 15] typing.

Furthermore, we believe that variational solving provides a basis

for such speculative analyses on feature models.

Efficient Reasoning about Software Variability. Since SAT solving

is so common in software variability applications, many strategies

have been developed to reduce effort in this domain.

Similar to variational formulas, Nieke et al. [53] encode several

versions of a feature model in a single formula. We reuse their

benchmark as part of our evaluation as described in Section 5.1; a

direct comparison with their approach is nuanced and discussed

in Section 5.2. While their work focuses on feature-model analysis

only, variational formulas and variational solving can be applied to

many application areas.

In the context of family-based type checking [64], others have

discussed merging multiple SAT problems into one. Most work in

this area use a local approach where SAT problems are solved as

they are encountered during typing; in contrast, global approaches
collect SAT checks into a single problem that is solved at the end of

the analysis. While the global approach improves efficiency by in-

creasing reuse of learned clauses in the solver, it loses the ability to

identify which variants contain type errors [3, 34]. Variational solv-

ing can achieve the reuse benefits of the global approach without

sacrificing the precision of the local approach.

Since the size of SAT problems in software variability applica-

tions is often dominated by the feature model, researchers tried

to reduce the size of satisfiability problems by delaying consider-

ation of the feature model until after the analysis and only using

it rule out false positives [13, 23, 44], a technique known as late

feature-model consideration [64]. Bodden et al. [13] found that this

technique increases the overall efficiency of static analysis [13],

while Classen et al. [23] found that it actually decreases efficiency

of family-based model checking. Variational solving is orthogonal

to these approaches since the feature model can be excluded from

a variational formula and then used later to rule out false positives.

Feature models can also be reduced in size to speed up analyses,

for example, by slicing [1, 39] or decomposition [59]. It is largely

unexplored how much such reductions can improve efficiency, but

the analysis will still involve multiple similar SAT problems, which

can benefit from variational solving.

A final approach is to avoid SAT problems by using modal impli-

cations graphs [40], which support faster reasoning. The idea is to

encode as many software variability constraints as possible in such

graphs, then use a SAT solver only for the remaining constraints.

The construction of modal implication graphs already requires solv-

ing SAT problems, but this cost is amortized if many SAT queries

will be solved during the analysis, as Krieter et al. [40] found for

configuration processes.

7 CONCLUSION
Variational satisfiability solving offers numerous advantages over

current methods. Variational models, as solutions to variational sat-

isfiability problems, are a flexible, compressed representation that

enables post-hoc analyses. Through the use of a VPL formula, vari-

ational solving provides a domain agnostic, automated approach

to use an incremental solver to efficiently solve sets of SAT prob-

lems, in addition to making explicit the ordering between plain and

variational terms. Furthermore, we have demonstrated that sharing

is an important factor in variational satisfiability solving. While

the magnitude of its effect is not yet known, our analysis forms a

foundation for future research. For feature modelers, variational

satisfiability solving offers the practical benefits of a faster and

more flexible analysis tool, and provides a basis for new kinds of

automated variational analyses on feature models and software

product lines. Outside the domain of software product lines, varia-

tional satisfiability solving provides a framework and logic where

variation can be directly represented irrespective of the application

domain, thus providing a new method to study variation itself.

ACKNOWLEDGMENTS
We gratefully acknowledge discussions with Michael Nieke and

attendees of FOSD 2018. We thank colleagues without whom this

work would not be possible: Paul Maximilian Bittner, Parisa Ataei,

David Thrane Christiansen, and Levent Erkok. This work has been

partially supported by the German Research Foundation within the

project VariantSync (TH 2387/1-1).

Variational Satisfiability Solving SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2011.

Slicing Feature Models. In Proc. Int’l Conf. on Automated Software Engineering
(ASE). IEEE, 424–427.

[2] Sofia Ananieva, Matthias Kowal, Thomas Thüm, and Ina Schaefer. 2016. Implicit

Constraints in Partial Feature Models. In Int. Work. on Feature-Oriented Software
Development (FOSD). ACM, 18–27.

[3] Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kästner. 2010.

Language-Independent Reference Checking in Software Product Lines. In Int.
Work. on Feature-Oriented Software Development (FOSD). ACM, 65–71.

[4] Parisa Ataei, Arash Termehchy, and Eric Walkingshaw. 2017. Variational

Databases. In Int. Symp. on Database Programming Languages (DBPL). ACM,

11:1–11:4.

[5] Parisa Ataei, Arash Termehchy, and Eric Walkingshaw. 2018. Managing Struc-

turally Heterogeneous Databases in Software Product Lines. In VLDB Workshop:
Polystores and Other Systems for Heterogeneous Data (Poly).

[6] Thomas H Austin and Cormac Flanagan. 2012. Multiple facets for dynamic infor-

mation flow. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. 165–178.

[7] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama.

2013. Faceted Execution of Policy-Agnostic Programs. In Proceedings of the Eighth
ACM SIGPLAN Workshop on Programming Languages and Analysis for Security
(Seattle, Washington, USA) (PLAS ’13). Association for Computing Machinery,

New York, NY, USA, 15–26. https://doi.org/10.1145/2465106.2465121

[8] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiability Modulo

Theories Library (SMT-LIB). www.SMT-LIB.org.
[9] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In

Proc. Int’l Systems and Software Product Line Conf. (SPLC). Springer, 7–20.
[10] David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad. 2005. Automated

Reasoning on Feature Models. In Proc. Int’l Conf. on Advanced Information Systems
Engineering (CAiSE). 491–503.

[11] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated

Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615–708.

[12] Paul Maximilian Bittner, Thomas Thüm, and Ina Schaefer. 2019. SAT Encodings

of the At-Most-k Constraint. In Software Engineering and Formal Methods, Pe-
ter Csaba Ölveczky and Gwen Salaün (Eds.). Springer International Publishing,

Cham, 127–144.

[13] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and

Mira Mezini. 2013. SPLLIFT: Statically Analyzing Software Product Lines in

Minutes Instead of Years. In Proc. ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI). ACM, 355–364.

[14] John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2018.

Migrating Gradual Types. Proc. of the ACM on Programming Languages (PACMPL)
issue ACM SIGPLAN Symp. on Principles of Programming Languages (POPL) 2
(2018), 15:1–15:29.

[15] John Peter Campora III, Sheng Chen, and Eric Walkingshaw. 2018. Casts and

Costs: Harmonizing Safety and Performance in Gradual Typing. Proc. of the
ACM on Programming Languages (PACMPL) issue ACM SIGPLAN Int. Conf. on
Functional Programming (ICFP) 2 (2018), 98:1–98:30.

[16] Ivan Do Carmo Machado, John D. McGregor, Yguaratã Cerqueira Cavalcanti, and

Eduardo Santana De Almeida. 2014. On Strategies for Testing Software Product

Lines: A Systematic Literature Review. J. Information and Software Technology
(IST) 56, 10 (2014), 1183–1199.

[17] S. Chen and M. Erwig. 2014. Counter-Factual Typing for Debugging Type Errors.

In ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages. 583–
594.

[18] S. Chen, M. Erwig, and K. Smeltzer. 2014. Let’s Hear Both Sides: On Combining

Type-Error Reporting Tools. In IEEE Int. Symp. on Visual Languages and Human-
Centric Computing. 145–152.

[19] S. Chen, M. Erwig, and K. Smeltzer. 2017. Exploiting Diversity in Type Checkers

for Better Error Messages. Journal of Visual Languages and Computing 39 (2017),

10–21.

[20] Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2012. An Error-Tolerant

Type System for Variational Lambda Calculus. In ACM SIGPLAN Int. Conf. on
Functional Programming (ICFP). 29–40.

[21] Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2014. Extending Type In-

ference to Variational Programs. ACM Trans. on Programming Languages and
Systems 36, 1, Article 1 (2014), 1:1–1:54 pages.

[22] Koen Claessen and John Hughes. 2011. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. SIGPLAN Not. 46, 4 (May 2011), 53–64.

https://doi.org/10.1145/1988042.1988046

[23] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel

Legay, and Jean-Francois Raskin. 2013. Featured Transition Systems: Foundations

for Verifying Variability-Intensive Systems and Their Application to LTL Model

Checking. IEEE Trans. on Software Engineering 39, 8 (2013), 1069–1089.

[24] Krzysztof Czarnecki and Krzysztof Pietroszek. 2006. Verifying Feature-Based

Model Templates Against Well-Formedness OCL Constraints. In ACM SIGPLAN
Conf. on Generative Programming and Component Engineering. ACM, 211–220.

[25] Krzysztof Czarnecki and Andrzej Wąsowski. 2007. Feature Diagrams and Logics:

There and Back Again. In Proc. Int’l Systems and Software Product Line Conf.
(SPLC). IEEE, 23–34.

[26] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In

Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-

ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

337–340.

[27] Jean Dunn and Olive Jean Dunn. 1961. Multiple Comparisons Among Means.

American Statistical Association (1961), 52–64.

[28] M. Erwig and K. Smeltzer. 2018. Variational Pictures. In Int. Conf. on the Theory
and Application of Diagrams (LNAI 10871). 55–70.

[29] Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A Representa-

tion for Software Variation. ACM Trans. on Software Engineering and Methodology
(TOSEM) 21, 1 (2011), 6:1–6:27.

[30] Martin Erwig, Eric Walkingshaw, and Sheng Chen. 2013. An Abstract Representa-

tion of Variational Graphs. In Int. Work. on Feature-Oriented Software Development
(FOSD). ACM, 25–32.

[31] Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter

Saake. 2017. Variant-Preserving Refactorings for Migrating Cloned Products to a

Product Line. In Proc. Int’l Conf. on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 316–326.

[32] José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-

Fernández, and Antonio Ruiz-Cortés. 2019. Automated Analysis of Feature

Models: Quo Vadis? Computing 101, 5 (2019), 387–433.

[33] James Garson. 2018. Modal Logic. In The Stanford Encyclopedia of Philosophy (fall

2018 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab, Stanford University.

[34] Shan Shan Huang, David Zook, and Yannis Smaragdakis. 2011. Statically Safe

Program Generation with SafeGen. Science of Computer Programming (SCP) 76, 5
(2011), 376–391.

[35] Paul Hudak, JohnHughes, Simon Peyton Jones, and PhilipWadler. 2007. AHistory

of Haskell: Being Lazy with Class. In Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages (San Diego, California) (HOPL
III). Association for Computing Machinery, New York, NY, USA, 12–1–12–55.

https://doi.org/10.1145/1238844.1238856

[36] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus

Ostermann, and Thorsten Berger. 2011. Variability-Aware Parsing in the Presence

of Lexical Macros and Conditional Compilation. In Proc. Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA). ACM, 805–824.

[37] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-

tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).
[38] Matthias Kowal, Sofia Ananieva, and Thomas Thüm. 2016. Explaining Anomalies

in Feature Models. In Proc. Int’l Conf. on Generative Programming: Concepts &
Experiences (GPCE). ACM, 132–143.

[39] Sebastian Krieter, Reimar Schröter, Thomas Thüm, Wolfram Fenske, and Gunter

Saake. 2016. Comparing Algorithms for Efficient Feature-Model Slicing. In Proc.
Int’l Systems and Software Product Line Conf. (SPLC). ACM, 60–64.

[40] Sebastian Krieter, Thomas Thüm, Sandro Schulze, Reimar Schröter, and Gunter

Saake. 2018. Propagating ConfigurationDecisionswithModal Implication Graphs.

In Proc. Int’l Conf. on Software Engineering (ICSE). ACM, 898–909.

[41] Redis Labs. [n.d.]. Redis. Accessed at May 4th, 2020.

[42] Micahel Larabel. [n.d.]. A Global Switch To Kill Linux’s CPU Spectre/Meltdown
Workarounds? Accessed at March 25th, 2020.

[43] Jörg Liebig, Christian Kästner, and Sven Apel. 2011. Analyzing the Discipline

of Preprocessor Annotations in 30 Million Lines of C Code. In Int. Conf. on
Aspect-Oriented Software Development. 191–202.

[44] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and

Christian Lengauer. 2013. Scalable Analysis of Variable Software. In Proc. Europ.
Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE). ACM,

81–91.

[45] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User

Space. In 27th USENIX Security Symposium (USENIX Security 18).
[46] Jacopo Mauro, Michael Nieke, Christoph Seidl, and Ingrid Chieh Yu. 2017. Anom-

aly Detection and Explanation in Context-Aware Software Product Lines. In Proc.
Int’l Systems and Software Product Line Conf. (SPLC). ACM, 18–21.

[47] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.

2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In

Proc. Int’l Conf. on Software Engineering (ICSE). ACM, 643–654.

[48] Marcílio Mendonça, Andrzej Wąsowski, Krzysztof Czarnecki, and Donald Cowan.

2008. Efficient Compilation Techniques for Large Scale Feature Models. In ACM
SIGPLAN Conf. on Generative Programming and Component Engineering. ACM,

13–22.

https://doi.org/10.1145/2465106.2465121
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1238844.1238856

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Young, Walkingshaw, Thüm

[49] Meng Meng, Jens Meinicke, Chu-Pan Wong, Eric Walkingshaw, and Christian

Kästner. 2017. A Choice of Variational Stacks: Exploring Variational Data Struc-

tures. In Int. Work. on Variability Modelling of Software-Intensive Systems (VaMoS).
ACM, 28–35.

[50] Kristopher K. Micinski. 2018. Abstracting Faceted Execution.

[51] Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. 2014. Ultimately Incre-

mental SAT. In Theory and Applications of Satisfiability Testing – SAT 2014, Carsten
Sinz and Uwe Egly (Eds.). Springer International Publishing, Cham, 206–218.

[52] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring

Variability-Aware Execution for Testing Plugin-Based Web Applications. In Proc.
Int’l Conf. on Software Engineering (ICSE). ACM, 907–918.

[53] Michael Nieke, Jacopo Mauro, Christoph Seidl, Thomas Thüm, Ingrid Chieh Yu,

and Felix Franzke. 2018. Anomaly Analyses for Feature-Model Evolution. In

ACM SIGPLAN Conf. on Generative Programming and Component Engineering.
ACM, 188–201.

[54] National Institute of Standards and Technology. [n.d.]. NIST e-Handbook of
Statistical Methods. Accessed at May 7th, 2020.

[55] Bryan O’Sullivan. 2009. Criterian: AHaskell microbenchmarking library. Website.

Available online at https://hackage.haskell.org/package/gauge-0.2.5; visited on

May 7th, 2020.

[56] N. Rescher. 1969. Many-valued Logic. McGraw-Hill. https://books.google.com/

books?id=ZyTXAAAAMAAJ

[57] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar. 2013.

Scalable Product Line Configuration: A Straw to Break the Camel’s Back. In Proc.
Int’l Conf. on Automated Software Engineering (ASE). IEEE, 465–474.

[58] Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo.

2018. Faceted Secure Multi Execution. In CCS ’18.
[59] Reimar Schröter, Sebastian Krieter, Thomas Thüm, Fabian Benduhn, and Gunter

Saake. 2016. Feature-Model Interfaces: The Highway to Compositional Analyses

of Highly-Configurable Systems. In Proc. Int’l Conf. on Software Engineering
(ICSE). ACM, 667–678.

[60] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner,

Sven Apel, and Gunter Saake. 2012. SPL Conqueror: Toward Optimization of

Non-functional Properties in Software Product Lines. Software Quality Journal

(SQJ) 20, 3-4 (2012), 487–517.
[61] K. Smeltzer andM. Erwig. 2017. Variational Lists: Comparisons and Design Guide-

lines. In ACM SIGPLAN Int. Workshop on Feature-Oriented Software Development.
31–40.

[62] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-

Preikschat. 2011. Feature Consistency in Compile-Time-Configurable System

Software: Facing the Linux 10,000 Feature Problem. In Proc. Europ. Conf. on
Computer Systems (EuroSys). ACM, 47–60.

[63] Sahil Thaker, Don Batory, David Kitchin, and William Cook. 2007. Safe Compo-

sition of Product Lines. In ACM SIGPLAN Conf. on Generative Programming and
Component Engineering. ACM, 95–104.

[64] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.

2014. A Classification and Survey of Analysis Strategies for Software Product

Lines. Comput. Surveys 47, 1 (2014), 6:1–6:45.
[65] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-

mad Reza Mousavi, and Ina Schaefer. 2018. A Classification of Product Sampling

for Software Product Lines. In Proc. Int’l Systems and Software Product Line Conf.
(SPLC). ACM, 1–13.

[66] Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: Reducing,

Reusing and Recycling Constraints in Program Analysis. In Proc. Int’l Symposium
on Foundations of Software Engineering (FSE). ACM, 58:1–58:11.

[67] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk

Beyer, and Thorsten Berger. 2015. Presence-Condition Simplification in Highly

Configurable Systems. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE,
178–188.

[68] Eric Walkingshaw. 2013. The Choice Calculus: A Formal Language of Variation.
Ph.D. Dissertation. Oregon State University. http://hdl.handle.net/1957/40652.

[69] Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric Bodden.

2014. Variational Data Structures: Exploring Trade-Offs in Computing with

Variability. In ACM SIGPLAN Symp. on New Ideas in Programming and Reflections
on Software (Onward!). 213–226.

[70] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83. http://www.jstor.org/stable/3001968

https://hackage.haskell.org/package/gauge-0.2.5
https://books.google.com/books?id=ZyTXAAAAMAAJ
https://books.google.com/books?id=ZyTXAAAAMAAJ
http://hdl.handle.net/1957/40652
http://www.jstor.org/stable/3001968

	Abstract
	1 Introduction
	2 Background
	3 VPL: Variation + Propositional Logic
	4 Variational Satisfiability Solving
	5 Quantitative Evaluation
	5.1 Experimental Methodology
	5.2 Results and Discussion

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

