
Using Abstract Contracts for Verifying Evolving
Features and Their Interactions

Alexander Knüppel1, Stefan Krüger2, Thomas Thüm3, Richard Bubel4,
Sebastian Krieter5, Eric Bodden2, and Ina Schaefer1

1 TU Braunschweig
2 University of Paderborn

3 University of Ulm
4 TU Darmstadt

5 University of Magdeburg

Abstract. Today, software systems are rarely developed monolithically,
but may be composed of numerous individually developed features.
Their modularization facilitates independent development and verifi-
cation. While feature-based strategies to verify features in isolation have
existed for years, they cannot address interactions between features. The
problem with feature interactions is that they are typically unknown
and may involve any subset of the features. Contrary, a family-based
verification strategy captures feature interactions, but does not scale well
when features evolve frequently. To the best of our knowledge, there cur-
rently exists no approach with focus on evolving features that combines
both strategies and aims at eliminating their respective drawbacks. To fill
this gap, we introduce Fefalution, a feature-family-based verification
approach based on abstract contracts to verify evolving features and
their interactions. Fefalution builds partial proofs for each evolving
feature and then reuses the resulting partial proofs in verifying feature
interactions, yielding a full verification of the complete software system.
Moreover, to investigate whether a combination of both strategies is fruit-
ful, we present the first empirical study for the verification of evolving
features implemented by means of feature-oriented programming and
by comparing Fefalution with another five family-based approaches
varying in a set of optimizations. Our results indicate that partial proofs
based on abstract contracts exhibit huge reuse potential, but also come
with a substantial overhead for smaller evolution scenarios.

1 Introduction

Today’s software systems are often developed in terms of features, such as the
operating system Linux, the integrated development environment Eclipse, or
the web browser Firefox. End-users can choose a subset of these features for a
customized product. In such software product lines [7], the number of possible
feature combinations typically grows exponentially in the number of features. This
kind of variability makes their verification a non-trivial task [40], as individual
features change over time due to software evolution, and it is typically impossible

2 Knüppel et al.

to foresee which product variants need to be generated. Moreover, it is infeasible
to generate and verify all feature combinations for even small feature-oriented
software projects.

Implementation artifacts of a feature can be modularized into plug-ins, feature
modules, or aspects [7]. A major goal of modularity is to reduce complexity and to
support large development teams [35]. As a side-effect, modularity allows to verify
features to a certain extent in isolation. A major advantage of such feature-based
verification is that also under evolution one only needs to verify those features
that changed [40] and not the complete code base. However, verifying each feature
in isolation – known as feature-based verification – is generally insufficient, as
features interact with each other. For instance, a feature may call methods defined
in other features (i.e., syntactical interaction) or it may even rely on the behavior
of other features (i.e., semantic interaction) [13]. Any combination of an arbitrary
subset of features may lead to a feature interaction. Hence, there is a potentially
exponential number of interactions, which are typically unknown a priori.

To resolve the interaction problem, another verification strategy called family-
based verification applies a single verification to the complete code base (i.e., the
whole family of products at once) [10, 15, 22, 24, 38]. Typically, a metaproduct
is generated by encoding the complete code base including all features into one
executable product. While the family-based strategy avoids the verification of
every possible feature combination separately, the verification problem is more
complex and needs to be solved again whenever one of the features evolves.

Our hypothesis for this work is that a combined approach (i.e., a feature-
family-based strategy) may be simultaneously robust against evolution of features
to reduce re-verification effort and also able to deal with feature interactions.
However, testing this hypothesis is a non-trivial task, as there are also numerous
optimizations (e.g., whether method calls are inlined or abstracted) that may
affect the performance and reuse potential of verification strategies in general.
To this end, we focus on two open questions in this work, namely (1) can a
feature-family-based strategy reduce the verification effort for evolving features
compared to a sole family-based strategy? and (2) how do different optimizations
affect the verification of evolving features?

To the best of our knowledge, no adequate feature-family-based approach
explicitly addressing the evolution of features currently exists. Therefore, we
propose Fefalution, a feature-family-based deductive verification approach
particularly designed for evolution and for overcoming some limitations by prior
work. In a feature-based phase, Fefalution builds partial proofs for each evolving
feature by generating a feature stub containing all artifacts (e.g., classes, methods,
and fields) that are referenced from other features. When referring to methods of
other features, we use the notion of abstract contracts [11] to avoid that changes
in contracts of other features influence the verification result and, thus, require a
re-verification. The verification of the feature stubs results in partial proofs.

In a subsequent family-based phase based on variability encoding [38], Fefa-
lution then reuses the resulting partial proofs in verifying feature interactions.
Variability encoding is the process of transforming compile-time into run-time

Title Suppressed Due to Excessive Length 3

variability to reuse existing verification tools as-is [43]. We extend prior work on
variability encoding for feature-oriented contracts [42] with support for abstract
contracts and for partial proofs.

We focus on contract specification with the Java Modeling Language (JML) [32]
and verification with KeY [1], whereas our ideas may also be applied to other
specification languages and verification tools. As modularization technique, we
rely on feature modules specified with feature-oriented contracts due to the
available tool support for modularization and composition of contracts [42]. In
detail, we make the following contributions.

– A presentation of a feature-family-based deductive verification approach
called Fefalution, which combines the generation of feature stubs [31] and
abstract contracts [11] with variability encoding [38].

– Tool support for Fefalution based on three existing tools, namely (1) a
version of KeY that facilitates the use of abstract contracts, (2) Feature-
House [4] for composing feature modules and feature-oriented contracts with
support for variability encoding, and (3) FeatureIDE [41] for the generation
of feature stubs.

– An empirical comparison of a total of six family-based approaches varying in
specific characteristics applied to five evolution scenarios of the bank account
product line.

2 Background and Running Example

In this section, we introduce the core concepts our work is based on. We briefly
discuss JML specifications in general and abstract contracts in particular. As we
focus on software product lines, we give a brief introduction to feature modeling,
feature composition, and product-line specification.

2.1 Design By Contract

To specify a program’s behavior, we follow the design-by-contract paradigm [34].
In design-by-contract, the program behavior is typically specified by code anno-
tations that have to be obeyed by method implementations. Method contracts
specify preconditions that need to be satisfied by callers and postconditions that
callers can then rely on. Furthermore, class invariants define class-wide proper-
ties. A class invariant is established by the class’ constructor and serves as an
additional precondition and postcondition for each method of the class.

As specification language, we use the Java Modeling Language (JML), which
implements design-by-contract for Java programs [33]. In the first listing of
Figure 1, we show the contracts of method update. The listings in the figure
also show the mechanism of composition in feature-oriented programming, which
we discuss further below. The keywords requires (Line 5) and ensures (Line
6) indicate the pre- and postcondition, respectively. The last line of the contract
(Line 7) represents the assignable clause. An assignable clause represents a set of

4 Knüppel et al.

1 class Account { BankAccount
2 static final int OVERDRAFT LIMIT = 0;
3 int balance = 0;
4
5 /∗@ requires x != 0;
6 @ ensures \result <==> (balance == \old(balance) + x);
7 @ assignable balance; @∗/
8 boolean update(int x) {
9 if (balance + x < OVERDRAFT LIMIT) return false;

10 balance += x;
11 return true;
12 }
13 }

14 class Account { DailyLimit
15 static final int DAILY LIMIT = −1000;
16 int withdraw = 0;
17
18 /∗@ requires \original;
19 @ ensures \original;
20 @ assignable withdraw; @∗/
21 boolean update(int x) {
22 if ((x < 0 && withdraw + x < DAILY LIMIT) | |
23 !original(x))
24 return false;
25 withdraw += x;
26 return true;
27 }
28 }

29 class Account { BankAccount • DailyLimit
30 static final int OVERDRAFT LIMIT = 0;
31 int balance = 0;
32 static final int DAILY LIMIT = −1000;
33 int withdraw = 0;
34
35 /∗@ requires x != 0;
36 @ ensures \result <==> (balance == \old(balance) + x);
37 @ assignable balance; @∗/
38 boolean update wrappee BankAccount (int x)
39 {//Lines 9 − 11}
40
41 /∗@ requires x != 0;
42 @ ensures \result <==> (balance == \old(balance) + x);
43 @ assignable balance, withdraw; @∗/
44 boolean update(int x) {
45 if ((x < 0 && withdraw + x < DAILY LIMIT) | |
46 !update wrappee BankAccount(x))
47 return false;
48 withdraw += x;
49 return true;
50 }
51 }

Fig. 1. Composition of two feature modules of a bank account product line [42]

Title Suppressed Due to Excessive Length 5

program locations that the method is permitted to change on return. For method
update, only field balance may change.

Contracts can be used by a theorem prover during the deductive verifica-
tion process when a method invocation is encountered. Alternatively, method
invocations can be treated by inlining the body of the called methods. This has
several disadvantages [30], as (a) in presence of dynamic dispatch the verifier has
to split the proof produced by the theorem prover into different cases, one for
each overwritten method to which the method invocation might be dispatched at
runtime, (b) the verification (program analysis) is no longer modular as changes
to the implementation of the called method invalidate proofs for all callers, and (c)
the verification becomes a closed-world analysis, as the implementation of called
methods needs to be accessible in order to guarantee correctness. Furthermore,
available implementations for native methods calls, however, are rarely accessible.

These disadvantages can be mitigated by using the contract of an invoked
method and following the paradigm of behavioral subtyping. This way, we can
avoid to enumerate all possible method implementations and only apply the
most general common method contract. Additionally, contracts are usually more
stable than implementations as they are only concerned with what is computed
and not how the algorithm is implemented. Hence, we become independent of
changes to the implementation of called methods. As inlining may produce an
indefinite large call stack, contracts should reduce the proof complexity. However,
it is an open question under which circumstances contracts indeed lead to less
verification effort [30].

2.2 Abstract Contracts

Hähnle et al. [26] and Bubel et al. [11] propose abstract contracts for the deductive
verification of evolving source code. Using abstract contracts in verification, the
theorem prover creates partial proofs without relying on the concrete definitions
of contracts. These partial proofs are saved and reused to save verification effort
during a re-verification. Abstract contracts may reduce the overall verification
effort of a program under development [11].

We illustrate the structure of abstract contracts by making the concrete
contract of method update abstract. We show the method’s concrete contract
in Lines 5–7 in Figure 1 and the resulting abstract contract in Figure 2. Lines
1–3 of Figure 2 represent the abstract section, in which placeholders for precon-
dition, postcondition, and assignable clause are declared. Lines 4–7 consist of
the placeholders’ definitions and are called the concrete section. In our exam-
ple, Line 1 shows the declaration of precondition placeholder updateR, which
is then defined in Line 4 as x != 0. When a verification is performed based
on abstract contracts, the theorem prover uses the placeholders instead of the
concrete definition in the proving process.

6 Knüppel et al.

1 /∗@ requires abs updateR;
2 @ ensures abs updateE;
3 @ assignable abs updateA;
4 @ def updateR = x != 0;
5 @ def updateE = \result <==>
6 @ (balance == \old(balance) + x);
7 @ def updateA = balance; @∗/
8 boolean update(int x) {}

Fig. 2. Method update in role Account in feature BankAccount

BankAccount

DailyLimit Interest

InterestEstimation

Overdraft CreditWorthiness Lock

Transaction

Legend

Optional

Fig. 3. fig:Feature Model of a Variant of the Bank Account Product Line

2.3 Feature Modeling and Valid Feature Combinations

To assemble a product, feature modules are composed together. However, not
all feature combinations are meaningful. For example, it is undesirable to have
features in the same product that contain code for specific operating systems.
Feature models [14, 29] describe valid combinations of features. The most common
way to represent feature models are feature diagrams [29]. In Figure 3, we show
the feature diagram that represents our running example, being a software
product line implementing a rudimentary BankAccount management system.
The root feature BankAccount provides a base implementation. All its child
features are optional and provide additional functionalities such as maximum
daily withdrawal and performing updates of multiple accounts in one atomic
transaction. Moreover, some dependencies are imposed on the features. In our
running example, feature InterestEstimation requires the presence of feature
Interest and feature Transaction requires the presence of feature Lock.

2.4 Feature Composition and Specification

In feature-oriented programming, there is a bijective mapping of features to
so-called feature modules. Feature modules encapsulate all the feature’s artifacts,
such as part of the source code, test cases, or documentation [7]. Importantly,
the granularity is not on file level, but different methods and fields of the same
class may be decomposed into different feature modules with respect to their
corresponding feature. Additionally, refined methods in a feature module can be

Title Suppressed Due to Excessive Length 7

annotated with a specification (cf. Figure 1). For convenience, we use the terms
feature and feature module interchangeably.

To generate a particular software product p, a set of selectable features
F = {f1, . . . , fn} is incrementally composed together by a composition operator
• : F × F → F [2]:

p = fn • (fn−1 • (· · · • (f2 • f1))) (1)

For feature modules, the composition is achieved by means of superimposition [3]
and for specifications, the composition is achieved by feature-oriented contract
composition [42]. Both compositions are not commutative in general [5, 28, 42],
such that a developer has to decide in which order features are merged together.
In the following, we briefly describe both concepts.

Superimposition [3] is a simple process, where two feature modules represented
as trees are recursively composed together by merging their substructures if and
only if the parent node is composed and their name and type match. Such a tree
structure has to be provided for each programming language individually. For
instance, elements of the tree structure for Java programs comprise packages,
classes, methods, and fields and two classes from composed feature modules are
merged if (a) they are named equally and (b) they are part of the same package.
In Figure 1, we show an exemplary feature composition with our example product
line as it is performed by FeatureHouse [8]. The figure contains the method
update of features BankAccount and DailyLimit in the first two listings. In
the product line, feature BankAccount represents the base feature, with which
all other features are composed, meaning that the method implementation of
feature DailyLimit refines the method implementation of feature BankAccount.
In the third listing, we show the result of the composition of both methods.
The listing contains two methods. In method update in feature DailyLimit
the keyword original is used (see Line 23) to call its direct predecessor in
feature BankAccount. During composition, the keyword is replaced by a call
to method update wrappee BankAccount (see Line 46) defined in feature
BankAccount.

When a product is generated, its specification needs to be composed as well.
While there are several approaches to realize such a contract composition [39, 42],
we focus on a particular composition mechanism similar to feature-oriented
method refinement on the implementational level, namely explicit contract re-
finement [42]. With explicit contract refinement, refining contracts may refer the
original precondition or postcondition in their respective precondition and post-
condition by keyword original [42]. Let m,m′ be two methods specified with
preconditions P, P ′ and postconditions Q,Q′, respectively. Then the composition
operator for explicit contract refinement is defined as:

{P}m{Q}•{P ′}m′{Q′} = {P ′[\original\P]}m•m′{Q′[\original\Q]} (2)

where P ′[\original\P] yields the replacement of all placeholders original with
precondition P in precondition P ′ (Q′[\original \Q] is defined analogously).

8 Knüppel et al.

2.5 Family-based verification

The family-based verification that we consider in this work is based on the
construction of a metaproduct. A metaproduct combines all features of a product
line into a single software product by means of variability encoding [43]. Essentially,
compile-time variability (i.e., the selection of composing features) is transformed
into run-time variability (i.e., branching conditions). A boolean class variable
is created for each feature that indicates whether a feature is selected (true)
or not (false). These feature variables are then used in implementations and
specifications to simulate different feature selections at run-time. Verification
tools are configured to treat feature variables as uninitialized to consider all
possible combinations.

However, relying only on a family-based strategy when also considering
the evolution of product lines has some drawbacks, as all proofs of the former
metaproduct may become invalid. For instance, when the feature model has
changed, new combinations emerge that were not considered during the last
verification. Moreover, a newly added feature might interact with other features.
Figure 4 shows how such an interaction is established through method refinements
for method update in the bank account product line when adding a new feature
Logging. Method update is defined in feature BankAccount and refined in features
Logging and DailyLimit. In the metaproduct, all refinements are connected using
variability encoding. That is, an if-condition checking whether the respective
feature is selected is added to each of the refinements. Since feature Logging
introduced a new refinement, all update methods and all methods that call
method update need to be re-verified. Therefore, one would need to re-generate
the metaproduct, so that new feature Logging is included, and verify the new
metaproduct again.

Although there is a feature-family-based approach by Hähnle and Schaefer
[25] that facilitates proof reuse, it requires a refinement to have more specialized
contracts than the method it refines. Feature Logging, however, introduces new
fields and its methods use them in their contracts. Thus, their approach cannot
be applied to the bank account product line under the given evolution scenario.

3 Applying Feature-Family-Based Verification under
Evolution

In this section, we introduce our reference approach following a feature-family-
based verification strategy called Fefalution.

3.1 Overview

Our main research goal is to evaluate whether a feature-family-based verification
approach may outperform existing family-based approaches for the verification of
product lines under evolution. As to the best of our knowledge no such approach
currently exists, we propose a novel two-phased approach following the feature-
family-based strategy. Figure 5 presents an overview of Fefalution, which is

Title Suppressed Due to Excessive Length 9

1 public class Account {
2
3 boolean update(int x) {
4 if (!FM.FeatureModel.Logging) {
5 update wrappee DailyLimit(x);
6 } else {
7 //Body of method update from Feature Logging
8 }
9 }

10
11 boolean update wrappee DailyLimit(int x) {
12 if (!FM.FeatureModel.DailyLimit) {
13 update wrappee BankAccount(x);
14 } else {
15 //Body of method update from Feature DailyLimit
16 }
17 }
18
19 boolean update wrappee BankAccount(int x) {
20 //Body of method update from Feature BankAccount
21 }
22 }

Fig. 4. Variability Encoding For Method update

divided into a feature-based verification phase and a subsequent family-based
verification phase.

The feature-based verification phase mainly consists of two steps. First, a set

of feature modules is transformed into a set of feature stubs 1 . The reason is
that feature modules do not typically constitute valid Java programs. Therefore,
compiling or verifying them produces type errors. To lift a feature module to a
valid Java program, we adopt and extend the concept of feature stubs as proposed
by Kolesnikov et al. [31] to enable feature-based type checking. Feature stubs
extend feature modules with additional (dummy) source code, such that all type
and compilation errors are resolved. After the feature-stub generation, the feature
stub contains two kinds of methods. For an easier distinction, we refer to methods
that originally belonged to the feature module as domain methods and we refer
to methods created to match calls to methods outside the feature as method
prototypes. In addition, our realization of feature stubs also resolves dependencies
on the level of contracts and adds pure abstract contracts to method prototypes
to enable a contract-based formal verification.

Second, each method in a feature stub is verified and a corresponding proof

is produced 2 . For many methods, only partial (or incomplete) proofs exist,
as they may invoke methods that are only visible in other features and whose
concrete definition is therefore unknown at this stage. An additional optimization
applies the feature-based verification only if a proof does not already exist in
the previous version (e.g., as prevalent for any method of the initial version).
Otherwise, the partial proofs of the former version are considered and a proof
replay mechanism is applied to also minimize verification effort in the presence
of implementation changes.

10 Knüppel et al.

3

1

Feature Stub Generation

Veri�cation system

Ph
as

e
2:

 F
am

ily
-b

as
ed

Ph
as

e
1:

 F
ea

tu
re

-b
as

ed

Metaproduct Generation

root

F1 F2 F3

4

Veri�cation system

?
?

(concrete contracts)

Correct-by-Construction

2

+ dispatcher methods

5
5

Partial Proofs [1..m]

Feature Modules [1..n]

Feature Stubs [1..n] per domain method [1..m]

+ abstract contracts

Feature Model

Metaproduct per domain method [1..m]

Full Proofs [1..m]

per dispatcher method

+ method prototypes
may call

method prototypes

resolve method prototypes

feature-based proof replay for old partial proofs

Fig. 5. Overview of Fefalution

In the family-based verification phase, Fefalution tries to complete all
partial proofs. First, the feature modules together with the feature model are
used as input to generate the metaproduct (i.e., a single software product that

represents the complete product line) 3 . Second, Fefalution finalizes all
partial proofs by replacing the incomplete method invocations (i.e., method
prototypes) with the concrete instances and replaying these proof artifacts on

the corresponding domain method of the metaproduct 4 .
An additional optimization is the generation of dispatcher methods to further

increase the reuse potential. As illustrated in Figure 4 and proposed by Thüm
et al. [38], an if-statement is added for each domain method to check whether the
corresponding feature is deselected. In this case, the previous method along the
feature composition order is called, and introducing additional methods for the
variability encoding is avoided. Yet, using only one method is impractical for our
approach, as it would be more difficult to reuse partial proofs from the feature-
based phase. Therefore, we also introduce dispatcher methods in the metaproduct,
adopting parts of the variability encoding from Apel et al. [9]. Figure 7 shows
an example of a dispatcher method in Line 35. Dispatcher methods serve as
a connecting link between two domain methods, and we consider them to be

correct-by-construction 5 , as their contract only represents the case distinction
between both dispatched methods. This way, the corresponding proof obligations
become trivially true. In Algorithm 1, we draft our main algorithm, where we
denote by DM a set of domain methods and Ppart a set of partial proofs. We
use the prime symbol (e.g., DM ′) to refer to the respective representation in the
previous version.

3.2 From Feature Stubs to Partial Proofs

For each feature-module dependency, Fefalution generates a stub for the
missing element. For example, consider Figure 6. Method transfer of class

Title Suppressed Due to Excessive Length 11

Algorithm 1 Fefalution(F, F′, FM, ∂old), where F is the set of feature
modules, F′ is the set of feature modules from the previous version, FM is the
feature model, and ∂old : DM ′ → P ′

part is a function mapping domain methods

m′ ∈ DM ′ from the previous version to their respective partial proof p′ ∈ P ′
part.

1: Create for each feature module fm ∈ F a corresponding feature stub by
applying

sfm = GenerateFeatureStub(fm, F,FM) (3)

and define by SF the set of all feature stubs for feature modules F.
2: Compute set SF′ of all feature stubs for the past feature modules F′. Define

∆(SF, SF′) ⊆ DM as the set of domain methods that changed.
3: Define ∂ : DM → Ppart as a function that maps domain methods m ∈ DM

from the current version to their respective partial proof p ∈ Ppart by the
following case distinction:

a. for each new domain method m ∈ DM \DM ′:

∂(m) := FeatureBasedVerification(m) (4)

b. for each domain method m ∈ ∆(SF, SF′):

∂(m) := FeatureBasedProofReplay(m, ∂old(m)) (5)

c. for each domain method m ∈ DM ∩DM ′ ∧m 6∈ ∆(SF, SF′):

∂(m) := ∂old(m). (6)

4: Compute the metaproduct mp based on the current set of future modules F
and feature model FM:

mp = ComputeMetaproduct(F,FM). (7)

5: Define Pad
part as the set of adapted partial proofs with respect to metaproduct

mp and ∂ad : DM → Pad
part as the mapping function.

6: For all domain methods m ∈ DM , apply

pfull = FamilyBasedVerification(m, ∂
ad

) (8)

to obtain the full proof for domain method m by completing the abstract
segments in ∂ad(m).

Transaction contains a call to method update, which is part of class Account.
Feature Transaction, however, neither contains the class nor the method. Thus,
we generate the class and a method prototype as part of the feature stub for
feature Transaction as shown in Figure 6, which resolves an otherwise emerging
type error. Other examples are references that access either a field or type of
outside the feature as a feature-module dependency as well.

A special case of a feature-module dependency is keyword original. Methods
may be refined multiple times by different features, which results in a refine-
ment chain. The previous refinement of a method in a refinement chain can
be accessed via keyword original, which is replaced by a concrete instance of
the respective method at compile time. Method update, which we show in the
feature DailyLimit of Figure 1, uses original to refer to the previous refinement.
In the feature stub generation process, the keyword is replaced with a call to

12 Knüppel et al.

1 class Transaction {
2 public boolean transfer(Account source,
3 Account destination, int amount) {
4 [...]
5 if (!source.update(−amount))
6 return false;
7 if (!destination.update(amount)) {
8 source.undoUpdate(−amount);
9 return false;

10 }
11 [...]
12 }
13 }

14 class Account {
15 /∗ method prototype ∗/
16 /∗@ requires abs updateR;
17 @ ensures abs updateE;
18 @ assignable abs updateA; @∗/
19 boolean update(int x) { return true;}
20
21 /∗ method prototype ∗/
22 /∗@ requires abs updateR;
23 @ ensures abs updateE;
24 @ assignable abs updateA; @∗/
25 boolean undoUpdate(int x) { return true;}
26 }

Fig. 6. Classes Transaction and Account in Feature Stub Transaction

the newly added method prototype in the feature stub. Consider again Figure 1
method update in feature DailyLimit of Figure 1. Fefalution creates a method
prototype to match the call and replaces keyword original with the method
prototype’s name.

An addition to the original feature stub generation [31] is the introduction of
abstract contracts for method prototypes. Otherwise, a theorem prover would
assume the absence of a specification. As no definition for a method prototype
exists (i.e., for method inlining), a (partial) proof cannot be established in this
case. Therefore, Fefalution enriches method prototypes with pure abstract
contracts (i.e., abstract contracts without concrete definitions), which we refer to
as contract prototypes. Figure 6 shows the contract prototypes in Lines 16–18.
Using contract prototypes, a theorem prover can now incorporate update in its
analysis. Whenever a domain method calls a method prototype, the respective
obligations can not be closed by the theorem prover and remain open. Conse-
quently, a partial (incomplete) proof is generated that, however, already may
contain numerous reusable proof steps. These abstract sections in partial proofs
are replaced in the next phase by concrete definitions to generate full proofs.

3.3 Generation and Theorem Proving of the Metaproduct

Similar to feature stub generation, the metaproduct generation translates both
the implementation and the specification. Following the variability encoding as
described by Thüm et al. [38], Fefalution adds a new class FeatureModel,

Title Suppressed Due to Excessive Length 13

in which each feature of the product line is represented by a static boolean
field. During verification, the theorem prover can use these feature variables to
simulate all valid feature combinations. To prevent the theorem prover from
simulating invalid feature combinations, Fefalution adds an invariant to each
class representing the feature model as a propositional formula.

Afterwards, Fefalution adapts the domain methods of all features in two
ways. First, as briefly described in Section 3.1, dispatcher methods are introduced
to increase robustness of the domain methods. In particular, Fefalution uses
dispatcher methods to connect domain methods of all features along the feature
composition order by creating a call hierarchy. Second, as Fefalution has
access to the information of all features and the order of composition at this
stage, keyword original is replaced by the concrete method call. In particular,
a reference to original is only a special case of a feature-module dependency
caused by a method call across different features. As an example, consider again
method update in feature DailyLimit of Figure 1, which also contains keyword
original. During the metaproduct generation, Fefalution replaces original

with a call to the introductory method update BankAccount, as can be seen
in Line 22 of Figure 7.

To encode the whole product line’s variability, Fefalution additionally
adapts the specification. Again, we partly adopt the work of Thüm et al. [38].
They enrich the method contracts in their metaproduct with an implication before
each clause defining under which feature combination it must hold. As stated
above, their metaproduct methods are structurally similar to our dispatcher
methods, so we adopt the same mechanism for our dispatcher methods. For
domain methods, we mostly use the contracts from the feature-based phase as-
is, including the additional requires clause stating that the corresponding
feature must be selected. The only exception is keyword original. Fefalution
is able to include all information from the product line. Therefore, Fefalution
can replace keyword original with the precondition or postcondition of the
respective method in the call hierarchy. This way, Fefalution is able to resolve
all syntactic and semantic feature interactions. Finally, for the metaproduct,
Fefalution transforms all method contracts into abstract contracts – which
does not change the semantics of the contracts – to ensure reusability of the
partial proofs.

In the metaproduct class in Figure 7, we also show some of the resulting
contracts. For the domain method update DailyLimit, the contract mostly
stays as it was in the feature module. Only keyword original in the precondition
and postcondition is replaced by the precondition and postcondition of the former
refinement update BankAccount (see Line 13 and Line 15). The contract of
dispatcher update DailyLimit represents a composition of the contracts of
domain methods update BankAccount and update DailyLimit. In front of
each precondition and postcondition introduced by feature DailyLimit, there is an
implication stating that the clause needs only to hold if the feature is selected (see
Line 16). We do not need such an implication for feature BankAccount, because

14 Knüppel et al.

1 public class Account {
2 static final int OVERDRAFT LIMIT = 0;
3 int balance = 0;
4 static final int DAILY LIMIT = −1000;
5 int withdraw = 0;
6
7 /∗@ ... @∗/
8 boolean update BankAccount(int x) {
9 [...]

10 }
11
12 /∗@ requires abs update DailyLimitR;
13 @ def update DailyLimitR = FM.FeatureModel.DailyLimit && x != 0;
14 @ ensures abs update DailyLimitE;
15 @ def update DailyLimitE =\result <==> (balance == \old(balance) + x) &&
16 @ ((FM.FeatureModel.DailyLimit ==> (!\result ==> withdraw == \old(withdraw))
17 @ && (\result <==> withdraw <= \old(withdraw))));
18 @ assignable abs update DailyLimitA;
19 @ def update DailyLimitA = withdraw, balance; @∗/
20 boolean update DailyLimit(int x) {
21 [...]
22 if (!update BankAccount(x))
23 return false;
24 [...]
25 }
26
27 /∗@ requires abs dispatch update DailyLimitR;
28 @ def dispatch update DailyLimitR = (FM.FeatureModel.BankAccount | |
29 @ FM.FeatureModel.DailyLimit) && x != 0;
30 @ ensures abs dispatch update DailyLimitE;
31 @ def dispatch update DailyLimitE = \result
32 @ <==> (balance == \old(balance) + x);
33 @ assignable abs dispatch update DailyLimitA;
34 @ def updateA = withdraw, balance; @∗/
35 boolean dispatch update DailyLimit (int x) {
36 if (FM.FeatureModel.DailyLimit)
37 return update DailyLimit(x);
38 return update BankAccount(x);
39 }
40
41 /∗@ ... @∗/
42 boolean update(int x) {
43 if (FM.FeatureModel.Logging)
44 return update Logging(x);
45 return dispatch update DailyLimit(x);
46 }
47
48 /∗@ ... @∗/
49 boolean update Logging(int x) {
50 [...]
51 }
52 }

Fig. 7. Class Account after Metaproduct Generation

Title Suppressed Due to Excessive Length 15

FeatureIDEFeatureHouse

Feature modelingMetaproduct Feature stubs

Feature-oriented
programming

+ Feature-oriented
contracts (Java/JML)

KeY

Deductive
veri�cation

Abstract
contracts

Feature-/family-
based veri�cation

Fig. 8. Integration of Fefalution into the FeatureIDE Ecosystem

this feature is part of any program variant. Finally, we add a precondition stating
that at least BankAccount and DailyLimit must be selected (see Lines 28–29).

After the metaproduct generation, the partial poofs can be replayed on the
adapted domain methods. If a proof goal remains open, this may be due to several
reasons. First, a method may not fulfill its specification. In this case, either the
behavior of the method or its specification needs to be changed. Second, if the
contract correctly describes a method’s behavior, but the theorem prover can
still not close all proof goals, it might not be able to perform the necessary steps
to complete the verification automatically. Still, interacting with the theorem
prover may be possible. If all proof goals for the metaproduct are closed during
verification, the product line is successfully verified.

4 Open-Source Tool Support

We implemented Fefalution as extensions to the tools FeatureIDE and
FeatureHouse. FeatureHouse [8] is a composer of software artifacts that
supports feature-oriented composition for several languages. It is integrated into
FeatureIDE, an Eclipse-based IDE for feature-oriented product lines. Both tools
have been extended to support (1) JML contracts and (2) variability encoding
by means of the metaproduct generation technique proposed by Thüm et al.
[38]. As we adopt some mechanisms of Thüm et al. [38] and rely on JML-based
specification, we provide our tool support only as extensions to these tools.
Moreover, one goal was to generate our verification objects (i.e., feature stubs
and metaproduct) in such a way that they can be verified by any off-the-shelf
theorem prover supporting JML contracts. However, for our approach we rely on
abstract contracts and, to the best of our knowledge, only KeY provides them.
Our last extension therefore integrates KeY into FeatureIDE. In Figure 8, we
illustrate how all three tools are connected.

When a product line is to be verified, the feature-stub generation can be started
for any FeatureHouse project in FeatureIDE. The family-based type check
is performed automatically before the actual generation is performed by means
of the tool Fuji. Fuji [6] is a compiler for feature-oriented programming but also
supports family-based type checking based on a family-wide access model. After
the feature-stub creation, if KeY is installed as a plugin, it is started automatically
with the first feature stub loaded. A user can employ KeY’s strategy macro
Finish abstract proof part to reason about abstract contracts, which results in

16 Knüppel et al.

partial proofs based on the placeholders declared in the contract prototypes.
Besides performing the actual verification, KeY can also save the created partial
proofs in proof files on hard disk. When KeY is closed, FeatureIDE starts a
new KeY instance with the next feature stub to bypass loading each feature
stub manually. To start the second phase, one needs to re-build the product line
to yield the current metaproduct. After the generation, the metaproduct can
be verified with KeY. For domain methods, the partial proofs can be reused by
employing KeY’s proof replay feature and closing all remaining proof goals with
KeY. For dispatcher methods, no partial proofs are generated. After verifying
all methods of the metaproduct, the product line is considered to be completely
verified. Both the base tools and our extensions are open-source and available at
their respective repositories.1 2

5 Empirical Evaluation of Fefalution

With Fefalution and our given tool support, we introduced a feature-family-
based verification approach, which is intended to outperform existing product-line
verification approaches considering the evolution of software product lines. The
above sections raise the following two important research questions that we aim
to answer by means of an empirical study.

RQ–1: Does Fefalution reduce the overall verification effort considering
product-line evolution compared to existing approaches?

RQ–2: Which impact do different optimizations of family-based verification
approaches have on the verification effort?

Answering RQ–1 is important to understand whether our instance of a feature-
family-based approach (i.e., Fefalution) is indeed a promising alternative to
sole family-based approaches. Answering RQ–2 will help users and researchers to
get insights on concrete optimizations (e.g., employing either concrete or abstract
contracts, or applying proof replay) that influence the verification effort.

5.1 Case Study

Our experiment is based on the bank account product line (cf. Figure 3) that
has already been used for product-line specification and verification [42]. As
Fefalution focuses on evolution, we developed a total of six different versions
of the product line that each represent a common type of evolution scenario. All
methods in each scenario are specified and can be verified automatically. We
show all versions and how they are created in Figure 9.

Scenario S1 represents our base line for each evolution scenario. Scenarios S2

and S3 represent evolution on the implementation level by either making changes
(i.e., refactorings) to the contracts or the implementation. Scenarios S4 and S5

1 Adapted FeatureHouse: https://github.com/kruegers/featurehouse
2 Adapted FeatureIDE: https://github.com/kruegers/featureide

Title Suppressed Due to Excessive Length 17

S1 (Base)

S2

(Changes in
Contracts)

S3

(Changes in
Implementation)

S4

(Remove
Feature)

S5

(Add
Feature)

S6

(Combination
of Versions
2, 3, and 5)

Fig. 9. Illustration of the Five Performed Evolution Scenarios

represent the evolution of the feature model. In particular, we remove feature
CreditWorthiness for scenario S4 and add feature Logging to the product line for
scenario S5. Finally, scenario S6 combines the changes of scenarios S2, S3, and
S5.

The product line for scenario S5 has already been presented in Figure 3.
Overall, the product line for scenario S5 consists of five classes distributed over
nine features, twelve class refinements, a total of 17 unique methods specified
with a contract, and six method refinements.

5.2 Experimental Design

We evaluate a total of six approaches by means of our existing tool support
(cf. Section 4). As product-based approaches are typically inferior to family-
based approaches [40], we only consider approaches that follow a family-based
strategy. In particular, there exist numerous optimizations between the family-
based verification approach developed in earlier work by some of the authors [38]
and the feature-family-based verification approach developed in this work (i.e.,
Fefalution). Hence, to get more insights on the influence of these optimizations,
we contribute four additional strategies to our comparison, where we alter some
of the optimizations. We illustrate the six approaches in Table 1. Optimizations
include whether (1) a feature-based phase exists, (2) abstract contracts are used
to allow the creation of partial proofs, (3) method calls are treated either with
inlining or contracting, (4) dispatcher methods are generated for the metaproduct
to increase robustness to implementation changes, (5) proof replay is applied on
features, and (6) proof replay is applied on the metaproduct.

We compare all six approaches according to our two research questions.
To answer RQ–1, we examine the overall verification effort of all approaches.
Verification effort is measured in terms of necessary proof steps, which we consider
to be an adequate measurement in terms of proof complexity, and proof time in
milliseconds. To answer RQ–2, we present the results from the perspective of
product line evolution and discuss which optimizations of a verification approach
have the most impact. Afterwards, we discuss the potential reuse of verification
results. For the evaluation, we used a notebook with Intel Core i7-3610QM CPU
@ 2.30GHz with 12 GB RAM on Windows 10 and Java 1.8.

18 Knüppel et al.

Table 1. Evaluated Approaches and their Optimizations

Approach F
e
a
t
u
r
e
-B

a
s
e
d

P
h
a
s
e

A
b
s
t
r
a
c
t
C
o
n
t
r
a
c
t

M
e
t
h
o
d

C
a
ll

T
r
e
a
t
m

e
n
t

w
it
h

C
o
n
t
r
a
c
t
in

g

M
e
t
h
o
d

C
a
ll

T
r
e
a
t
m

e
n
t

w
it
h

In
li
n
in

g

M
e
t
a
-P

r
o
d
u
c
t
G

e
n
e
r
a
t
io

n
w
it
h

D
is
p
a
t
c
h
e
r

M
e
t
a
-P

r
o
d
u
c
t
G

e
n
e
r
a
t
io

n
w
it
h
o
u
t
D
is
p
a
t
c
h
e
r

F
e
a
t
u
r
e
-B

a
s
e
d

P
r
o
o
f
R
e
p
la
y

F
a
m

il
y
-B

a
s
e
d

P
r
o
o
f
R
e
p
la
y

Fefalution • • • ◦ • ◦ • ◦

VA2 (Metaproduct) ◦ • • ◦ • ◦ ◦ •

VA3 (Concrete) ◦ ◦ • ◦ • ◦ ◦ •

VA4 (Inlining 1) ◦ ◦ ◦ • • ◦ ◦ •

VA5 (Inlining 2) ◦ ◦ ◦ • ◦ • ◦ •

VA6 (Family-based [38]) ◦ ◦ ◦ • ◦ • ◦ ◦

•: applied; ◦ not applied

5.3 Results

We present the results in the following tables. In Table 2, we show the overall
verification effort for each approach to verify all six versions (i.e., necessary proof
steps, branches, and proof times) without depicting the reuse potential. In the
following, we mainly discuss proof steps, as proof times and number of branches
largely mirror the results and lead to similar interpretations.

Table 2. Overall Verification Effort for All Approaches

Approach Proof Steps Proof Time (in ms) Branches

Fefalution 714,762 3,372,449 7,522

VA2 665,994 2,762,019 5,041

VA3 363,713 598,756 6,376

VA4 157,072 258,145 2,919

VA5 140,492 173,387 2,995

VA6 153,931 187,156 3,499

As Table 2 shows, Fefalution needs the most steps of all approaches for
a full verification of all versions. Overall, Fefalution needs approximately 7%
more steps than VA2, 49% more than approach VA3, and more than four times
as much for the remaining versions VA4, VA5, and VA6). Although the overhead
itself is not a surprise to us, we did not expect the gap between using abstract

Title Suppressed Due to Excessive Length 19

contracts and concrete contracts to become this large. While approach VA2, which
only consists of the family-based phase, also leads to an overhead compared to
the other approaches, it nevertheless needs less effort compared to Fefalution.

Table 3. Overall Verification Effort Considering Proof Reuse

Approach
Saved

Proof Steps

Percentage of

Reused Proof Steps

Percentage of

Reused Branches

Fefalution 128,258 17.94% 44.65%

VA2 129,396 19.43% 54.48%

VA3 22,920 6.30% 10.24%

VA4 13,212 8.41% 14.38%

VA5 13,707 9.75% 16.69%

Regarding the overall proof reuse potential, Table 3 shows that about 128,258
steps (17.94%) of the total proof steps needed by Fefalution could be reused.
Compared to Fefalution and VA2, the reuse potential for all other approaches
is considerably smaller. To get more insights about which approach performs
better on which evolution scenario, we decided to conduct a more fine-grained
analysis for the reuse potential. As described before, evolution scenarios S2 and
S3 represent additions and changes to the implementation and specification,
whereas S4 and S5 represent more coarse-grained changes to the product line
(e.g., removing a complete feature module or other changes to the feature model).
In the following, we investigate both kinds of evolution individually for all six
approaches.

Table 4. Reuse for Versions with Changes in Implementation and Specification

Approach
Saved

Proof Steps

Percentage of

Reused Proof Steps

Percentage of

Reused Branches

Fefalution 29,161 21.70% 60.97%

VA2 29,506 23.91% 65.12%

VA3 19,941 44.43% 33.01%

VA4 10,630 50.47% 69.16%

VA5 10,716 57.50% 79.06%

Table 4 shows that for changes that do not affect the feature model but
only the implementation and specification, VA4 and VA5 are the most successful
approaches with a reuse potential of over 50% each. The reuse potential for
Fefalution and VA2 is considerably smaller. However, when the feature model
changes, as indicated by Table 5, the reuse potential for approaches VA3, VA4, and
VA5 drop significantly, whereas Fefalution and VA2 perform significantly better

20 Knüppel et al.

compared to all other approaches. Moreover, the reuse potential for Fefalution
and VA2 is similar in magnitude.

Table 5. Reuse for Versions with Changes to the Feature Model

Approach
Saved

Proof Steps

Percentage of

Reused Proof Steps

Percentage of

Reused Branches

Fefalution 49,439 21.47% 63.06%

VA2 50,568 22.63% 67.82%

VA3 1,959 1.45% 3.11%

VA4 1,703 2.58% 5.32%

VA5 1,870 3.18% 6.87%

5.4 Discussion

For RQ1, we conclude that Fefalution reveals a large overhead compared to
most approaches when considering the total verification effort. When the feature
model evolves, Fefalution achieves a higher proof reuse than approaches VA3,
VA4, and VA5. However, VA2 trumps Fefalution both in overall verification
effort and proof reuse.

The proof strategies for abstract contracts are the same as for standard
reasoning. This leads to some inefficient behavior when constructing partial proofs.
For instance, once the program has been symbolically executed on a branch,
there are several formulas of the form if (locset \in method A(...)) \then
phi1 \else phi2. As method A is the abstract placeholder for the assignable
clause, the conditional formula cannot be simplified further and leads to a proof
split. Hence, we get 2n branches for n such formulas.

When constructing the full proofs based on these partial proofs, this means
we have to show the same proof obligations for several of these branches. This
is avoided in case of concrete contracts as in most cases when inserting the
concrete assignable clause, the condition of the conditional formulas simplifies
to true or false and hence no unnecessary proof splits occur. By improving
the strategies for the partial proofs, by stopping once a program has been
symbolically executed and the remaining proof goal is first-order only, the proof
size reduces drastically. A simple manual emulation of such a proof strategy
leads to significant improvements. For instance, for method transfer of feature
Transaction in S6, the proof size is reduced from 111,075 nodes to 34,259 nodes.
Further improvements by a more intelligent expansion of the placeholders may
thus lead to further improvements.

Additionally, most features that had to be re-verified in the feature-based
phase in S2 to S6 resulted in partial proofs containing less than 50 proof steps.
The potential for feature-based proof replay was therefore limited in our case
study.

Title Suppressed Due to Excessive Length 21

RQ-1: Evaluation of Fefalution

For the bank account product line, Fefalution revealed a slight overhead
for each evolution scenario compared to the sole family-based approach (i.e.,
VA2). However, our manual analysis shows also room for improvement in two
directions. First, the internal expansion of abstract contracts can be improved
to drastically reduce the overhead. Second, feature-based proof replay was
only applicable to a limited degree, as many established partial proofs during
our evaluation consisted of less than 50 proof steps. More complex evolution
scenarios may lead to more significant reductions of verification effort.

To answer RQ2, we compare Fefalution with five other approaches that
each alter a specific optimization (cf. Table 1). For proof composition, our re-
sults indicate that a feature-family-based approach with partial proofs based
on abstract contracts does not increase the reuse potential but, in fact, reduces
it slightly when compared to a sole family-based approach with the same opti-
mizations otherwise. To determine the impact of abstract contracts in contrast
to concrete contracts, we can compare the results of approaches VA2 and VA3.
Here, the results indicate that abstract contracts represent a trade-off between
an overhead for a single verification on the one hand and an increased proof reuse
on the other hand. Consequently, Fefalution and VA2 need more effort for a
full verification, but manage to achieve a much higher reuse than VA3. This is
not surprising, as abstract contracts were designed to facilitate more proof reuse,
even if that leads to a small overhead [11]. Finally, we compare the results of
approaches VA3 and VA4 to evaluate method call handling during verification.
As illustrated, treating method calls with inlining instead of contracting leads to
much lower overall verification effort, which may imply that our designed case
study is insufficient to showcase the benefits of contracting compared to method
inlining under evolution.

RQ-2: Comparison of all Approaches

For the bank account product line, abstract contracts lead to significant
overhead regarding the overall verification effort, whereas approaches using
method inlining require the least amount of verification effort. Consider-
ing only the feature model evolution, potential proof reuse is 8–10 times
higher with abstract contacts. Contrary, considering only the evolution of
implementation and specification, potential proof reuse is only half as high.

Additionally to these results, we made an observation during the evaluation,
we want to discuss in the following. The smaller a full proof of a method is the
bigger partial proofs tend to become relatively. For methods that need less than
100 proof steps for full verification, partial proofs often provide already more
than 70% of the needed proof steps. For methods whose proofs are larger (>
1000 proof steps), however, the partial proofs are often less than 10% of the steps
needed for a full proof. Although the general notion is not surprising, the huge

22 Knüppel et al.

drop is unfortunate because it reduces the usefulness of abstract contracts and
partial proofs for software systems with methods for inherently more complex
correctness proofs.

5.5 Further Insights and Future Directions

Our discussion in Section 5.4 implies that part of the results are indeed artifacts
of the used proof strategy. Current program verification systems including KeY
are mostly optimized for finding proofs. The feature-based phase together with
the generated partial proofs, however, add an additional complexity to the proof
search, which amounts to the overhead we measured for the bank account product
line. This could very well be a design issue in current verification systems, which
need to be adapted for a feature-based framework.

There is also another possibly fruitful direction to continue this line of work
that has not been explored before. In recent work, Steinhöfel and Hähnle [36]
suggest abstract execution, which has the potential to replace or at least enhance
our usage of abstract contracts. With abstract execution (1) any statement or
expression can be abstract, such that more fine-grained reuse than at the method
level is possible, (2) abstract contracts can specify additional properties, such
as necessity for termination or return values, which makes them more flexible,
and (3) abstract contracts may contain dynamic frames and can express abstract
heap separation conditions. Together, this has the potential to shift the trade-off
in favor of our feature-family-based approach, as abstract contracts become
richer. For example, the abstract contract of the logging feature would contain a
dynamic frame that forces the assignable heap logger code to be disjoint with
other methods. This means one can prove at the feature level that logging does
not interfere with other features. Upon composition, the dynamic frame must be
instantiated and proven, but this is usually trivial.

6 Related Work

In a survey, Thüm et al. [40] classify approaches in the literature for analysis
of software product lines. They differentiate the approaches into product-based,
family-based, feature-based approaches, and combinations thereof. Following their
classification, we categorize our approach as a feature-family-based verification
approach. Fefalution is first such approach without restrictions on specification.
We provide the first comparative evaluation of a feature-family-based approach.

Product-based approaches usually require the generation of all products.
Harhurin and Hartmann [27] among others propose optimizations such as verifying
only a base product and reusing the proofs for the other products. However,
even for optimized approaches, for product lines with many products, too many
products need to be generated, which is why we chose not to include a product-
based phase in our approach.

To facilitate feature-based approaches, combinations with product-based
approaches have been proposed. Thüm et al. [37], Damiani et al. [18], Delaware

Title Suppressed Due to Excessive Length 23

et al. [20, 21] and Gondal et al. [23] propose approaches that first create partial
proofs for all features/implementation units and then compose these to full proofs
for all products. Although our approach also consists of a feature-based phase
to produce partial proofs and we compose the partial proofs in a second phase,
our approach performs the composition in a family-based phase instead of a
product-based phase.

Thüm et al. [38] present a family-based approach, which creates one metaprod-
uct by means of variability encoding. Fefalution is similar as its second phase
is also family-based, and we adopt some parts of the metaproduct generation.
Fefalution differs in that it uses a different form of variability encoding and
consists of two phases to facilitate proof reuse and to incorporate the notion of
evolution. We also evaluate Fefalution in comparison to other family-based
approaches instead of comparing it to product-based approaches.

In [17] the authors propose a counter example-guided approach (CEGAR)
to static analysis and verification of metaproducts as presented in [38]. Their
approach applies two kinds of refinements: the first decomposes the analysed
metaproduct in two parts, one part for which a found counterexample is not
present and one where it is. Both parts can then be analyzed independently, but
each of which has a reduced overall complexity. The second one “refines” the
analysis tool. The idea is to start with a more efficient, but less powerful static
analyses and to switch to e.g. a full verification systems for those parts for which
the less powerful analyses fails. In contrast to Fefalution their approach is not
based on reuse, but achieves scalability by decomposition and applying more
powerful, but less automatic tools on less complex parts.

Hähnle and Schaefer [25] propose to apply the Liskov Principle to contracts
in order to achieve a feature-family-based verification. Their approach requires
that when a method’s pre- and postconditions are modified in a delta, they
must become more specific than in the original implementation unit. Similarly,
assignable clauses in deltas are only allowed to be subsets of the original assignable
clause. Consequently, their approach allows for a modular verification and thus a
reuse of old still valid proofs but the restrictions it imposes on contract refinement
limit its practicability. With Fefalution, we aim to achieve a similarly modular
verification without restrictions on contracts.

On top of the discussed differences, none of the approaches consider product-
line evolution and therefore often require a complete re-verification. In order
to facilitate proof reuse, Hähnle et al. [26] propose abstract contracts. In their
approach, abstract contracts are used to provide placeholders independent of
the actual definition of the contracts. A theorem prover can create a partial
proof with respect to the placeholders that can be used for a full verification
when the concrete definitions are known. Bubel et al. [11] further explore and
extend the concept and provide tool support. Bubel et al. [12] also propose
the concept of proof repositories to explicitly address the problem of software
evolution and inefficient re-verification by employing abstract contracts. Contrary
to their results, applying abstract contracts to the evolution of features seems to
produce a higher overhead in its current stage.

24 Knüppel et al.

Feature-family-based approaches have also been applied to other verification
techniques than theorem proving. Delaware et al. [19] define a type system based
on a feature-aware subset of Java. Type safety of individual features is specified
through constraints, which can then be used to guarantee the whole family’s type
safety by relating them to the feature model. Damiani and Schaefer [16] propose
a feature-family-based type checking approach for delta-oriented product lines.
They manage to partially type-check each delta in isolation before using these
results for a full family-based type check. However, type checking is not sufficient
to detect semantic feature interactions. Hence, we designed our approach as a
deductive verification approach.

7 Conclusions
Software product-line engineering facilitates a paradigm for systematically devel-
oping a set of program variants with a common code base. To verify program
variants, numerous product-based and family-based strategies were proposed over
the last decade. The lack of addressing feature interactions make sole feature-
based strategies less effective, but they also exhibit the potential to scale better
than sole family-based approaches. The goal of this work was to systematically
investigate how to reduce the verification effort of specified product lines un-
der evolution, whilst the focus of our discussion lies on method contracts and
feature-oriented programming.

To this end, we conducted an empirical study in which we compared six
approaches with varying characteristics. Our evaluation was based on an existing
benchmark, namely the bank account product line, comprising a base version
and five common evolution scenarios. Besides measuring and discussing the
overall verification effort for each scenario, we confirmed that abstract contracts
are mostly valuable when the product lines evolves (e.g., adding new features).
However, as method inlining performed better than contracting, we also conclude
that our employed case study lacked complexity in order to draw many signifi-
cant conclusions. Our proposed feature-family-based verification Fefalution
also performed slightly worse than the sole family-based verification, which we
attribute to the limited applicability of the feature-based proof replay.

Nonetheless, we argue that our initial study and tooling constitutes a first
stepping stone for a more thorough investigation of the verification of evolving
product lines. While the lack of adequate case studies and benchmarks is certainly
averse to our initial goal, our automatic tooling can be employed as-is to continue
this line of research. Questions such as Can Fefalution outperform the family-
based strategy for any evolution scenario? or Will a combination of feature-based
proof replay and family-based proof replay reduce the overall verification effort?
are particularly interesting to investigate in future work.

Acknowledgements. We are grateful to Stefanie Bolle for her help with the imple-
mentation and evaluation, and also to Dominic Steinhöfel for his support with
KeY and abstract contracts. This work was supported by the DFG (German Re-
search Foundation) under the Researcher Unit FOR1800: Controlling Concurrent
Change (CCC).

Bibliography

[1] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H
Schmitt, and Mattias Ulbrich. Deductive software verification–the key book.
Lecture Notes in Computer Science, 10001, 2016.

[2] Sven Apel and Delesley Hutchins. A Calculus for Uniform Feature Compo-
sition. ACM Trans. Programming Languages and Systems (TOPLAS), 32
(5):19:1–19:33, May 2010.

[3] Sven Apel and Christian Lengauer. Superimposition: A language-
independent approach to software composition. In Proc. Int’l Symposium
Software Composition (SC), pages 20–35, 2008.

[4] Sven Apel, Christian Kästner, and Christian Lengauer. Featurehouse:
Language-independent, automated software composition. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 221–231, Washington, DC, USA,
2009. IEEE. ISBN 978-1-4244-3453-4.

[5] Sven Apel, Christian Lengauer, Bernhard Möller, and Christian Kästner.
An Algebraic Foundation for Automatic Feature-Based Program Synthesis.
Science of Computer Programming (SCP), 75(11):1022–1047, 2010.

[6] Sven Apel, Sergiy Kolesnikov, Jörg Liebig, Christian Kästner, Martin Kuh-
lemann, and Thomas Leich. Access control in feature-oriented programming.
Science of Computer Programming (SCP), 77(3):174–187, 2012.

[7] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer,
Berlin, Heidelberg, 2013.

[8] Sven Apel, Christian Kästner, and Christian Lengauer. Language-
Independent and Automated Software Composition: The FeatureHouse
Experience. IEEE Trans. Software Engineering (TSE), 39(1):63–79, JAN
2013.

[9] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and
Dirk Beyer. Strategies for product-line verification: Case studies and experi-
ments. In Proc. Int’l Conf. Software Engineering (ICSE), pages 482–491,
Piscataway, 2013. IEEE. ISBN 978-1-4673-3076-3.

[10] Lerina Aversano, Massimiliano Di Penta, and Ira D. Baxter. Handling
Preprocessor-Conditioned Declarations. In Proc. Int’l Working Conference
Source Code Analysis and Manipulation (SCAM), pages 83–92, Washington,
DC, USA, October 2002. IEEE. ISBN 0-7695-1793-5.

[11] Richard Bubel, Reiner Hähnle, and Maria Pelevina. Fully abstract operation
contracts. In Proc. Int’l Symposium Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA), LNCS. Springer, 2014.

[12] Richard Bubel, Ferruccio Damiani, Reiner Hähnle, Einar Broch Johnsen, Olaf
Owe, Ina Schaefer, and Ingrid Chieh Yu. Proof repositories for compositional
verification of evolving software systems. In Transactions on Foundations
for Mastering Change I, pages 130–156. Springer, 2016.

26 Knüppel et al.

[13] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec.
Feature Interaction: A Critical Review and Considered Forecast. Computer
Networks, 41(1):115–141, 2003.

[14] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. ACM/Addison-Wesley, New York, NY, USA,
2000.

[15] Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying Feature-Based
Model Templates Against Well-Formedness OCL Constraints. In Proc. Int’l
Conf. Generative Programming and Component Engineering (GPCE), pages
211–220, New York, NY, USA, 2006. ACM.

[16] Ferruccio Damiani and Ina Schaefer. Family-Based Analysis of Type Safety
for Delta-Oriented Software Product Lines. In Proc. Int’l Symposium Lever-
aging Applications of Formal Methods, Verification and Validation (ISoLA),
pages 193–207, Berlin, Heidelberg, October 2012. Springer. ISBN 978-3-642-
34025-3.

[17] Ferruccio Damiani, Reiner Hähnle, and Michael Lienhardt. Abstraction
refinement for the analysis of software product lines. In Sebastian Gabmeyer
and Einar Broch Johnsen, editors, Tests and Proofs - 11th International
Conference, TAP 2017, Held as Part of STAF 2017, Marburg, Germany, July
19-20, 2017, Proceedings, volume 10375 of Lecture Notes in Computer Science,
pages 3–20. Springer, 2017. https://doi.org/10.1007/978-3-319-61467-0 1.
URL https://doi.org/10.1007/978-3-319-61467-0 1.

[18] Feruccio Damiani, Johan Dovland, Einar Broch Johnsen, Olaf Owe, Ina
Schäfer, and Ingrid Chieh Yu. A transformational proof system for delta-
oriented programming: Proceedings of the 16th international software prod-
uct line conference. In Santana de Almeida, Eduardo, editor, Proc. Int’l
Software Product Line Conf. (SPLC), volume 2, pages 53–60, New York and
NY and USA, 2012. ACM. ISBN 978-1-4503-1095-6.

[19] Benjamin Delaware, William R Cook, and Don Batory. Fitting the pieces
together: a machine-checked model of safe composition. In Proc. Europ. Soft-
ware Engineering Conf./Foundations of Software Engineering (ESEC/FSE),
pages 243–252. ACM, 2009.

[20] Benjamin Delaware, William Cook, and Don Batory. Product lines of
theorems. In Proc. Conf. Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), pages 595–608, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0940-0.

[21] Benjamin Delaware, d. S. Oliveira, Bruno C., and Tom Schrijvers. Meta-
theory à la carte. In Proc. Symposium Principles of Programming Languages
(POPL), pages 207–218, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-1832-7.

[22] Dario Fischbein, Sebastian Uchitel, and Victor Braberman. A Foundation
for Behavioural Conformance in Software Product Line Architectures. In
Proc. Int’l Workshop Role of Software Architecture for Testing and Analysis
(ROSATEA), pages 39–48, New York, NY, USA, 2006. ACM.

[23] Ali Gondal, Michael Poppleton, and Michael Butler. Composing event-b
specifications: Case-study experience. In Proc. Int’l Symposium Software

Title Suppressed Due to Excessive Length 27

Composition (SC), pages 100–115, Berlin, Heidelberg, 2011. Springer. ISBN
978-3-642-22044-9.

[24] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Modeling
and Model Checking Software Product Lines. In Proc. IFIP Int’l Conf.
Formal Methods for Open Object-Based Distributed Systems (FMOODS),
pages 113–131, Berlin, Heidelberg, 2008. Springer. ISBN 978-3-540-68862-4.

[25] Reiner Hähnle and Ina Schaefer. A Liskov principle for delta-oriented
programming. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation. Technologies
for Mastering Change, volume 1, pages 32–46, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[26] Reiner Hähnle, Ina Schaefer, and Richard Bubel. Reuse in software verifica-
tion by abstract method calls. In Proc. Int’l Conf. Automated Deduction
(CADE), volume 7898 of LNCS, pages 300–314, Berlin, Heidelberg, 2013.
Springer. ISBN 978-3-642-38573-5.

[27] Alexander Harhurin and Judith Hartmann. Towards consistent specifications
of product families. In Proc. Int’l Symposium Formal Methods (FM), pages
390–405, Berlin, Heidelberg, 2008. Springer. https://doi.org/10.1007/978-3-
540-68237-0 27.

[28] Peter Höfner, Bernhard Möller, and Andreas Zelend. Foundations of coloring
algebra with consequences for feature-oriented programming. In Proc. Int’l
Conf. Relational and Algebraic Methods in Computer Science (RAMiCS),
pages 33–49. Springer, 2012.

[29] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, 1990.

[30] Alexander Knüppel, Thomas Thüm, Carsten Padylla, and Ina Schaefer. Scal-
ability of deductive verification depends on method call treatment. In Proc.
Int’l Symposium Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA), pages 159–175. Springer, 2018.

[31] Sergiy Kolesnikov, Alexander von Rhein, Claus Hunsen, and Sven Apel. A
comparison of product-based, feature-based, and family-based type checking.
In Proc. Int’l Conf. Generative Programming and Component Engineering
(GPCE), pages 115–124, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-2373-4.

[32] Gary T. Leavens and Yoonsik Cheon. Design by Contract with JML,
September 2006. URL http://www.jmlspecs.org/jmldbc.pdf.

[33] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. SIGSOFT
Software Engineering Notes, 31(3):1–38, 2006.

[34] Bertrand Meyer. Applying design by contract. IEEE Computer, 25(10):
40–51, 1992.

[35] David L. Parnas. On the Criteria to be used in Decomposing Systems into
Modules. Comm. ACM, 15(12):1053–1058, December 1972.

28 Knüppel et al.

[36] Dominic Steinhöfel and Reiner Hähnle. Abstract execution. In Proc. Int’l
Symposium Formal Methods (FM), pages 319–336. Springer, 2019.

[37] Thomas Thüm, Ina Schaefer, Martin Kuhlemann, and Sven Apel. Proof
composition for deductive verification of software product lines. In Proc. Int’l
Workshop Variability-intensive Systems Testing, Validation and Verification
(VAST), pages 270–277, Washington, 2011. IEEE Computer.

[38] Thomas Thüm, Ina Schaefer, Sven Apel, and Martin Hentschel. Family-
based deductive verification of software product lines. In Proc. Int’l Conf.
Generative Programming and Component Engineering (GPCE), pages 11–20,
New York, NY, USA, September 2012. ACM.

[39] Thomas Thüm, Ina Schaefer, Martin Kuhlemann, Sven Apel, and Gunter
Saake. Applying design by contract to feature-oriented programming. In
Proc. Int’l Conf. Fundamental Approaches to Software Engineering (FASE),
volume 7212, pages 255–269, Berlin, Heidelberg, 2012. Springer.

[40] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter
Saake. A classification and survey of analysis strategies for software product
lines. ACM Computing Surveys, 47(1):6:1–6:45, June 2014.

[41] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. FeatureIDE: An Extensible Framework for
Feature-Oriented Software Development. Science of Computer Programming
(SCP), 79(0):70–85, January 2014.

[42] Thomas Thüm, Alexander Knüppel, Stefan Krüger, Stefanie Bolle, and Ina
Schaefer. Feature-oriented contract composition. Journal of Systems and
Software, 152:83–107, 2019.

[43] Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and Sven
Apel. Variability encoding: From compile-time to load-time variability.
Journal of Logical and Algebraic Methods in Programming, 85(1):125–145,
January 2016.

