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ABSTRACT
Handling configurable systems with thousands of configuration
options is a challenging problem in research and industry. One of
the most common approaches to manage the configuration options
of large systems is variability modelling. The verification and con-
figuration process of large variability models is manually infeasible.
Hence, they are usually assisted by automated analyses based on
solving satisfiability problems (SAT). Recent advances in satisfia-
bility modulo theories (SMT) could prove SMT solvers as a viable
alternative to SAT solvers. However, SMT solvers are typically not
utilized for variability analyses. A comparison for SAT and SMT
could help to estimate SMT solvers potential for the automated
analysis. We integrated two SMT solvers into FeatureIDE and
compared them against a SAT solver on analyses for feature mod-
els, configurations, and realization artifacts. We give an overview of
all variability analyses in FeatureIDE and present the results of our
empirical evaluation for over 122 systems. We observed that SMT
solvers are generally faster in generating explanations of unsatis-
fiable requests. However, the evaluated SAT solver outperformed
SMT solvers for other analyses.

KEYWORDS
variability analysis, feature models, smt, smt analysis, sat, sat anal-
ysis, sat vs smt, feature model analysis, configuration analysis,
preprocessor analysis, attribute optimization, feature attributes

1 INTRODUCTION
Variability management is an approach to handle the complexity
of configurable systems without having a large negative impact
on economical factors for a company [1, 36]. Besides the ability to
manage the variability of products, industry values benefits such
as product configuration, requirement specification and product
derivation [7]. The configuration of product lines (i.e., a family of
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products that shares a base of reusable artifacts, also called fea-
tures [24]) is complex and still an active challenge in research and
industry [10, 38]. Users can define a set of selected and unselected
features, also called configuration, that can be used to compose a
product from the product line using the base of reusable artifacts.

Feature modelling is one of the most common notations for the
variability management of product lines [7, 12, 22]. The feature
model describes all features of a product line for a given domain
and their relationships in a tree-like structure [1].

However, featuremodels often contain defects that negatively im-
pact the benefits of feature models. The manual detection of defects
is hard, time-consuming, and for large feature models infeasible,
so automated analyses are needed [1, 6]. Furthermore, proposed
variability analyses in the literature cover more than just detecting
feature model defects, such as supporting the configuration pro-
cess [6, 19] and the verification of realization artifacts [44, 45]. One
of the common approaches for feature models is to translate the
feature model into a propositional formula which is then analysed
by off-the-shelf SAT solvers [3, 6, 30].

SAT solvers are traditionally used for variability analyses of fea-
ture models. However, SMT solvers received increasing attention
and tremendous advances in recent decades, motivating their use
for variability analyses [14]. In addition, problems that are hard to
encode into SAT, such as the encoding of at-most-k constraints [9],
might be easier to express with SMT. Furthermore, SMT is more
expressive and can be used to solve more complex problems for
feature models such as the computation of attribute ranges, and
the anomaly analysis for evolving [34] or context-aware [31] fea-
ture models. As SMT is a generalization of SAT, we are interested
whether SMT solvers can perform SAT-based analyses with the
same efficiency as traditional SAT solvers.Wewant to to empirically
assess the potential of SMT solvers for variability analyses.

We integrated JavaSMT [25], a unified interface for SMT solvers,
into the feature modelling tool FeatureIDE [47] because JavaSMT
provides easy access to multiple SMT solvers and is also written
in Java, just like FeatureIDE [47]. Besides, FeatureIDE already
provides many analyses for feature models, configurations, and re-
alization artifacts. We compared the runtime of FeatureIDE’s SAT
solver Sat4J [8] against the two SMT solvers SMTInterpol [11]
and Z3 [13] provided by JavaSMT for a subset of all analyses. We
used 117 real-world feature models for the empirical evaluation
of feature model and configuration analyses. The empirical eval-
uation for the realization artifacts is based on two Antenna [20]
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Figure 1: Examples for all kinds of feature model defects and their explanations.

preprocessor examples available in FeatureIDE. Furthermore, we
implemented an SMT-based analysis to compute attribute ranges
for partial configurations with the aim to assist users in interactive
configuration processes. We evaluated the runtime of the analysis
for three real-world models.

We summarize our contribution as follows:
• We give an overview of the different variability analyses
which are currently supported by FeatureIDE.

• We provide tool support for the comparison of SAT and SMT
solvers in FeatureIDE.

• We performed an empirical evaluation to estimate the use-
fulness of SMT solvers for variability analyses.

We categorize the variability analyses supported by FeatureIDE
into analyses that depend on a feature model (cf. Section 2), on a
feature model and a configuration (cf. Section 3), on a feature model
and realization artifacts (cf. Section 4), and on an extended feature
model and a partial configuration (cf. Section 5).

2 ANALYSES OF FEATURE MODELS
The analyses described in this section rely only on the feature
model as input. They cover detecting and explaining defects, identi-
fying feature model edits, computing information on products, and
identifying atomic sets.

Defects can occur when developing feature models with cross-
tree constraints. Von der Maßen et al. classified them into redundan-
cies, anomalies, and inconsistencies [49]. Most serious are incon-
sistencies which occur when conflicting information is modelled,
resulting in no products for the product line. Moderate are anom-
alies that indicate an inadvertent loss of product space. The least
severe are redundancies, which are information that has already
been modelled differently. They can be removed to simplify the
maintenance of the feature model [49].

The detection of defects can help users identifying a problem in
their feature model. However, understanding the reasons for defects
and fixing them is hard. Assisting the user in finding the actuator
for an actual defect requires the generation of explanations [4, 6, 27].
An explanation contains information about the type of defect they

explain and a minimal set of features and constraints that causes the
defect. Both the detection and explanation of defects are important
operations for the feature model error analysis [6].

Void Analysis detects whether a feature model is void, meaning
it represent no products [6]. Void feature models are the results
of inconsistencies in the model and their detection is regarded as
critical in feature modelling tools [6, 33]. A non-void feature model
is a prerequisite to do other analyses, so it is always performed
first. An example for a void feature model is shown in Figure 1a. It
can be explained textually: The feature model is void because C is a
mandatory child of A (i.e., A ⇒ C) and C ⇒ ¬A is a constraint or
visually by highlighting all relationships that cause the void feature
model. For instance, Figure 1g shows the visual explanation of our
void feature model.

Core & Dead Feature Analysis detects all core and dead fea-
tures for a given feature model. A core feature is a feature that is part
of every product of the feature model. In contrast, a dead feature
is a feature that is not part of any product [1, 6, 27]. Dead features
are severe anomalies as they can be never selected, and, hence, the
effort to realize dead features is useless. Core features on the other
hand are no defects and have a rather positive effect on feature
modelling. They indicate which features should be focused when
starting to implement the product line [6]. The analyses for core
and dead features are similar which enables us to compute both
sets of features in one analysis [27]. An example for a dead feature
is shown in Figure 1b. The concrete feature B is dead becauseC is a
mandatory child of the root and excludes feature B. The according
visual explanation is shown in Figure 1h.

False-Optional Feature Analysis detects all false-optional fea-
tures for a given feature model. A false-optional feature is modelled
as optional but has a mandatory relationship to its parent due to
cross-tree constraints [34]. This anomaly type is not severe but
prevents the selection of feature combinations which are modelled.
Figure 1c shows an example for a false-optional feature. The feature
C is false-optional because it is included by B which is a mandatory
child of the root. Figure 1i shows the according visual explanation.
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Indeterminate Feature Analysis detects all indeterminate fea-
tures for a given feature model. Sometimes it is possible to hide
configuration options in the configuration process [3, 16, 53]. We
adapted this concept to feature models to hide features in the con-
figuration process. We name such features hidden features. They are
useful in particular for features which are relevant for the product-
line implementation (e.g., derivative modules [29]) but not for the
customers configuration process. As a hidden feature is not manu-
ally configurable, its selection must be determined by the structure
and constraints of visible features in the feature model. However, if
a hidden feature’s selection is not determined, we call it indetermi-
nate. We regard indeterminate features as weak anomalies as they
indicate wrong usage of hidden features or constraints. Figure 1e
shows an example for an indeterminate feature. The example con-
tains two hidden features D, E. The selection of D is determined by
the constraintD ⇔ B∧C . However, E is optional and not contained
in any constraint, and, thus, is indeterminate.

Redundant Constraint Analysis detects all constraints whose
semantic information is already modelled by the feature model
structure or other constraints. Such constraints are called redundant
constraints [6, 49]. Redundant constraints have no influence on the
available products of the product line, so they are not severe. They
can be introduced for better readability and understanding, but
at the cost of higher maintainability for feature models. Figure 1d
shows an example for a redundant constraint. The constraintB ⇒ C
is redundant because C is a mandatory child of the root feature A.
Figure 1j shows the according visual explanation.

Tautological Constraint Analysis detects all redundant con-
straints that are always satisfied. Such redundant constraints are
called tautologies [27]. An example for a tautology is B ∨¬B. Tauto-
logical constraints are superfluous and should always be removed.

Feature Model Edits describe the relationship between a fea-
ture model before and after an evolution. Thüm et al. [46] classified
feature model edits into refactoring, generalization, specialization,
and arbitrary edit. We consider the feature model in Figure 2a as
input model for the following examples. A refactoring does not
have an impact of the set of possible products. Figure 2b shows a
refactoring of the input model. A generalization introduces new
products without removing any existing ones. As an example, Fig-
ure 2c shows a generalization of the input model. A specialization
removes existing products without introducing new ones. For in-
stance, Figure 2d shows a specialization of the input model. An
arbitrary edit removes existing products and introduces new ones.
Arbitrary edits hinder the understandability of feature model evo-
lution and should be replaced with step-by-step generalization and
specialization [46]. Figure 2e shows an arbitrary edit of the input
model.

Number of Configurations computes the number of valid con-
figurations represented by the feature model. This number can be
used to measure the complexity and variability of a product line [6].

Number of Product Variants computes the number of product
variants which are represented by the feature model. Product vari-
ants are different from valid configuration as they ignore features
that have no implementation [48]. The computation for both the
number of valid configurations and program variants is hard for
regular SAT solver as every assignment needs to be considered.
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Figure 2: Examples for all kinds of feature model edits, see
Figure 1 for a legend.
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Figure 3: Example for a feature model before (left) and after
(right) the atomic set reduction.

Atomic Set Analysis computes all subsets of features whose
features are all included or all excluded in every product of a prod-
uct line. These subsets are called atomic sets [15, 39]. Atomic sets
can be used to reduce the size of a product line prior to its analysis
by replacing each feature of an atomic set by one feature that rep-
resents the entire atomic set [40, 52]. Segura et al. [40] showed that
atomic sets can improve the efficiency of the automated analysis
of feature models. However, they only compute atomic sets that
contain mandatory features and their parents. In contrast, com-
puting all atomic sets for a feature model is more expensive and
reduces the advantages of atomic sets for the automated analysis.
For instance, Figure 3 shows the states of a feature model before
and after the atomic set analysis.

FeatureIDE provides an editor that interactively detects void
models [27], core and dead features [27], false-optional features [27,
34], redundant constraints [27, 49], and tautologies [27]. Addi-
tionally, textual and visual explanations can be generated on-the-
fly [17, 27]. Furthermore, FeatureIDE supports the hidden features
and their indeterminate analysis that we introduced above. Fea-
tureIDE also automatically identifies feature model edits [46]. In
addition, statistical information about a feature model can be com-
puted on-demand such as all valid configurations [48], all program
variants [48], and atomic sets [15, 39]. We refer readers interested
in the different analyses to the works mentioned above.

3 ANALYSES OF CONFIGURATIONS
The configuration process is a difficult challenge as each choice
can affect the remaining configuration options available to users.
Especially for larger models, it is infeasible to manually consider all
constraints and structural information of the feature model when
selecting or deselecting a feature. Therefore, automated analyses are
required to support the interactive configuration process. Analyses
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Figure 4: Examples for configuration analyses. All examples
are use the feature model shown in (a).

described in this section rely on the feature model and a configura-
tion as input. They cover the validation of configurations, automatic
error resolution, decision propagation, and their explanations.

Validity Analysis computes whether a given configuration is
valid, meaning it can be used to compose a product of the product
line [6]. Figure 4b shows an invalid partial configuration because
feature B is manually deselected but has a mandatory relationship
to the root feature A. It is the most important analysis for users as
an invalid configuration indicates a dead end in the configuration
process.

Conditionally Core & Dead Feature Analysis computes all
core and dead features while considering all selections for a given
configuration. A feature that is core/dead under certain condi-
tions (e.g., for a given partial configuration) is called conditionally
core/dead [6]. Figure 4c shows an example for such a conditionally
dead feature. The feature E is conditionally dead under the condi-
tion that featureD is selected because of the alternative relationship
between them.

Automatic Decision Propagation Analysis assists users af-
ter selecting or deselecting a feature by automatically determining
the selection of dependent features. Figure 4d shows the automatic
propagation after a new configuration is opened for the first time.
The features A and B are automatically selected as they appear in
every product. Furthermore, Figure 4e shows the same configu-
ration after feature D is selected. The feature C must be selected
as well because of the parent-children relationship with feature
D. In addition, feature E must be automatically deselected as it
is an alternative sibling of feature D. However, it is infeasible to
manually keep track of all feature dependencies. In order to assist
users after selecting a feature, it is necessary to compute all fea-
tures that cannot be selected after a change (i.e., are conditionally
dead) and features that must be selected after a change (i.e., are
conditionally core). To do so, we assume that all selected/deselected
features from our partial configuration are true/false. Performing

a conditionally core and dead feature analysis results in all dead
features which never appear in any product that can be configured
with the user’s current partial configuration. Therefore, we can
propagate all these features as automatically deselected. In contrast,
the conditional core features can be propagated as automatically
selected [28]. While automatically selected features prevent the in-
troduction of invalid configurations, they also restrict the freedom
of users. Guenther [17] introduced the SAT-based generation of ex-
planations for automatically selected features. These explanations
are required to assist users in understanding the reasons for the
automatic selection of a feature.

Error Resolution Analysis assists users by resolving conflicts
for invalid configurations. Changing a feature model can lead to
conflicts in existing configurations. Thus, it is necessary to review
those configurations and correct them if necessary. This process
can be very tedious especially if many configuration options are
available which users need to review. To assist users it is possible to
generate an explanation for a given invalid configuration. The re-
sulting explanation contains all contradicting selections that make
the configuration invalid. These can be automatically reset to revert
an invalid configuration back to a valid one [28].

FeatureIDE provides a configurator that interactively validates
configurations [6] and performs automatic decision propagation.
Furthermore, users are prevented from changing the selection state
of an automatically propagated feature to prevent the introduc-
tion of an invalid configuration. However, FeatureIDE generates
explanations for automatically propagated features on-the-fly to
assist users in understanding their automated selection [17]. In
addition, FeatureIDE provides automatic error resolution that we
introduced above on-demand when the configurations of users are
invalid.

4 ANALYSES OF PREPROCESSOR
DIRECTIVES

With the help of realizations artifacts and a valid configuration of
a product line, it is possible to automatically compose a program
variant. Preprocessor-based product lines combine the artifacts for
all features into a single code base. Annotations are used to con-
trol the variability of the implementation. Each annotation has a
presence condition that needs to be fulfilled for the annotation’s im-
plementation to be included in the product. Figure 5b and Figure 5c
show two code examples for the implementation of the feature
model shown in Figure 5a. The examples use the syntax of the Java
preprocessor Antenna [37]. However, the presence conditions in the
realization artifacts are not always satisfiable with variability mod-
elled in the feature model. A consistency check can be performed
to avoid deviations between artifacts and feature model.

In the following, we describe the SAT-based analyses to detect
unsatisfiable and unnecessary presence conditions. Each analysis
needs a feature model, a preprocessor annotation, and the annota-
tion’s context as input.
Dead Code Block Analysis checks the presence condition of a
given annotation for satisfiability in accordance with the variability
modelled in the feature model. Each code block whose presence
condition is not satisfiable is called dead [41]. Hence, the resulting
implementation is not part of any product. A dead code block can
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Figure 5: Examples of a dead code block (b) and a superfluous
annotation (c) for the feature model shown in (a).

indicate a wrong presence condition or they can be removed for
the sake of long-term maintenance costs and the readability of
the source code [44]. For instance, Figure 5b shows an example
for a dead code block. The code block at lines 4-6 is dead because
it requires the selection of feature E but is nested inside a block
from it’s alternative sibling feature D. Guenther showed that dead
code blocks can be effectively explained which helps the user in
resolving them [17].
Superfluous Annotation Analysis checks whether the presence
condition of a given annotation is always satisfied in accordance
with the variability modelled in the feature model. Such an annota-
tion is called superfluous annotation [44]. Their corresponding code
blocks are included in each product making their presence con-
dition dispensable. Superfluous annotations can indicate a wrong
presence condition or the annotation can be removed for the sake
of long-term maintenance costs and the readability of the source
code [44]. Figure 5c shows an example for a superfluous annotations
at line 4. The annotation is superfluous as the presence condition
requires feature C . However, feature C is always selected as the
parent block requires feature D which includes C because of their
parent-child relationship. Guenther showed the efficient generation
of explanations for superfluous annotation [17].

FeatureIDE supports the detection of dead code blocks [41], su-
perfluous annotations [44], and provides the automatic generation
of explanations for both of them [17]. We refer readers interested in
the realization of different analyses to the works mentioned above.

5 ATTRIBUTE RANGE COMPUTATION FOR
PARTIAL CONFIGURATIONS

In the previous sections, we elaborated about SAT-based variability
analyses. However, some problems cannot be easily translated to
SAT. A more expressive solver can be used to simplify the transla-
tion. In this section, we introduce an SMT-based analysis for feature
attributes. We begin with a short introduction to extended feature
models and attributes before presenting the SMT-based analysis.

Feature attributes [6] are used to extend the variability of the
features and capture non-functional properties. For instance, fea-
tures can be attributed with a price. When creating configurations,
the price can be used to decide between alternative features [23].
Each attribute consists of at least a name, a domain, and a value.
The value of a feature attribute can be set globally in the feature
model or set during the configuration process. Feature models that
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Figure 6: Example for an extended feature model and the
calculation of attribute ranges during the interactive config-
uration process.

contain features with attributes are called extended feature mod-
els [6]. Figure 6a shows an extended feature model of a simplified
product line for a computer setup. In the configuration process, the
user can choose between two monitors and two PCs. Each monitor
and PC feature is globally attributed with a particular price. Further
assistance in the configuration process is possible by performing
optimization analyses.

An optimization analysis determines the best solution for a given
optimization problem [5, 6]. The analysis receives an extended fea-
ture model and an objective function as input. The extended feature
model provides attributes for the calculation and is used to verify
that only valid configurations are considered when calculating the
optimal product. The objective function is used to determine the
quality of a solution [6]. However, the most expensive or cheapest
product is often automatically determined by native algorithms that
recursively select the most expensive/cheapest features. The result-
ing products are often incorrect because the approach does not
consider constraints that heavily influence the selection of features
(e.g., selecting the most expensive feature can later prevent the
selection of two other most expensive features due to constraints).
Hence, we introduce the attribute range analysis to improve the
interactive configuration process by computing the actual impact
after selecting or deselecting a feature.
Attribute Range Analysis computes the ranges for an attribute
of interest. An attribute range is the minimum and maximum bound
of the sum for all values of attributes that share the same name [42].
The input is an extended feature model and a numerical attribute of
interest. Then, two individual optimization analyses are performed
to find the products with the lowest and highest possible sum of all
attribute values. The encoding for these problems is not trivial for
SAT. Hence, we use SMT to compute the attribute ranges thanks to
its support of arithmetic operations and numerical domains.

FeatureIDE releases the attribute range computation for the
version 3.7.0. The analysis is utilized for the configuration process
to interactively compute attribute ranges. For instance, Figure 6b
shows the initial configuration with the computed attribute range
for the extended feature model of Figure 6a. Figure 6c shows the
price range after the user selects the monitorMZ200.
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6 EMPIRICAL EVALUATION
SMT solvers do not only provide the foundation to solve more
expressive problems but could prove as a viable replacement for
SAT solvers in variability analyses. Thus, we are interested in the
following research questions:

• RQ1: Are SMT solvers superior to SAT solvers regarding
efficiency when performing variability analyses?

• RQ2: Is a combination of SAT and SMT solvers more efficient
for variability analyses?

• RQ3: Is it efficient to calculate attribute ranges for partial
configurations with SMT solvers?

We performed an empirical evaluation to answer RQ1-RQ3 by
conducting four experiments with more than 100 real-world sys-
tems which we describe in the following.

6.1 Setup
We choose JavaSMT [25] to integrate the SMT solvers SMTInter-
pol [11] and Z3 [13] into FeatureIDE [47]. JavaSMT allows us to
easily add multiple SMT solvers into FeatureIDE without creating
an implementation for each of them. We performed the following
four experiments for our empirical evaluation:

Experiment 1 focuses on the analysis of feature models. We use
116 real-world models translated from the component definition
language (CDL). All models are provided by a benchmark from
Knüppel et al. [26] and contain between 1,178 to 1,408 features and
816 to 956 cross-tree constraints. We cover the detection and ex-
planation of void feature models, core/dead features, false-optional
features, and redundant constraints. All other analyses for only
feature models were described for the completeness of the paper
but are excluded from the evaluation as we expect similar results.
At first, we measure the runtime for all solvers to detect all defects
for a given model. Afterwards, we measure the runtime required to
generate explanations for all found defects.

Experiment 2 focuses on the analysis of configurations. We use
the large industrial feature model automotive provided by the part-
ners of FeatureIDE as input for all analyses. The model contains
18,616 features and 1,369 cross-tree constraints. We cover the va-
lidity of configurations, automated decision propagation, and their
explanations. We exclude the detection of conditionally core and
dead features because they are already included in the automated
decision propagation. We also exclude the error resolution analysis
because we expect similar results as the generation of explanations.
We start with a partial configuration containing one selected feature
(i.e., the root feature), and 18,615 undecided features. We proceed

by selecting a random undecided feature, validating the resulting
configuration, and performing automated decision propagation.
We set the timeout for the process to four hours and measure the
runtime required for the validation and propagation separately for
all solvers. Furthermore, we measure the runtime for generating
explanations of automatically selected features.

Experiment 3 focuses on the analysis of preprocessor annotations.
We use two small preprocessor example projects from FeatureIDE
for our evaluation. We proceed by detecting all preprocessor an-
notations defects and explaining them directly. The runtime are
separately measured for all solvers.

Experiment 4 focuses on calculating price attribute ranges for
partial configurations. We use three real-world extended feature
models Sandwich, Bike, and PC that we engineered based on ex-
isting configurators. The price attributes are distributed based on
the values of their existing configurators. We refer the reader to
[42] for detailed information on the engineering process. The mod-
els contain 19, 55, 377 features and 0, 0, 12 cross-tree constraints,
respectively. In the experiment, we calculate the price range of
randomly generated partial configurations. The runtime for Z3 is
measured for the optimization. We excluded SMTInterpol because
the solver does not provide the function to optimize variables.

All experiments are performed on a system with the follow-
ing specifications OS: Windows 10, CPU: AMD Ryzen 7 1700X
8x3.4GHz, RAM: 16 GB DDR4-RAM, 2400 MHz. We use the fol-
lowing versions of tools: Java 1.8.0_201, Sat4J 2.3.5.v20130525,
JavaSMT 2.2.0, SMTInterpol 2.5-66-g453d36e, Z3 4.6.0. Our imple-
mentation is based on FeatureIDE 3.6.0.

6.2 Results
We omitted similar results for many experiments. However, a git
repository containing all results is publicly available1.

Figure 7 shows the runtime in logarithmic scale of every solver
for all 116 feature models of Experiment 1. We show only the re-
sults for detecting and explaining dead features and redundant con-
straints. As other results are similar, we omitted them for brevity.
The results show that Sat4J finds defects multiple times faster than
any of the SMT solvers. However, SMTInterpol is always faster
when generating explanations, especially for redundant constraints.

Figure 8 shows the results for the automatic decision propaga-
tion and their explanations. Again, we omitted similar results for
brevity. Each plot shows the runtime in logarithmic scale for all
solvers. The results show, that the gap between Sat4J and the SMT

1https://github.com/Subaro/SMT-Based-Variability-Analyses-for-FeatureIDE
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Figure 8: Results for the second experiment. Decision prop-
agation on the left and their explanations on the right.
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Figure 10: Results for the fourth experiment. Calculating at-
tribute ranges for all three extended feature models.

solvers for solving satisfiability is growing compared to the results
of Experiment 1. Surprisingly, the SMT solvers find explanations
quite fast having again a slight advantage over Sat4J.

Figure 9 shows the results for our third experiment. The box plots
show the runtime in logarithmic scale for all solvers on detecting
and explaining dead code blocks. Again, we omitted similar results
for brevity. The results for the detection of dead code blocks show
an advantage for Sat4J when detecting defects. The results for the
generation of explanations show that SMTInterpol is faster and
Z3 is slower than Sat4J when generating explanations.

Figure 10 shows the results for our fourth experiment. The box
plots show the logarithmic runtime of Z3 on calculating the mini-
mum and maximum price range for each model. The results show
that the effort to compute the ranges grows with the numbers of
features reaching a runtime of about 12 seconds for the PC model.
Furthermore, the computation for the minimum is generally twice
as fast as the computation for the maximum.

6.3 Discussion
In the following, we discuss the results of our evaluation and use
them to answer RQ1-RQ3.

RQ1: The results clearly show that Sat4J is superior regarding
solving the evaluated satisfiability requests, including the detection
of defects, the automated decision propagation, and detecting pre-
processor annotations. Sat4J could solve some analyses about 100

times faster than each SMT solver. We can clearly see that SMT-
Interpol and Z3 are not superior regarding the efficiency for our
experiments. However, using JavaSMT has a slight overhead com-
pared to using the solver API directly and for many years now, SAT
solvers are common, and, thus, typically used for variability anal-
yses. Optimizations used by Sat4J such as the exploitation of the
variable selection strategy or the utilization of filtering techniques
can considerably improve the efficiency of an analysis [21]. We
adapted the filtering technique for SMTInterpol and Z3. However,
exploiting the variable selection strategy was not possible because
the access to the native solvers is restricted in JavaSMT. Further-
more, research has to be conducted on whether analyses can be
expressed with an SMT-encoding instead of a pure SAT-encoding
to potentially improve the efficiency of SMT solvers.

RQ2: Our evaluation showed that the SMT solvers can improve
the efficiency of finding explanations, and, thus, a combination of
Sat4J and SMTInterpol or Z3 is more efficient than relying on
Sat4J only. The only exception was Z3 that sometimes performed
worse than Sat4J for generating explanations. We saw that Z3 has
performance issues especially for small projects. Still, both SMT
solvers had the biggest advantage over Sat4J when explaining
redundant constraints finishing the analysis 12 times faster on
average. However, we only evaluated the SAT solver Sat4J against
two SMT solvers for a subset of all described analyses. Hence, a
more detailed comparison between multiple SAT and SMT solvers
covering all analyses is needed to fully answer this question.

RQ3: In our previous approach for the attribute range analy-
sis [42], we did not fully utilize SMT theories. As a result, this did
not scale for larger models, always exceeding the timeout of 24
hours for the PC model. We optimized the approach by using more
SMT theories directly provided by the solvers. The results of Ex-
periment 4 shows the large improvement of the new approach as
we could compute ranges for the PC model within 12 seconds in
general. Furthermore, it shows the large efficiency difference when
exploiting an SMT-based encoding. This could also motivate the
research of an SMT-based encoding for feature models to poten-
tially improve the efficiency of SMT solvers for variability analyses.
With our results, we conclude that the computation of attribute
ranges is efficient for smaller models to support the interactive
configuration process. However, further research is needed to iden-
tify the break-even point between the analysis runtime and the
scale of feature models. In addition, the different computation times
between minimum and maximum as well as the impact of differ-
ent attribute distributions and varying domains for attributes need
further investigation.

7 RELATEDWORK
Variability Analyses The variability analyses introduced in the
last decades are vast. Benavides et al. [6] published a systematic
literature review covering 30 analyses and categorize the proposals
for the different analyses based on the notation of feature mod-
els. The proposals are grouped by basic, cardinality-based, and
extended feature models. Additionally, the analyses are classified
into propositional logic, constraint programming, description logic,
and others. Furthermore, they give an overview about the tools
used for the constraint programming based analyses.
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Chico et. al [43] compare various #SAT solvers by computing the
number of all valid configurations for industrial systems. Their re-
sults show that most systems could be computed within acceptable
ranges. However, they faced issues with the two largest systems
and indicate that reducing the variability prior to the computation
might be a necessary step.
SAT vs SMT on SAT-Based Analyses The only work regarding
a direct comparison of SAT and SMT for variability analyses were
published by Michel et al. [32]. The work fromMichel et al. presents
an approach to automate the configuration process for software
product lines with the help of an SMT solver. They introduce trans-
lation rules to transform a given feature diagram into the input of
their SMT solver. In difference to our comparison, they use SMT-
based encoding of bit-vectors and arrays theories for their feature
diagram transformation. In addition, instead of evaluating multiple
SAT and SMT solvers they compared the SMT solver STP and his
default backend SAT solver CryptoMiniSat. Michel et al. conclude
that the optimizations internally executed by STP results in a twice
as fast runtime as CryptoMiniSat.
SMT-Based Variability Analyses One of the most often given
reasons for the usage of SMT solvers instead of SAT solvers in vari-
ability analyses is their expressiveness. Thus, many new analyses
were introduced to tackle more complex problems.

Xiong et al. [51] introduce an alternative approach for conflict
resolution, namely range fix, to fix constraint violations in software
configurations. Their approach considers non-Boolean properties
and constraints for configuration options and finding multiple ex-
planations for a given violation. Furthermore, an evaluation was
performed with the SMT solver Z3 showing an acceptable runtime
for the interactive usage within configuration tools.

Arcaini et al. [2] showed the utilization of SMT solvers for the
generation of test suites. The generated suites showed a guaranteed
fault detection capability for feature models using distinguishing
configurations. Such configurations can be used to differentiate
between a valid and a faulty feature model. They exploited the
capabilities of the SMT solver Yices and their evaluation showed
that their approach has advantages over approaches that use all
products or a subset of the products such as pairwise approaches.

Weckesser et al. [50] introduce a formalization of cardinality-
based feature models. They use a combination of integer linear pro-
gramming (ILP) and SMT solvers to automate consistency checking
and anomaly detection. Their approach uses an ILP solver to de-
tect unsatisfiable lower/upper bounds and an SMT solver to find
unsatisfiable sub-ranges of cardinalities. The evaluation shows an
exponential growth for the runtime of the SMT solver.

Nieke et al. [34, 35] propose temporal feature models (TFM) as
a notion for evolution of feature models. The history of changes
for a TFM helps to easily detect anomalies and to reduce the size
of large explanations in particular for large models. Further, the
authors introduce a method to reduce the entire TFM history to an
SMT-problem and automatically find anomalies and explanations
using an SMT solver. The results showed that their approach detects
all anomalies, has an acceptable runtime, and significantly reduces
the size of explanations.

Mauro et al. [31] introduce automated anomaly detection and the
generation of respective explanations for context-aware product
lines. Context-aware product lines introduce further configuration

options by allowing the definition conditions that influence the
selection of features. The authors use SMT solvers for their ap-
proach as SAT solvers are not expressive enough. The runtime was
acceptable but still leaves room for improvement as no particular
optimization has been performed.
Feature Attributes Optimization Benavides et al. [5] were the
first to perform automated reasoning on software product lines
using constraint programming. They introduce extended feature
models and the optimization analysis with the aim to find optimal
solutions. The difference between their and our optimization of
feature attributes is that their approach is based on constraint pro-
gramming (CP). Another approach for the optimization of feature
attributes was introduced by Heijblom [18]. He translated extended
feature models into integer problems and solved them using integer
programming (IP) as an optimization technique. Furthermore, an
empirical evaluation was performed to compare the runtime of
CP vs IP. Heijblom concludes that IP is slightly inferior regarding
efficiency but is generally preferred as less information is required.

8 CONCLUSION
We presented an overview about solver-based variability analy-
ses in FeatureIDE. They were categorized into SAT-based feature
model analyses, configuration analyses, and preprocessor analyses.
Additionally, we proposed the usage of SMT solvers for the calcula-
tion of feature attribute ranges of partial configurations to assist
the interactive configuration process. Most of the analyses are SAT-
based and are traditionally performed by SAT solvers. However,
the recent improvements of SMT and their higher expressiveness
motivate the replacement of SAT solvers by SMT solvers.

We empirically answered the question of whether SAT solvers
are replaceable by SMT solvers based on their efficiency for more
than 100 real-world systems for a subset of the presented analyses.
Our results showed that the SMT solvers we evaluated are only
superior when generating explanations. Thus, we recommend SMT
solvers for the generation of explanations while all other SAT-based
analyses should be further delegated to SAT solvers.

Our empirical evaluation for the proposed attribute range anal-
ysis was performed with the SMT solver Z3 for three real-world
feature models. Our results show that the computation of attribute
ranges is efficient for small feature models.

Our comparison of SAT and SMT showed that further work is
needed to establish SMT solvers as common alternatives in feature
modelling tools. First, the impact of an SMT-based encoding for
feature models, configurations, and presence conditions needs to
be investigated. Second, SAT solvers were the first choice for many
years of variability analyses and many optimizations were pro-
posed. Thus, we need to adapt such optimizations for SMT solvers
to improve their efficiency. In addition, further research for the
computation of attribute ranges is needed. We need to identify the
break-even point between the analysis runtime and the scale of
feature models. Also, the impact of feature attribute values and
their distribution needs to be further investigated. This includes the
relevance of unnecessary attribute values as certain attributes only
need to be applied to a restricted group of features. The runtime for
the computation of minimum and maximum bounds also showed
significant differences and need to be further investigated.
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