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ABSTRACT
Nowadays, the requirements for software and therefore also the
required complexity is increasing steadily. Consequently, various
techniques to handle the growing demand for software variants
in one specific domain are used. These techniques often rely on
variable code structures to implement a whole product family
more efficiently. Variational software is also increasingly used for
safety-critical systems, which need to be verified to guarantee their
functionality in-field. However, usual verification techniques can
not directly be applied to the variable code structures of most
techniques. In this paper, we propose variational correctness-by-
construction as a methodology to implement variational software
extending the correctness-by-construction approach. Correctness-
by-construction is an incremental approach to create and verify
programs using small tractable refinement steps guided by a specifi-
cation following the design-by-contract paradigm. Our contribution
is threefold. First, we extend the list of refinement rules to enable
variability in programs developed with correctness-by-construction.
Second, we motivate the need for contract composition of refined
method contracts and illustrate how this can be achieved. Third,
we implement variational correctness-by-construction in a tool
called VarCorC. We successfully conducted two case studies show-
ing the applicability of VarCorC and were able to assess reduced
verification costs compared to post-hoc verification as well.
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1 INTRODUCTION
It has become common practice in industry to develop different
variants of a software to meet the individual needs of different cus-
tomers [9]. New variants may add, remove, or refine functionality
compared to former variants. To implement variational software,
there exist various prominent techniques, such as preprocessors [5],
feature-oriented programming [6], or clone-and-own [15]. Instead
of maintaining every variant on its own, as it is donewith clone-and-
own, advanced techniques often use mechanisms to reuse code and
variable code structures to generate the different variants [6, 16, 25].
As variational software is increasingly used for safety-critical sys-
tems [21], there is another concern that becomes more and more
important: behavioral correctness of variational software.

Correctness-by-construction [14, 17, 19] is an approach to incre-
mentally create correct programs. At first, the specification in form
of pre- and postconditions is defined which is then refined into code
using small, tractable refinement rules. Correctness-by-construction
can be used supplementary to post-hoc verification [29], which
verifies programs after their implementation in contrast to the in-
cremental approach of correctness-by-construction. An advantage
of using correctness-by-construction is that the code is not only
created correctly according to the specification, but can also be sim-
pler to understand, better structured, and more efficient than code
that has been developed in an ad-hoc fashion into correctness [19].

CorC [24] is a tool that supports program development using
correctness-by-construction. The program and its specification are
written in Hoare triples consisting of a pre- and postcondition and
a statement. These triples are translated into Java code and can typ-
ically be proven automatically [24] with the deductive verification
tool KeY [4]. However, as the specifications with this approach are
fixed, it is currently not possible to design variable code structures
as required for variational software.

In this paper, we propose variational correctness-by-construction
to combine the development of variational softwarewith correctness-
by-construction to efficiently construct software variants. There-
fore, we introduce two key ingredients: (1) a mechanism to enable
variability in statements and (2) a mechanism for variability in
the specification. For the variability mechanism in statements, we
use a keyword to mark the variation points in the method. These
variation points can be resolved with different method calls to sub-
sequently form distinct variants. As the behavior of the methods is
changed via the variability mechanism in the statements, we adapt
the specifications accordingly. To omit the fixed specifications that
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are given when using correctness-by-construction, we use three
different techniques of contract composition [27], such that contracts
of different methods can be reused, adapted, or even overridden
completely. To evaluate variational correctness-by-construction,
we implement it in a tool called VarCorC1 and used it to conduct
two case studies including variants of certain methods. Thereby,
we evaluate the feasibility and compare variational correctness-by-
construction to post-hoc verification with JML contracts and KeY in
terms of verification and specification costs. In summary, we make
the following contributions:

• We propose variational correctness-by-construction as an
extension of correctness-by-construction with support for
variational software.

• We provide a prototypical implementation in an open-source
tool called VarCorC.

• We evaluate variational correctness-by-construction in com-
parison to post-hoc verification with JML contracts and KeY
in terms of verification and specification costs.

• We share two case studies that have been created using
VarCorC as benchmark for further research.

2 CORRECTNESS-BY-CONSTRUCTION
Correctness-by-construction [19] is an approach to incrementally
create correct programs guided by a specification. Every statement
is surrounded by a specification in form of a pre- and postcondi-
tion, which form a Hoare triple of the form {P} S {Q}. Thereby, the
precondition marks the state of the program before the statement
is executed and guarantees that the statement will terminate in the
state described by the postcondition. P, Q, and the Hoare triple itself
are predicate formulas, which means that they evaluate either to
true or false. In this work, the pre- and postcondition are defined
in first-order logic and the statement S is defined in Guarded Com-
mand Language [13], which uses the following five constructs: the
empty command (skip), assignment (:=), composition (;), selection
(if ), and repetition (do). Additionally, we allow to use method calls
in the statements.

The starting point for the development with correctness-by-
construction is a Hoare triple with pre- and postconditions and an
abstract statement. This triple can then be refined using refinement
rules that guarantee the correctness at each refinement step. An
abstract statement can also be replaced by a concrete program that
satisfies the specification of the corresponding triple. The procedure
is finished when no abstract statement is left. As every statement
is surrounded by a specification, the program can be checked par-
tially after each step. We present a list of the six most important
refinement rules in Figure 1 and explain them in the following.

Skip. A skip statement does not change the state of the pro-
gram [13, 19].

Assignment. An assignment statement sets an expression E
of type T to a variable of the same type T. This rule replaces the
abstract statement S in an Hoare triple with an assignment x := E if
the precondition P implies the postcondition in which the variable
x has been replaced by the expression E. Multiple assignments can
be expressed in one statement as x0, x1 := E0, E1, where 𝐸0 is the
assignment for 𝑥0 and 𝐸1 is the assignment for 𝑥1.

1https://github.com/TUBS-ISF/CorC/tree/VarCorC

{P} S {Q} 𝑐𝑎𝑛 𝑏𝑒 refined 𝑡𝑜

1. Skip : {P} skip {Q} iff P implies Q

2. Assignment : {P} x := E {Q} iff P implies Q[x := E]
3. Composition : {P} S1 ; S2 {Q} iff there is an intermediate

condition M such that {P} S1 {M} and {M} S2 {Q}
4. Selection : {P} if G1 → S1 elif . . . Gn → Sn fi {Q}

iff (P implies G1 ∨ G2 ∨ . . . ∨ Gn) and
{P ∧ Gi} Si {Q} holds for all 𝑖 .

5. Repetition : {P} do [I, V] G → S od {Q} iff (P implies I)
and (I ∧ ¬G implies Q) and {I ∧ G} S {I} and
{I ∧ G ∧ V=V0} S {I ∧ 0≤V ∧ V<V0}

6. Method Call : {P} M (a1, ..., an, b) {Q} with method

{P′} M (parameter p1, ..., pn, return r) {Q′}
iff P implies P′[pi\ai] and

Q′[poldi \aoldi , r\b] implies Q

Figure 1: List of Refinement Rules in Correctness-by-
Construction [19]

Composition. The composition rule splits one abstract state-
ment into two abstract statements S1 and S2. Additionally, an inter-
mediate condition M has to be provided, which evaluates to true
after S1 and before S2 is executed [13].

Selection. The selection rule is used when the abstract statement
shall be refined differently in various cases that are defined by the
guards Gi. The Hoare triple is refined to 𝑛 more Hoare triples of the
form {𝐺 i ∧ P}𝑆 i{Q}. The guards Gi are evaluated and the substate-
ment of the first satisfied guard is executed. The substatements Si
can afterwards be further refined.

Repetition. The repetition rule behaves similar to a while loop in
other programming languages. As long as the guard G evaluates to
true, the statement S is executed. The termination of the repetition
is verified by showing that the variant is monotonically decreasing
with zero as the lower bound. Additionally, an invariant is needed
to guarantee the postcondition.

Method Call. Themethod call rule introduces a method with the
following syntax: {P′} M (parameter p1, ..., pn, return r) {Q′} with
r representing a return variable of any type that gets assigned a
new value after the execution of the methodM, and 𝑝1, ..., 𝑝𝑛 repre-
senting a list of parameters, whose scope is limited to the method
body. Both, 𝑝1, ..., 𝑝𝑛 and r can also be empty, so that there are
four combinations to define a method. In all cases, we omit side
effects, as we define the parameters as call-by-value. Furthermore,
the return value can not have side effects, as it is assigned to a
variable that is treated by the conditions of the statement that calls
the method (P and Q). Therefore, the method call may only have
an impact on globally defined variables, which are covered by the
pre- and postcondition of the calling statement as well. As a re-
sult, the method call refinement rule can generally be applied if
the specification of the method complies with the specification
of the statement. However, as the method M uses the formal pa-
rameters 𝑝1, ..., 𝑝𝑛 and r in P’ and Q’ and the statement uses the
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{P} S {Q}

{P} S1 {M} ∧ {M} S2 {Q}

{P} i, tmp, tmp[tmp.length − 1] :=
0, new int[data.length + 1], newTop {M} {M} S21 {M2} ∧ {M2} S22 {Q}

{M2} data := tmp{Q}{I ∧ G} do [I, V] G → rS od {I}

{I ∧ G} tmp[i], i := data[i], i + 1{I}

1○ composition for S

2○ assignment for S1

3○ composition for S2

4○ repetition for S21

5○ assignment for rS

6○ assignment for S22

Figure 2: Refinement Steps for the Method push (Adapted
from [26])

actual parameters 𝑎1, ..., 𝑎𝑛 and b in P and Q, the variables have
to be replaced so that the implication is indeed provable. For the
preconditions P and P’ we replace the formal parameters 𝑝1, ..., 𝑝𝑛
with the actual parameters 𝑎1, ..., 𝑎𝑛 in P’ (i.e., P’[𝑝𝑖\𝑎𝑖 ]). As the
scope of the formal parameters is limited to the method body, they
are not allowed to appear in the postcondition Q’. However, Q’may
refer to their value before executing the method, which we denote
as 𝑝𝑜𝑙𝑑 . To make the postconditions comparable, we therefore have
to replace the original formal parameters by the original actual
ones as well as the formal return parameter r by the actual one b
(Q’[𝑝𝑜𝑙𝑑

𝑖
\𝑎𝑜𝑙𝑑

𝑖
, 𝑟\𝑏]). The return value is not allowed to be in the

precondition, as it does not exist before executing the method.

3 MOTIVATING EXAMPLE
To showcase correctness-by-construction in practice, we exemplify
it on the implementation of a pushmethod of an IntList based on the
implementation of Scholz et al. [26]. The IntListmaintains an integer
array data and offers the method push to add another element
(newTop) to the array. In Section 3.1, we explain the programming
style of correctness-by-construction using the refinement steps
displayed in Figure 2 and show the finished algorithm of the method
push in Guarded Command Language in Listing 1. Afterwards, in
Section 3.2, we motivate variational correctness-by-construction by
displaying the problems that occur if variants of the method push
shall be developed efficiently.

3.1 Developing a Base Variant of Method Push
To start the development of the push method using correctness-by-
construction, we first concretize the pre- and postcondition of the
algorithm. As we have given an array with integers that shall con-
tain at least one element, we set the precondition P to data != null
∧ data.length > 0. To simplify the postcondition, we use the
predicates contains(int[] A, int x) and containsAll(int[]
A, int i, int j, int[] B). Thereby, the predicate contains
evaluates to true, iff array A contains value x and containsAll
evaluates to true, iff array A contains all elements of array B from
index i (inclusive) to j (exclusive). In our example, the postcondi-
tion shall ensure that the array data contains the new element
newTop and all elements that it has contained before the execution
of the method push. The concrete postcondition using our self-
defined predicates is defined as follows: contains(data, newTop)
∧ containsAll(data, 0, data.length, dataold).

In our algorithm, we want to create a temporal array tmp, which
shall contain all elements from data and additionally the new ele-
ment newTop. Afterwards, we want to assign tmp to data to finalize
the algorithm. In a first step, we apply the composition refinement
rule 1○ to split the abstract statement S into two abstract statements.
As we need to traverse through data later on in the algorithm, we
already know that we need a loop counter variable. Additionally,
tmp needs to be created with the length of data plus 1 and we
can already add newTop as well. We can formalize these require-
ments in the intermediate condition M as follows: tmp.length =
data.length+1 ∧ i = 0 ∧ contains(tmp,newTop).

To fulfill this intermediate condition, we apply the assignment
refinement rule 2○ to the first abstract statement S1. We define
three assignments. First, we assign 0 to the loop counter variable i.
Second, we create the array tmp with the length data.length+1.
Third, we assign newTop to the last index of tmp.

For the second abstract statement S2 of the composition state-
ment, we need to add every element of data to tmp and as a
last step of the algorithm, assign tmp to data, as this is the data
structure maintained by the IntList. Consequently, we need to
split the second abstract statement S2 again using the composi-
tion refinement rule 3○. As the assignment of tmp to data shall
be the last step, we define the intermediate condition M2 as fol-
lows: tmp.length = data.length+1 ∧ contains(tmp,newTop)
∧ containsAll(tmp,0,data.length,data).
The array tmp shall contain newTop and all elements from data, as
these are the conditions that need to be fulfilled for data after the
assignment as well.

As a next step, we further refine the first abstract statement of the
second composition (S21). The parts of the intermediate condition
M2 contains(tmp,newTop) and tmp.length = data.length+1
are already fulfilled by tmp. Therefore, we only need to fulfill the re-
maining part of M2, which is containsAll(tmp,0,data.length,
data). This can be achieved by applying the repetition refinement
rule 4○. It requires the additional definition of a guard, an invariant,
and a variant to guarantee the correct postcondition and the termi-
nation of the loop. We select i < data.length as the guard, as we
want to traverse data from left to right. The variant can be chosen
as data.length - i using the loop counter variable i, which is
monotonically increasing in the loop. Finally, we define an invariant
for the loop. We use the conditions tmp.length = data.length+1
∧ contains(tmp,newTop) from the intermediate condition M and
add the condition containsAll(tmp,0,i,data), which reflects
the behavior of adding each element from data to tmp during the
repetition of the loop. To implement the loop body, we refine the
abstract repetition statement rS using the assignment refinement
rule 5○. We assign the value of data at index i to tmp at the same
index and increase i by 1.

To finalize the algorithm, we need to concretize the last abstract
statement S22 by assigning tmp to data using again the assignment
refinement rule 6○.

3.2 Variants of Push
In Section 3.1, we developed a method to add an additional el-
ement to an integer array. Now, we want to create a variant of
this algorithm, which shall keep the array sorted. Sticking with
correctness-by-construction, we would have to repeat the same
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1 pre: data ≠ null & data.length > 0
2 post: contains(data,newTop) & containsAll(data,0,data.

length,dataold)
3 i,tmp,tmp[tmp.length -1] := 0,new int[data.length +1]

,newTop;
4 do i < data.length →
5 tmp[i],i := data[i],i + 1;
6 od
7 data := tmp

Listing 1: Method push in Guarded Command Language

1 pre: data ≠ null & data.length > 0
2 post: contains(data,newTop) & containsAll(data,0,data.

length,dataold) & isSorted(data)
3 i,tmp,tmp[tmp.length -1] := 0,new int[data.length +1]

,newTop;
4 do i < data.length →
5 tmp[i],i := data[i],i + 1;
6 od
7 data := tmp;
8 sort(data,data)

Listing 2: Sorted Variant of Method push in Guarded
Command Language

steps as described in the previous section starting with a changed
postcondition, as we need to express the new behavior of our sorted
push method. The complete algorithm in Guarded Command Lan-
guage is shown in Listing 2. Comparing it to the base variant in
Listing 1, we can see that the general structure stayed the same.
In fact, regarding the implementation only an additional method
call is added in Line 8, so that more duplicated code than actually
changed code has been created.

As a result, if we need to change one of these cloned lines in
one of the variants, the change probably needs to be applied to the
other variant as well. The more variants are created this way, the
higher the maintenance costs become. To reduce these costs, we
want to use a mechanism that allows to reuse code from former
variants. Therefore, we use the keyword original to mark the
variation points in the code, which can later be replaced to form
distinct variants. In our example, we would implement the sorted
refinement as seen in Listing 3. We added the variation point in
Line 3, which can be replaced by the base variant in Listing 1
to create the variant of the sorted push method. However, the
postcondition of the base variant is not sufficient anymore, as we
refined the method and added functionality. The specification as
described in Listing 2 would work in this case. However, we would
create specification clones from the conditions of the base variant,
which causes higher maintenance costs again.

An additional issue arises when we want to refine the method
more than once. For instance, one could think of a variety of differ-
ent refinements for the push method like a refinement that adds a
second element, a refinement that limits the amount of elements
in the array, or a refinement that ensures that the array does not
contain duplicated values. All of these refinements require slightly
different specifications and they can be used optionally in a re-
finement chain to compose a distinct variant of the push method.
Consequently, when generating a distinct variant using three or
four of these refinements we need to refer to the specifications of
the single refinements without knowing which exact ones have
been selected.

1 pre: ???
2 post: ???
3 original(data,newTop);
4 sort(data,data)

Listing 3: Variation Point for the Sorted push Method

4 CORRECTNESS-BY-CONSTRUCTION FOR
VARIATIONAL SOFTWARE

As illustrated in the previous section, correctness-by-construction
cannot be applied directly to variational software without construct-
ing code clones which involves redundant effort. Therefore, we use
two building blocks to extend correctness-by-construction to varia-
tional correctness-by-construction. The first building block extends
the refinement rules to enable variability in the statements. The
second building block comprises a mechanism to enable variability
in the pre- and postcondition of the starting triple. Both building
blocks are explained in the following.

4.1 Variation Points
The first building block to construct variational software with
correctness-by-construction is to add an additional refinement rule
that allows to mark variation points in a method as demonstrated
in Listing 3. The mechanism we use for this part is inspired by
feature-oriented programming [6]. Thereby, the programmer cre-
ates different refinements of a method that override each other
in a distinct order. However, these method refinements can use
the keyword original to call the implementation of one of the
other refinements of this method. The order in which the different
refinements of that method are composed can be varied to form
the desired variant of that method. Basically, an original call be-
haves similar to a super call in Java. However, as we create a whole
hierarchy and every refinement apart from the base method may
call original, the contracts of the replacing method needs to be
composed as well. We define the variation point refinement rule as
follows:

{P} S {Q} can be refined to
{P} original(a1, ..., an, b) {Q} with m composed methods R =

{P′} M (param p1, .., pn, return r) {Q′} which are composed as
c1 • c2 • . . . • cx with x method refinements ci =
{Pi} M (param p1, ..., pn, return r) {Qi}
iff for all R: P implies P′[pj\aj] and Q′[poldj \aoldj , r\b] implies Q

As keyword original can be replaced by several different com-
posed methods the variation point refinement rule is based on the
method call refinement rule we introduced earlier in Section 2.
Therefore, the implications in the last row are identical to the impli-
cations in the method call refinement rule. However, as the methods
can be refined multiple times there are also multiple valid replace-
ments for the original. To ensure correctness we consequently
have to guarantee that all valid replacements R comply with the
calling statement. Thereby, a valid replacement has to provide a
contract in form of a Hoare triple and the same signature as the
calling method. The contract of the replacing method can be the
result of the composition of multiple method refinements (i.e., a
refinement chain of the form c1 • c2 • . . . • cx ). The method refine-
ments also have to offer a contract and be defined with the same
signature. Apart from these restrictions, the user can define the
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{P} S {Q}

{P} S1 {M} ∧ {M} S2 {Q}

{P} original(data, newTop) {M} {M} sort(data, data) {Q}

1○ composition for S

2○ variation point for S1

3○ method call for S2

Figure 3: Refinement Steps for the Sorted Refinement of
push

valid method replacements and their refinement chains themself.
The composition of the method refinements in the refinement chain
for a replacing method is performed using contract composition,
which comprises several different techniques to compose pre- and
postconditions. We describe the techniques in the following sub-
section.

Example 4.1. In Figure 3, we show the refinement steps using
the variation point refinement rule for the sorted refinement in the
context of the method push we introduced earlier in Section 3. We
only defined this refinement and a base variant, therefore the only
replacement of the variation point is the base variant and as it is a
single method and no refinement chain, we do not need to compose
the contracts to form P’ and Q’. In other words, the conditions of
the base variant as defined in Listing 1 directly correspond to P’
and Q’ from the variation point refinement rule.

4.2 Contract Composition
In this subsection, we introduce ourmechanism for variability in the
specification of programs written with correctness-by-construction.
We apply contract composition in two places: First, to compose
pre- and postconditions of the whole method (cf. Section 3.2) and
second, to compose the contract of the method call that replaces
the variation point (cf. Section 4.1).

Correctness-by-construction uses contracts in form of Hoare
triples with pre- and postconditions that reflect the behavior of
the code to verify it. As variational software modifies methods
and may also completely change a method’s behavior in a way
that violates the Liskov principle [27], it is crucial to be able to
compose their contracts as well. For example, when a new variant
adds functionality to a method by refining it, the old contract of
that method will most likely be insufficient to verify its behavior
(cf. Section 3.2). In that case, the contract needs to be adapted as
well using a specific composition technique.

Some of the authors extended the composition of featuremodules
in feature-oriented programming by the contracts and proposed six
composition techniques [27]. Based on their empirical evaluation,
we chose three of them (explicit contracting, contract overriding, and
conjunctive contract refinement), as they have been shown sufficient
for the case studies that are used in our evaluation. We applied
these techniques to the pre- and postcondition.

To introduce the mechanisms formally, we refer to a contract 𝑐
in the form of 𝑐 = {𝜙}𝑚{𝜓 }, with 𝜙 being the precondition,𝜓 the
postcondition, and𝑚 the method. We define the original contract 𝑐
with 𝑐 = {𝜙}𝑚{𝜓 }, the refining contract 𝑐 ′ with 𝑐 ′ = {𝜙 ′}𝑚′{𝜓 ′},
and denote the composed contract as 𝑐 ′′ = 𝑐 ′ • 𝑐 = {𝜙 ′}𝑚′{𝜓 ′} •
{𝜙}𝑚{𝜓 } = {𝜙 ′′}𝑚′ •𝑚{𝜓 ′′}. The specific mechanisms for the
contract composition defines how 𝜙 ′′ and𝜓 ′′ are derived from the

contracts 𝑐 and 𝑐 ′. We consider a contract composition mechanism
M as a function •M : 𝐶×𝐶 → 𝐶 defined over the set𝐶 of all possible
contracts. We require that each contract 𝑐 ∈ 𝐶 can be formulated
as 𝑐 = {𝜙}𝑚{𝜓 } regardless of the particular specification language.

Conjunctive Contract Refinement. This mechanism composes two
contracts implicitly, without making the composition visible to
the contract [27]. In particular, conjunctive contract refinement
conjuncts the pre- and postcondition of the original and refined
contract to form the composed contract. Respectively, we define
the conjunctive contract composition as

𝑐 • ccr𝑐
′ = {𝜙 ′ ∧ 𝜙}𝑚′ •𝑚{𝜓 ′ ∧𝜓 }

Example 4.2. To showcase the application of the composition
techniques, we apply them on the pre- and postcondition of the
sorted refinement of the method push from the IntList that we intro-
duced earlier in Section 3. For conjunctive contract refinement, we
can define the pre- and postcondition in Listing 3 as P = true and Q
= isSorted(data). When composing the base variant in Listing 1
with the sorted refinement using conjunctive contract refinement
the composed pre- and postcondition would result in P = data
≠ null ∧ data.length > 0 ∧ true and Q = contains(data,
newTop) ∧ containsAll(data, 0, data.length, dataold) ∧
isSorted(data).

Conjunctive contract refinement offers the possibility to reuse
original contracts without having extra specification effort and
therefore reduces specification clones, because original contracts
are assumed to hold in all cases. Additionally, the composed con-
tracts are easy to understand because the conditions of the different
method refinements are simply combined with a conjunction. How-
ever, the main disadvantage of this composition technique is that
all method refinements have to be known in advance, as they need
to be fulfilled in every case. This prohibits the modular reason-
ing and makes it hard to understand and maintain the methods.
Another disadvantage is the reduced flexibility of the mechanism.
Contracts can only be refined by adding formulas via conjunction
to the existing pre- and postconditions.

Explicit Contracting and Contract Overriding. Explicit Contracting
offers the possibility to use a specific keyword to reference the
original pre- or postcondition in the refining contract [27]. We use
the keyword original and define explicit contracting as follows:

{𝜙 ′}𝑚′{𝜓 ′} • ecr{𝜙}𝑚{𝜓 } = {𝜙 ′ • 𝜙}𝑚′ •𝑚{𝜓 ′ •𝜓 }
In this context, {𝜙 ′ •𝜙} is defined as replacing every occurrence

of original in 𝜙 ′ by 𝜙 , whereas {𝜓 ′ •𝜓 } is defined analogously.
However, the occurrence of the keyword original is not manda-
tory and it can even be used multiple times.

In fact, contract overriding is a special form of explicit contract-
ing when no original is used in the conditions. In that case, the
original contract is simply overridden by the refining contract. Nev-
ertheless, we decided to integrate both techniques to force the pro-
grammer to choose the technique deliberately. Contract overriding
can be formalized as:

𝑐 ′ • co𝑐 = 𝑐 ′

Example 4.3. With contract overriding, we can define the spec-
ification in Listing 3 as P = data ≠ null ∧ data.length >
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0 and Q = contains(data, newTop) ∧ containsAll(data, 0,
data.length, dataold) ∧ isSorted(data) for the precondition
P and the postcondition Q postcondition. Comparing these to the
conditions from the base variant in Listing 3, we can see that parts
of the postcondition and the whole precondition have been cloned.

When applying explicit contracting to the same example, we can
now reference the pre- and postcondition of the base variant using
the keyword original to avoid specification clones. We can define
the precondition as P = original and the postcondition as Q =
original ∧ isSorted(data). The originalwould be resolved as
the conditions from Listing 1 when composing the base variant with
the sorted refinement of the push method. The composed contract
would be equal to the one we defined with contract overriding.

Explicit contracting is an intuitive approach to compose con-
tracts, as it offers the same linguistic means as we use for varia-
tion points (cf. Section 3.2). The programmer can freely decide if,
where, and how often to use the keyword original to reference
the original contract. Therefore, the pre- and postconditions can
independently be overridden, refined, or even reused completely.
By offering the ability to refer to the original contract, this mecha-
nism overcomes the drawback of having many specification clones,
as we have seen for contract overriding (cf. Example 4.3). How-
ever, the caller needs to be aware of any contract that has been
defined for a specific method. In the example of the push method,
the composed postcondition is sufficient for the variant of the sorted
array, but it may not if another refinement is selected. Additionally,
the pre- and postconditions can be refined independently and be
negated or included in further logical constructs. Another drawback
of referencing the original contracts is the possibility of dangling
references. This occurs, when composing contracts in a distinct
order, but when the original is called, there is no original contract
defined for this specific configuration. In Example 4.3, this could
occur, if we want to create a variant using only the refinement in
Listing 3 without the base variant in Listing 1. When composing the
contract for this variant, the keyword original has to be replaced
by a non-existent condition, which leads to the error.

Refinement Chains. For simplicity, we always used a base variant
and one refinement for it to demonstrate the functionality of the
previously introduced contract composition techniques (cf. Exam-
ples 4.2 and 4.3). However, one method can also be refined multiple
times by building a refinement chain. Thereby, a refinement chain
consists of 𝑛 different refinements that can be composed to form a
distinct variant of the method (𝑐1 •𝑐2 • . . .•𝑐𝑛) and the composition
technique can be chosen independently for each refinement.

5 TOOL SUPPORT: VARCORC
VarCorC2 is an open-source Eclipse plugin that implements varia-
tional correctness-by-construction. It is based on CorC [24], which
already supports programming with correctness-by-construction.
At its core, it has a correctness-by-construction meta-model mod-
eled with the Eclipse Modeling Framework.3 It offers a textual and
a graphical editor which both use the underlying meta-model. The
textual editor is implemented with XText4 and the graphical one
2https://github.com/TUBS-ISF/CorC/tree/VarCorC
3https://eclipse.org/emf/
4https://eclipse.org/Xtext/

with Graphiti.5 To prove the correctness of the refined Hoare triples
the deductive verification tool KeY [4] is used.

KeY is usually used for post-hoc verification, where formal meth-
ods and tools are applied on the finished program to prove that the
program satisfies the specification. The specification is typically
added to the program as annotations in the form of pre- and post-
conditions to every method in a class. Post-hoc verification tools,
like KeY, use a formal calculus to prove the program correct with
respect to its specification semi-automatically. Therefore, VarCorC
generates a problem file that formulates the distinct refinement
rules and conditions so that KeY can read and try to verify them. In
case of the variation point rule, the user has to additionally define
all refinement chains that can possibly replace the variation point
so that the distinct variants can be verified by KeY. Thereby, Var-
CorC generates a problem file for each refinement chain composing
(1) the refinements and (2) the pre- and postconditions according
to the specified composition techniques (cf. Section 4.2).

The graphical editor of VarCorC offers a tree structure starting
with one Hoare triple at the top that can be refined as desired by
the user. The resulting structure looks similar as seen in Figure 2.
Thereby, the pre- and postcondition from the top are propagated
automatically to the refinements. Additionally, the user can define
variables and global conditions. The variables have a name, a type,
and kind (parameter, return value, or local) to define the signature
of the method that is implemented in the diagram. The global con-
ditions that have been defined have to be fulfilled by all refinement
steps. The graphical editor also encompasses a visualization indicat-
ing whether the program has been successfully proven by KeY. The
verification process is triggered by right-clicking any statement in
the tree and choosing the verify-command in the context menu.
Thereby, the subtrees can be verified independently.

6 CASE STUDY
To evaluate feasibility of variational correctness-by-construction,
we applied it to two prominent product lines, namely IntList and
BankAccount. Both were already used (1) for specifying software
product lines [27] and (2) as case studies for CorC [24]. In the
following, we describe the settings of our case study and present
and discuss results.

6.1 Settings
In particular, we address the following three research questions:

RQ1: Is it possible to develop variational software using varia-
tional correctness-by-construction?

RQ2: What are the verification costs compared to post-hoc
verification?

RQ3: What are the specification costs compared to post-hoc
verification?

RQ1 gives us insights to what extent variational correctness-by-
construction can be used to create correct variational software. By
answering RQ2, we may estimate whether variational correctness-
by-construction reduces the verification costs, and therefore, may be
even more attractive than post-hoc verification in certain situations.

5https://eclipse.org/graphiti/
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Subject Method Refinements Variants

IntList [26] push 3 4

BankAccount [28] update 2 2
undoUpdate 2 2
nextDay 3 4
nextYear 2 2

Table 1: Subjects and their Characteristics

By comparing the specification costs in RQ3, we can assess the
relationship between verification and specification costs.

To answer the research questions, we implemented all variational
methods of the two mentioned case studies IntList and BankAc-
count. Both case studies already exist as Java programs specified
with JML, and were therefore transformed into VarCorC programs.
IntList resembles a single class IntList and consists of methods to
add or remove elements from an integer array. Here, method push,
which inserts elements into the list, is implemented with three
refinements. BankAccount provides its core functionality in class
Account, which comprises a total of four variational methods to
manage a bank account. Methods update and undoUpdate manip-
ulate the savings of the account, and nextDay and nextYear allow
to reason about withdrawal limits of users. In Table 1, we summa-
rize the five methods including their characteristics. To enable the
comparison to post-hoc verification, each variant of a method is
implemented as a CorC program and a Java program annotated
with JML. To answer RQ2 and RQ3, we verify each variant and
compare the verification costs regarding total proof nodes that are
needed to close the proof. The specification cost is measured by
counting the amount of conditions that have been connected using
a conjunction in all user provided specifications. This includes the
pre- and postconditions, class invariants, and additionally the in-
termediate conditions, which only occur in CorC. Loop invariants
are identical in both cases and are therefore omitted.

6.2 Results and Discussion
We divide this section according to our three research questions.

RQ1: Is it possible to develop variational software using
correctness-by-construction? We manually created twelve pro-
grams in VarCorC, one for each method refinement of the two case
studies (cf. Table 1). More precisely, VarCorC supports variation
points similar to feature-oriented programming by using keyword
original (cf. Section 4.1) and the composition of specifications
using one of the three discussed composition techniques (cf. Sec-
tion 4.2). Both concepts allowed us to exactly rebuild the behavior as
intended in other studies [27]. In total, 14 different methods could be
derived with respect to possible feature combinations. As expected,
all proofs passed for all 14 variants, which means that guarantees
were preserved during feature composition. We conclude that, with
VarCorC, it is possible developing correct variational software using
variational correctness-by-construction.

RQ2: What are the verification costs compared to post-hoc
verification? We collected the proof nodes as an indicator for the
verification effort for every verified variant for both approaches.
The accumulated results for each method are shown in Figure 4.
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Figure 4: Total Amount of Proof Nodes per Method
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Figure 5: Total Amount of Conjuncted Conditions per
Method

The scaling of the y-axis is logarithmic. The verification with
VarCorC needs between 53% and 81% less nodes than the verifi-
cation with Java and JML. This result is in alignment with our
expectations and related work [24] by indicating a reduced proof
complexity, as the verification of one method is split into smaller
problems using correctness-by-construction. This means that even
for smaller case studies, the total number of proof steps needed
for VarCorC is at least twice as small as the number of proof steps
needed for post-hoc verification. The effects may be considerably
larger with more complex and varied case studies.

RQ3:What are the specification costs compared to post-hoc
verification? In Figure 5, we illustrate the total specification costs
for VarCorC and JML per method refinement with respect to pre-
condition, postcondition, intermediate condition (only VarCorC),
global conditions (only VarCorC), and class invariants (only JML).
We found that the average amount of conjuncted conditions used
for VarCorC were 62% higher for IntList and 58% for BankAccount.
However, these metrics do not fully reflect the complexity of the
single conditions as the conjuncted conditions itself range from
rather complex (e.g., using an \exists clause) to quite simple (e.g.,
assuming the value of a variable to be zero). Nevertheless, even sim-
ple conditions, such as an object to be non-null, mean effort as they
still have to be specified, even if manual effort is lower compared
to more complex conditions. We also found that 58% of the extra
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conditions have been introduced by intermediate conditions, which
tend to be more complex than the global conditions. However, our
experience was that also most of the intermediate conditions did not
take too much effort to specify, as correctness-by-construction is
applied on the fine-grained level of statements. Furthermore, when
the postcondition is already known, the intermediate conditions
often slowly build up and partially reflect the postcondition. Still
some intermediate conditions have been more complex (e.g., if the
statement contained an original that could be replaced by more
than one method). In summary, there is a trade-off in VarCorC
between specification and verification costs.

7 RELATEDWORK
In this paper, we mainly addressed correctness-by-construction
for the verification and implementation of variational software.
Therefore, we will present related verification and implementation
techniques for variational software and other refinement-based
approaches similar to correctness-by-construction in the following.

Feature-oriented programming [6, 7] is a technique to implement
software product lines, which is a family of related software prod-
ucts that share a common code base and are each composed by a
valid combination of software artifacts [12]. The variability mecha-
nism of feature-oriented programming is related to the functioning
of our variability mechanism. However, we formalized the mecha-
nism and defined rules to guarantee its correctness for variational
correctness-by-construction. Another technique to develop soft-
ware product lines that is similar to feature-oriented programming
is called delta-oriented programming. Basically, delta modules com-
pass the same functionality as feature modules, but additionally
they also allow to remove classes andmembers [25]. Neither feature-
oriented programming nor delta-oriented programming compass
specifications to develop correct programs which is the main differ-
ence to variational correctness-by-construction.

Some of the authors defined six composition techniques for feature-
oriented contracts and applied them to software product lines im-
plemented with Java and specified with JML contractss [27]. For
variational correctness-by-construction, we adapted three of these
composition techniques to correctness-by-construction to compose
the conditions of the different statements and to form the contracts
for the original calls. Bruns et al. [8] propose a mechanism called
delta-oriented slicing that is similar to contract overriding, but
adds the removal of contracts in delta modules. Hähnle and Schae-
fer [18] propose another composition technique for delta-oriented
programming, which is implemented as a restrictive form of the
explicit contracting. However, all of these approaches apply their
mechanism to design-by-contract contracts based on JML and use
post-hoc verification for the proofs, which is a difference to the in-
cremental approach of stepwise refinement that we apply by using
variational correctness-by-construction.

In the following, we will present related work for correctness-
by-construction. The Event-B framework [2] uses automata-based
systems including a specification which are refined to a concrete im-
plementation. Therefore, it is related to correctness-by-construction.
There is also tool support for the Event-B framework. Thereby, Ate-
lier B [1] implements the B method by providing an automatic and
interactive prover and Rodin [3] implements the Event-B method,
which is considered an evolution of the B method. However, the

main difference to VarCorC is that Atelier B and Rodin do not
implement variability and also work on automata-based systems
rather than on code and specifications.

ArcAngel [22] is a tool that implements a tactic language for
refinements to apply a sequence of rules based on Morgan’s refine-
ment calculus. These rules are applied to an initial specification to
generate a correct implementation in the end. Unlike VarCorC, Ar-
cAngel does not offer a graphical editor to visualize the refinement
steps. Another difference is that ArcAngel creates a list of proof obli-
gations that have to be proven separately. CRefine [23] is another
related tool for the Circus refinement calculus which is a calculus
for state-rich reactive systems. It also provides a GUI for the refine-
ment process. The difference is that they use a state-based language
and VarCorC uses code and specifications. ArcAngelC [11] extends
CRefine by adding refinement tactics.

The tools iContract [20] and OpenJML [10] both apply design-
by-contract to Java code by using a special comment tag to insert
conditions. These conditions are translated into assertions and
checked at runtimewhich is themain difference to VarCorC because
they do not use formal verification.

8 CONCLUSION
Variational software has become common practice to manage the
growing demand for software variants in one specific domain. As
it is increasingly used in safety-critical systems, the verification of
these systems becomes more important, which is a challenge due
to the increasing amount of variants.

In this paper, we proposed our methodology called variational
correctness-by-construction for the development and verification
of variational software. At first, we defined the variation point re-
finement rule as an extension to correctness-by-construction to
introduce variability in the implementation. Second, we presented
contract composition for refined method contracts to allow variabil-
ity in the pre- and postcondition. Third, we implemented variational
correctness-by-construction in a tool called VarCorC to evaluate
our concepts in terms of feasibility and specification and verifica-
tion costs compared to post-hoc verification with JML contracts
and KeY.

Our main insight is that our work has just been a starting point
on this subject. However, we showed feasibility on five variational
methods and were able to verify them with significantly less nodes
compared to post-hoc verification with KeY. These results show
the reduced proof complexity and also the potential of variational
correctness-by-construction. The high specification costs alleviate
the reduced verification costs, but we argue that they can be further
reduced by extending the tool support.

For future work, we plan on proving soundness of the proposed
verification point refinement rule and further evaluate variational
correctness-by-construction to strengthen our evaluation results.
Therefore, one could use more case studies that have been retrieved
in different ways also including larger ones with methods that
have been refined multiple times. Another possiblity is to expand
variational correctness-by-construction to the context of software
product lines using a composition-based approach and feature mod-
els to model the variability in terms of features. In a next step, one
could then work out a family-based verification and compare its
efficiency to the current technique.
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