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ABSTRACT
Configurable systems are widely used for families of products that
share multiple configuration options. These systems often induce a
large configuration space. Handling the variability of such a system
is difficult without being able to measure its complexity. Several
methods depend on computing the number of valid configurations,
such as estimating the effort of an update or effectively reducing
the variability of a system. In many cases, it is possible to map a
configurable system to propositional logic. Therefore, we use #SAT
in order to evaluate variability of such systems. A #SAT solver com-
putes the number of valid assignments of a propositional formula.
However, this problem is even harder than SAT. The main contribu-
tion of our work is an investigation of the scalability of off-the-shelf
#SAT solvers on industrial feature models. Additionally, we exam-
ine the correlation between size of a system and the runtime of a
solver computing the number of valid configurations. In this pa-
per, we empirically evaluate nine publicly available #SAT solvers
on 127 industrial feature models. Our results indicate that current
solvers master a majority of the evaluated systems. However, there
are large models, for which none of the evaluated solvers scales.
Nevertheless, there are even larger and more complex systems for
which the solvers scale.

KEYWORDS
Configurable Systems, Feature Models, Product Lines, Model Count-
ing, Configuration Counting, #SAT

1 INTRODUCTION
A configurable system represents a variety of valid configurations
that share certain configuration options, also called features [7]. A
configuration is induced by a selection of the features. However,
systems typically contain constraints which limit the set of valid
configurations. For example, a car product line can be interpreted
as such a configurable system. A constraint to limit the set of valid
configurations might be allowing only one gearbox type for each
car: manual or automatic. Thus, a configuration with both or no
type of gearbox is considered invalid.

The set of valid configurations is known as the configuration
space [5]. When introducing a new feature to a configurable, system
the number of valid configurations is doubled in the worst case.
In this scenario, each previously valid configuration is still valid
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with and without the new feature. Thus, the configuration space
grows up-to exponentially. A configurable system with n features
has up-to 2n valid configurations [9]. However, real-world systems
are typically more limited [8, 27].

It is difficult to manage this variability without knowing the
number of valid configurations induced by a configurable system.
For instance, the following methods rely on counting the number of
valid configurations: commonality and homogenity of features [9,
14, 17], variability reduction [9], rating errors in a configurable
system [27], and uniform random sampling [33]. These use cases
are further described in Section 2.

Model counting can be used for quantitative analysis of config-
urable systems [17, 27]. In this paper, we focus on propositional
model counting (for short #SAT), which determines the number
of valid assignments for a given propositional formula. #SAT is an
even harder problem than SAT [12]. However, the #SAT community
keeps pushing the limits of #SAT solvers [6, 12, 15, 28, 42]. While
Mendonca et al. argued that SAT is typically easy for real-world
models compared to hard instances of SAT [30], this is currently
unknown for #SAT to the best of our knowledge.

The main goal of this paper is to examine the efficiency of cur-
rent #SAT solvers on real-world configurable systems. In order to
do so, we analyze nine publicly available solvers [6, 10, 12, 15, 28,
32, 39, 42, 43] on 127 industrial systems. Hereby, we focus on ex-
act #SAT solvers, contrary to approximate solvers. The analyzed
systems consist of a benchmark from Knüppel et al. [25] and three
automotive product lines provided by our industry partner. In our
evaluation, we aim to answer the following research questions:

• RQ1:Do #SAT solvers scale to industrial configuration spaces?
• RQ2: Is one #SAT solver superior to the other solvers?
• RQ3: Does the runtime of the solvers correlate to the size
or complexity of the configuration space?

• RQ4: How does the number of valid configurations relate
to the number of all configurations?

• RQ5: How does the number of valid configurations change
during the evolution of a configurable system?

2 THE NEED FOR CONFIGURATION
COUNTING

In this section, we describe use cases for counting the number of
valid configurations of configurable systems.

Commonality. The relative share of valid configurations that
contain a certain feature is called commonality of that feature [17].
It can be used as an indication for the feature’s relevancy in the
configurable system [9, 17]. However, to compute the commonality,
it is necessary to be able to count the number of valid configurations.

Homogeneity. The metric describes the similarity of valid con-
figurations induced by the configurable system. If the common base
of features in different configurations is small, this might indicate
that using a product line instead of single products might not pay
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off. A common way to compute homogeneity is the commonality
mean over all features [14, 17].

Rating Errors. Counting the number of products can help to
rate the impact of an error. After identifying an erroneous subset
of the system, it is possible to compute the number of products
containing this subset. An error appearing in more products might
indicate a more critical error [27].

Variability Reduction. One might try to decrease the size of
the configuration space by introducing further limiting constraints.
However, in order to grasp the impact of such changes it is necessary
to know the number of products before and after adding a new
constraint [9].

Uniform Random Sampling. As it is mostly not feasible to
analyze a configuration space by enumerating all configurations,
it is common to create representative samples for a configurable
system [33]. However, finding these samples is not easy. Randomly
selecting features often results in invalid configurations. Only in-
cluding the resulting valid configurations still does not guarantee
randomness [35]. One way to achieve random samples is uniform
random sampling [33]. The goal is to create a bijection between
integers and configurations. Then, by randomly selecting an integer
within the range, each configuration has the same probability to be
included in the sample. The bijection can be achieved using #SAT by
recursively assigning the variables [33]. For each assignment, the
number of valid configurations needs to be computed [36]. This re-
quires an efficient model counter, especially for large systems [33].

3 MOTIVATING EXAMPLE
Figure 1 shows a feature diagram representing a simplified car
product line. It displays the tree structure and additional cross-tree
constraints given in propositional logic. The tree structure and the
cross-tree constraints limit the set of valid configurations. Each car
of the product line is required to have a Carbody. This is indicated
by the mandatory property of the feature. In contrast, a Radio is an
optional feature. A configuration that does not contain exactly one
of theGearbox types,Manual orAutomatic, is invalid, as they appear
in an alternative-relation in the feature diagram. Furthermore, the
Ports of a Radio include at least one of USB and CD. This relation is
described by an or-relation. The cross-tree constraint Navigation
⇒ USB represents that a car with Navigation requires an USB-port.

Feature diagrams are a visual representation of feature mod-
els [7]. They are commonly used to define configurable systems [7].
Each configuration corresponds to a selection of the features con-
tained in the model. Knowing the exact number of configurations
can help analyzing the feature model. For example, the feature USB
is in 32 of the 42 (76,1%) valid configurations, while CD is only in 20
(47,6%). This relative share is called commonality and indicates the
relevancy of a feature. During the development of the displayed car
product line, it might be more effective to prioritize Carbody over
Radio to build as many cars as possible with few features. Another
scenario might be aiming to reduce the number of different cars
induced by the product line for better maintainability. Suppose, the
developers consider one of three options to reduce the number of
configurations: removing Bluetooth, allowing only one of USB and
CD, or making Radio a mandatory feature. Computing the number
of configurations after each of the changes shows the variability
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Figure 1: Example feature model adapted from Ananieva et
al. [3]

reduction of each change. The resulting feature models contain 22,
26, and 40 valid configurations respectively. Therefore, removing
Bluetooth is the most effective change regarding the reduction of
variability. To enable such analyses, we are interested in computing
the number of valid configurations.

Without the cross-tree constraints, computing the number of
valid configurations has linear time complexity in the number of
features. Only considering the tree-structure, the selections in a sub-
tree are completely independent from selections in other sub-trees.
Therefore, it is possible to compute the model count of each sub-
tree separately. Without cross-tree constraints the model defines 66
valid configurations. This can be computed by traversing through
the tree once recursively by applying rules for each relation type.
For example, the number of valid configurations of an alternative
sub-tree is equal to the sum of its childrens model counts. Leaf
features contain exactly one configuration. Thus, the computation
has linear time complexity. However, this is not possible anymore
when considering cross-tree constraints.

With cross-tree constraints, the number of configurations cannot
be computed in polynomial time complexity. Every feature model
can be translated to a propositional formula [30]. Furthermore, a
feature model that contains cross-tree constraints can represent
every propositional formula [25]. Thus, computing the satisfiability
of a model with those constraints is at least as hard as SAT. Deter-
mining whether a formula is satisfiable after computing the number
of valid assignments is trivial. Therefore, #SAT is at least as hard as
SAT [23]. It follows that the complexity of counting the number of
valid configurations with cross-tree constraints is not polynomial.

4 MODEL COUNTING
SAT solvers are used to determine whether a propositional for-
mula is satisfiable (i.e., there is an assignment with which the for-
mula evaluates to true) [20]. Let F be a propositional formula and
vars(F ) with |vars(F )| = n the corresponding set of variables. An
assignment is a function α : vars(F ) → {0, 1} that maps variables
contained in F to the truth values 0 or 1 [27]. Assignments can be
partial, meaning that not every variable v ∈ vars(F ) is mapped to
0 or 1. Otherwise, the assignment is called full [27]. The cardinality
|α | ≤ n corresponds to the number of variables mapped to 0 or 1 in
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α . The function F (α) → {0, 1} evaluates whether a full assignment
α satisfies the formula F . We call an assignment α with F (α) = 1 a
valid assignment or a model.

Propositional model counting (for short #SAT) is defined as com-
puting the number of valid full assignments of a propositional
formula [18, 27]. #F = |{α |F (α) = 1}| corresponds to the number
of models (i.e., valid full assignments of formula F ).

#SAT is widely believed to be harder to solve than SAT [12]. #SAT
is obviously at least as hard as SAT, because it is trivial to determine
whether there is at least one solution after computing the number
of solutions [23]. Even though the problem is difficult with regard to
the theoretical complexity, the #SAT community made significant
advances in the last decade [6, 12, 15, 28, 42]. We focus on the major
model counting methods, namely DPLL-based [6, 10, 12, 39, 42],
d-DNNF-based [15, 28, 32], and BDD-based [43] counting. We give
a short introduction to those three methods in the following.

Davis-Putnam-Logemann-Loveland (DPLL)-based counting uses
an explorative search through the tree representing the formula
with n variables. Each depth in the tree corresponds to the as-
signment of one variable of the formula. The goal is to find an
assignment α with |α | ≤ n that either satisfies or does not satisfy
the formula for each possible assignment of the remaining n − |α |
variables. If the formula evaluates to false under the assignment α ,
the number of models for the corresponding branch is 0. If it evalu-
ates to true, the number of models for the corresponding branch is
2n−|α | , which is the number of possible assignments of the remain-
ing variables. A valid full assignment has exactly 2n−n = 1 model.
After computing a result for a branch, DPLL uses backtracking
to find remaining assignments. This is done until the number of
models for every branch is known. The sum of computed results is
the exact number of models [11].

Another possible way to compute number of models are d-DNNF
compilers. The term d-DNNF stands for deterministic, decompos-
able negation normal form. d-DNNF is a subset of NNF that satisfies
determinism and decomposability [16]. A formula L is called deter-
ministic if each child D1, ...,Dn of a disjunction D ∈ L is logically
disjunct (i.e., ∀i, j : i , j : Di ∧ D j |=⊥) [16]. A formula is called
decomposable if the children C1, ...,Cn of a conjunction C share
no variables (i.e., ∀i, j : i , j : vars(Ci ) ∩ vars(Cj ) = ∅) [16].
Determinism implies that the children D1, ...,Dn of a disjunction
D share no common solutions. Therefore, the model count of the
sub-tree corresponding to the disjunction is equal to the sum of
the children’s results (i.e., #D =

∑n
i=1 #Di ) [11]. Decomposability

implies that each conjunction C can be decomposed into disjoint
sub-trees representing the children C1, ...,Cn . It follows that the
model count of the conjunction is equal to the product of the results
for each subtree (i.e., #C =

∏n
i=1 #Ci ) [11]. Using both properties, it

is possible to compute the overall number of solutions by traversing
through the formula once [11]. A d-DNNF-based model counting
corresponds to compiling a propositional formula to d-DNNF. A
common way to compile a CNF to d-DNNF is an exhaustive DPLL
algorithm [15, 32]. After the compilation, computing the model
count takes polynomial time [15]. The d-DNNF is strictly more
succinct than binary decision diagramms [16]. Therefore, d-DNNFs
should take less memory to express a propositional formula.

A binary decision diagram (BDD) is a directed acyclic graph that
represents a propositional formula F [19]. Each BDD contains two
terminal nodes, with values 0 and 1, and at least one variable node.
Every variable node corresponds to one variable v ∈ vars(F ) and
has exactly two child nodes, one high and one low child. Each child
can either be another variable node or a terminal node. Suppose an
assignment α , it can be evaluated by recursively traversing through
the BDD. At each variable node corresponding to variable v , the
next edge taken by the traversal depends on α(v). Depending on
whether α(v) = 0 or α(v) = 1, the edge to the low or high child is
taken respectively. The assignment α satisfies the formula if the
resulting path ends in the 1-terminal node [19]. The required space
for a BDD is highly dependent on the variable ordering [31, 34].
Therefore, the literature often considers ordered binary decision
diagrams (OBDD) and reduced OBDDs [19, 22, 31]. A BDD is called
ordered if the variable index of a parent is always higher than the
indices of its children [17]. Additionally, a BDD is called reduced if
the two following properties hold. First, there is no variable node
whose low and high child are the same node. Second, there are
no two distinct nodes for which the ancestors are equivalent [43].
BDDs can be compiled from a propositional formula using an ex-
haustive DPLL search as d-DNNF [21, 22]. The model count can be
determined by traversing through the diagram starting from the
1-terminal node. This improves the runtime as unsatisfied paths
are not considered. Furthermore, the efficiency of computing the
number of valid assignments can be improved by using dynamic
programming [17].

5 EVALUATION
In this section, we report on our evaluation of #SAT solvers on in-
dustrial feature models. We examine the scalability of #SAT solvers,
the correlation of size of a system with the scalability, and the
evolution of configurable systems.

5.1 Evaluated #SAT Solvers
Our benchmark considers three types of model counters. Mainly,
we evaluated DPLL-based solvers and CNF to d-DNNF compilers.
Additionally, we added one CNF to BDD compiler for comparison,
as previous works also used BDDs for model counting [2, 19, 29].
Every chosen solver uses CNFs in DIMACS-format as input and
is publicly available. Furthermore, we only evaluated exact #SAT
solvers, contrary to approximate ones.

• DPLL-based solvers: Relsat [6], Cachet [39], sharpSAT [42],
countAntom [12], picoSAT [10]

• CNF to d-DNNF compilers: c2d [15], d4 [28], dSharp [32]
• CNF to BDD compiler: CNF2OBDD [43]

5.2 Subject Systems
We evaluate the performance of the listed #SAT solvers on industrial
configurable systems from the automotive and operating system
domain. First, we analyze configurable systems provided by Knüp-
pel et al. [25]. These systems were extracted by snapshots of an
automotive product line and translating KConfig and CDL models.
KConfig was designed for managing Linux configurations and CDL
for managing eCos [25]. The systems are available as FeatureIDE
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Subject Systems #Models #Features #Constraints
KConfig 7 96-6467 14-3545
CDL 116 1178-1408 816-956

Automotive02 4 14010-18616 666-1369
Automotive03 5 149-588 0-1184
Automotive04 50 127-531 0-623
Automotive05 136 246-1674 0-11632

Table 1: Number ofmodels, range of features, and range con-
straints of the evaluated subject systems

feature models.1 We converted the models to DIMACS-format using
FeatureIDE 3.5.5.2

Second, we were given access to industrial models for three dif-
ferent systems from the automotive domain. These models were
provided in a proprietary format. With the help of company interns,
we translated their data structure into feature models. Afterwards,
we transformed the resulting models to the DIMACS-format us-
ing FeatureIDE 3.5.5. Each feature and constraint in the system
included a date which indicated the introduction into the system.
Furthermore, some included a date that indicated exclusion. Using
these properties, we created snapshots that represented the system
only with features and constraints that are included at the given
timestamp. In the remainder, we distinguish between the entire
system and snapshots of that system. We refer to these snapshots
as models. Furthermore, if we use the term system, we always refer
to the latest model of that system. Table 1 presents properties of
all systems considered in the experiment. All models and systems
only contain boolean variables and boolean constraints.

5.3 Experiment Design
In the first stage, we evaluated all solvers specified in Section 5.1
on every subject system described in Section 5.2. If a solver was
not able to compute a result within 10 minutes, the process was
terminated. In the second stage, we repeated the experiment with
all the systems and models that could not be evaluated within 10
minutes by any of the solvers. Here, the timeout was set to 24 hours.
For 127 systems, a single solver that does not scale might need more
than four months for the computation. Therefore, we excluded all
solvers in the second stage that could not evaluate at least half of
the models within 10 minutes in the first stage.

All solvers except CNF2OBDD provided parameters to internally
limit the maximum memory used. During the entire benchmark,
we set this memory limit for each solver to 8 GB. However, some-
times solvers exceeded the given limit. If a solver reached 10 GB
of memory, the process was terminated to prevent an unintended
use of memory. The solver countAntom allows multi-threading and
the maximum number of used threads can be defined. During the
first stage, we evaluated countAntom with one and four available
threads separately for better comparison. For the second stage, we
only considered countAntom with four available threads. During
the remainder of the evaluation, we consider the experiment with
four threads if not stated otherwise.

1https://github.com/AlexanderKnueppel/is-there-a-mismatch
2https://github.com/FeatureIDE/FeatureIDE

5.4 Results
Figure 2 shows the runtime of each solver on all configurable sys-
tems listed in Section 5.2. The runtime is logarithmic. The red
line indicates the timeout and the blue line indicates that a solver
reached the memory limit. In the first stage, Picosat reached the
timeout on every system and Relsat for 119 of the 127 (93.7%) sys-
tems. CNF2OBDD scaled to only 3 of 127 systems (2.36%), namely
axTLS (96 features), uClinux-base (380), and Automotive04 (531).
It reached the memory limit of 8 GB for 122 and the timeout for 2
systems. Most other solvers only reached timeout for Linux and
Automotive05. The only other exceptions were Cachet and c2d
which both had an additional timeout on one other model. coun-
tAntom was the fastest solver for 113 systems. countAntom with
only one thread was 1.9 times slower on average than with four
threads. However, it was still the fastest solver on all these 113
systems. dSharp was terminated for one system for reaching the
hard memory limit of 10 GB.

In the second stage, the experiment was repeated without Pi-
cosat, Relsat, and CNF2OBDDwith a timeout of 24 hours to examine
whether a solver is able to compute the remaining systems. How-
ever, even within 24 hours not a single solver was able to compute
a result for Linux or the latest model of Automotive05.

Figure 3 shows the runtimes in seconds of the six remaining
solvers on the 5 Automotive03, 50 Automotive04, and 136 Auto-
motive05 models. In each diagram, the runtime has a logarithmic
scale. For Automotive03 and Automotive04, c2d required up to 5.7
seconds to evaluate the models. None of the other solvers remaining
in the second stage needed more than 250 milliseconds for any of
these models. Cachet and sharpSAT even computed the number of
products within 50 milliseconds for the models of Automotive03
and Automotive04. The following solvers were the fastest ones
on at least one of these models: sharpSAT (fastest for 29 models),
Cachet (24), and dSharp (1).

While the remaining solvers scaled for every model of Automo-
tive03 and Automotive04, this is not the case for Automotive05. The
model count of 33 of the 136 models could be computed by at least
one solver within 10 minutes. Due a lack of time, the experiment
was repeated with a 24 hours timeout with only the three solvers
that solved the highest number of models: c2d (33 solved models),
countAntom (31/ 23 with one thread), and d4 (29). Within 24 hours,
the number of configurations could be computed for 62 models by
c2d (51 solved models), countAntom (62), and d4 (49). All of those
62 models were within the 65 earliest ones. For the 65th model 21.6
hours were required to compute the number of configurations.

Figure 4 shows the correlation of the number of features, con-
straints, and clauses with the runtime of the fastest solver. In each
diagram, both scales are logarithmic. Every system with fewer than
1,000 features, 1,000 constraints, or 10,000 clauses was evaluated
within 100 milliseconds. The two systems that reached the timeout,
the Linux product line and Automotive05, contain 6,467 and 1,663
features. The number of configurations for Automotive02 which
contains 18,616 features, 1,369 constraints, and 350,221 clauses was
computed within 500 milliseconds.

Figure 5 shows the runtime of the fastest solver for Automo-
tive03, Automotive04, and Automotive05 in correlation to number
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Figure 2: Runtime in seconds (logarithmic) of all solvers on every system with a timeout of 10 minutes
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Figure 3: Runtime in seconds of remaining solvers on every model of Automotive03, Automotive04, and Automotive05 with a
timeout of 10 minutes

of features, constraints, and clauses. The three systems are distin-
guished by means of different colors. In each diagram, the runtime
has a logarithmic scale. Every model with less than 1,000 features,
3,000 constraints, or 10,000 clauses was evaluated within 100 mil-
liseconds.

The computed number of products in correlation to the number
of features systems are displayed in Figure 6 for every evaluated
model. Both scales are logarithmic. The different systems are distin-
guished by means of different colors. The results of Automotive02
are omitted for better readability. Table 2 shows the ranges of num-
ber of configurations of each system, including Automotive02. For
every evaluated system that contains multiple models, the number
of features is weakly monotonically increasing. This is not the case
for the number of configurations as sometimes a later model has
fewer configurations. However, overall the configuration space of

Subject System #Models(Solved) #Configurations
KConfig 7(6) 8.3 ∗ 1011 − 2.1 ∗ 10201
CDL 116(116) 2.6 ∗ 10118 − 3 ∗ 10136

Automotive02 4(4) 4.7 ∗ 101260 − 1.7 ∗ 101534
Automotive03 5(5) 5.8 ∗ 1028 − 2.5 ∗ 1031
Automotive04 50(50) 1.6 ∗ 1013 − 4.8 ∗ 1023
Automotive05 136(62) 2.2 ∗ 1048 − 1.1 ∗ 1066

Table 2: Number of models and range of number of valid
configurations

every automotive system is also growing over time. Table 2 shows
the ranges of number of configurations for every evaluated system.
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5.5 Discussion
In this section, we discuss the results regarding our five research
questions RQ1-RQ5.

RQ1: Do #SAT solvers scale to industrial configuration
spaces?Our results indicate that it is possible to apply #SAT solvers
to analyze various configurable systems. Overall, the model count
was computed for 125 of the 127 analyzed systems and all models

of Automotive02-Automotive04 within 10 minutes. However, the
current solvers do not scale for all industrial systems that were
available to us. Two systems could not be evaluated: Automotive05
and Linux. Out of the 136 Automotive05 models only 35 were eval-
uated within 10 minutes. With a 24 hours timeout, 62 models were
evaluated by at least one solver.

RQ2: Is one #SAT solver superior to the other solvers?None
of the solvers was superior to the other solvers in every instance.
Cachet is the fastest solver for 24 out of the 55 models from Automo-
tive03 and Automotive04, but only for 7 other systems. c2d solved
the highest number of models from Automotive05 of all solvers
within 10 minutes, but required by far the longest runtime for the
Automotive03 and Automotive04 models of the solvers considered
in the second stage. However, countAntom was the fastest one in
113 of the 127 systems that were solved by at least one solver within
10 minutes. Furthermore, the solver computed the highest number
of models from Automotive05 within 24 hours.

Even though the best performing solver countAntom is DPLL-
based, the results do not indicate a superiority of DPLL-based over
d-DNNF-based solvers regarding the scalability of computing the
number of configurations. However, for larger systems the BDD-
based solver has scalability issues, as the memory limit was reached
for 122 systems (i.e., 96.1% of all systems). picoSAT is the only solver
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that computes the number of valid solutions by enumerating them
and scaled to none of the evaluated systems.

RQ3: Does the runtime of the solvers correlate to the size
or complexity of the configuration space? The results indicate
that it is always easy to compute the number of configurations
for small and incomplex systems. For example, every system with
less than 1,000 features or constraints was evaluated within 100
milliseconds. However, a large number of features, constraints, or
clauses does not necessarily cause a time-consuming computation.
The Automotive02 system contains by far the most features, but
sharpSAT still evaluated it in less than 500 milliseconds. Outside
of the given experiment design, we created a model of Automo-
tive05 that included every feature and constraints that appears in
the product line at any point in time. This model contains 27,532
constraints. Still, the fastest solver did not even need 2 seconds for
the evaluation, while reaching timeout for models with less than
10,000 constraints.

Nevertheless, the scalability of different versions of a single sys-
tem seems to positively correlate with the size and complexity. This
is indicated by the benchmarks for Automotive03, Automotive04,
and Automotive05 in Figure 5.

RQ4: How does the number of valid configurations relate
to the number of all configurations? A model with n features
contains up-to 2n configurations [9]. However, a larger n does
not guarantee a larger number of valid configurations. Busybox
contains 854 features and induces 2.1 ∗ 10201 valid configurations
while the largest model from Automotive05 that could be evaluated
contains 1506 features and induces 1.1 ∗ 1066 valid configurations.
Nevertheless, the results for Automotive03, Automotive04, and Au-
tomotive05 indicate that within similiar systems there is a positive
correlation between all and valid configurations.

RQ5:Howdoes thenumber of valid configurations change
during the evolution of a configurable system? During our ex-
periments only four configurable systems contained multiple mod-
els: Automotive02-Automotive05. For each of those systems the
number of features monotonically increased at every new model.
The results also indicate that configuration spaces of configurable
systems continually grow. However, there are cases where a newer
model induced fewer configurations. In these cases, the correspond-
ing update introduced new constraints and only few new features.

In order to improve the scalability of #SAT solvers on config-
urable systems, we consider two possibilities. On the one hand, the
#SAT community pushes the limits by further improving solvers.
On the other hand, even continually improved solvers might not
scale for large configurable systems. Another way to improve scal-
ability, might be to limit the configuration space by reducing the
variability (e.g., with feature-model slicing [1, 4, 26] or by modular-
ity principles [40]).

5.6 Threats to Validity
During the evaluation of #SAT solvers on industrial feature models,
we identified a few potential threats to validity.

Translating the subject systems to featuremodels.Our trans-
lation of the automotive product lines might be incorrect. However,
we created the parser in direct cooperation with company interns.
Furthermore, the resulting model was reviewed by them. Another

threat is that we could not parse a few constraints as they contained
features that did not appear in the feature model. Therefore, we
possibly reduced the complexity of the resulting models.

Knüppel et al. also remarked some threats to internal validity
regarding their translation of configurable systems [25]. First, there
are differences between CDL and KConfig and the target format.
Second, the translation may have removed a few cross-tree con-
straints. Furthermore, a few cases lead to features that did not
appear in the input format [25].

Translating featuremodels to theDIMACS-format. For the
translation to DIMACS-format, we used the FeatureIDE-library [24].
In order to ensure a correct translation, we performed the following
sanity checks. First, we manually computed the model count of
small feature models and compared these results with the ones
computed by the solvers. Second, we made changes to the feature
model that should change the model count in a certain way. For
example, we added an optional feature to the root which should
always double the number of products. Another important aspect
of the translation to CNF is that the model count of the new for-
mula has to stay the same. This is not given for every conversion
method [27]. However, FeatureIDE uses a transformation that does
not introduce new variables, nor changes the number of solutions.
The results of the sanity checks support this claim.

Computation of the solvers. We only used external solvers
without a possibility of directly verifying the results. However,
for every computed instance the model count returned by each
solver was equal. This is a strong indicator for the correctness of
the solvers.

External Validity. We can not claim that our results can be
transferred to all other industrial configurable systems. The prod-
uct lines provided by our industry partner are limited to one do-
main and company. Furthermore, Knüppel et al. also argued that
their results can not directly be transferred to other real-world sys-
tems [25]. However, overall we considered multiple domains and
various different systems. Therefore, our results possibly indicate
the scalability of #SAT solvers for other configurable systems.

6 RELATEDWORK
Model Counting of Configurable Systems. Kübler et al. [27]
also evaluated the use of two older #SAT solvers, Cachet [38] and
c2d [15], on three different body styles of a automotive product line.
We evaluated both solvers and they were outperformed by newer
solvers on most instances. However, the authors also proposed their
own model counter that was not based on conjunctive normal form
and performed well even on larger systems. We were not able to
acquire their solver or their evaluated product lines. Therefore, we
could not directly compare the results.

Pohl et al. [37] evaluated different feature model analyses in-
cluding model counting using binary decision diagrams, constraint
satisfaction problem solvers, and SAT solvers. However, the authors
used models with much smaller configuration spaces and fewer
features for their evaluation. Their analyzed configuration spaces
only reached up to 108 valid configurations.

Current Tool Support. BDDs are a popular choice for counting
the number of products of configurable systems [2, 19, 29]. The
benchmark of Pohl et al. indicated that BDDs might be faster than
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#SAT solvers [37]. Furthermore, it is possible to compute the BDDof-
fline and answer queries on the live system in polynomial time [19].
However, our results indicate that BDDs need too much memory
for larger feature models. Additionally, d-DNNFs can be computed
offline as well and are stricly more succinct than BDDs [16].

FeatureIDE uses a regular SAT solver to compute the number of
valid configurations [41]. The tool realizes counting with a regular
SAT solver using blocking clauses; after finding a valid assignment
α , it is negated and added as a clause to the formula. Thus, α is not
a valid assignment for the resulting formula and the next run of
the solver returns another assignment. For each found assignment
(i.e., valid configuration), an execution from scratch is required.
Therefore, the algorithm does not scale for larger systems [43].

Non-propositional Model Counting. Constraint satisfaction
problems (CSP) are an alternative to propositional logic for the
representation of feature models [7–9, 37]. CSPs are defined by a
set of variables, domains for each variable, and constraints over
these variables. For CSPs, the variables may also be integers or
intervals contrary to propositional boolean variables which are
strictly binary [7]. Benavides et al. used constraint programming
(CP) to compute the number of valid configurations of feature
models. However, the models considered in their experiment only
included up to 23 features [9]. The results of the experiment of
Pohl et al. which compared SAT solvers, BDDs, and CSP solvers
also indicated that the analyzed CSP solvers scale far worse than
the #SAT solvers evaluated in our experiment [37]. Munoz exam-
ined counting the number of valid configurations of feature models
with numerical features for uniform random sampling. The au-
thors evaluated an SMT solver, a CP solver, and the #SAT solver
sharpSAT. The numerical values were translated to propositional
logic using bit-blasting [33]. In their experiment, sharpSAT vastly
outperformed the CP and SMT solver.

7 CONCLUSION
Managing the variability of configurable systems is hard without
computing the number of valid configurations. In this paper, we
analyzed three d-DNNF-based [15, 28, 32], five DPLL-based [6, 10,
12, 39, 42], and one BDD-based [43] #SAT solver on industrial
configurable systems. Those systems consisted of models provided
by Knüppel et al. [25] and three automotive product lines provided
by our industry partner. Most of the features and constraints of the
automotive product lines were only valid for a specific period of
time. Therefore, we were able to create snapshots, each representing
one timestamp for each product line.

Out of the 127 evaluated systems, 125 could be computed within
10 minutes by at least one solver. However, the remaining two
systems, Linux and a majority of the snapshots of the largest auto-
motive product line, could not even be computed within 24 hours.
This indicates that current #SAT solvers scale to many, but not to
all systems. Furthermore, the results for different snapshots of the
same system indicate that the configuration space of these systems
is continually growing during the evolution. While the #SAT com-
munity keeps pushing the limits for their solvers, even new solvers
do not necessarily scale for the growing systems. Deliberately re-
ducing the variability of a configurable system might be necessary
to enable the computation of the number of valid configurations.

In our experiments, some solvers were able to evaluate only a
minority, if any, of the given systems. While, none of the solvers
was strictly superior to all other ones, countAntom [12] was the
fastest solver for 89.0% of the evaluated systems. Nevertheless, it
might be beneficial to use different solvers in parallel.

To measure the complexity of a system, we considered the num-
ber of clauses and constraints. For the size, we considered the
number of features. The results indicated that the number of valid
configurations of a more complex or larger system does not neces-
sarily take more time to be computed. However, the runtime has
a positive correlation with the size and complexity within similar
systems. Furthermore, a majority of the solvers scales for all smaller
or less complex models.

8 FUTUREWORK
In this section, we describe further tasks in counting the configura-
tion space of configurable systems.

Approximate #SAT Solvers. In this paper, we focused on exact
model counting. However, the results indicated that exact model
counters may not be scalable for large industrial systems. One so-
lution for this problem might be approximate #SAT solvers [13, 18].
These aim to count the number of satisfying assignments within a
given confidence level [13]. Approximate solvers often allow vari-
ous options to parameterize the process of model counting [13, 18].
For approximated analysis of configurable systems it is necessary
to find suitable parameters that result in efficient and effective
computations.

Further Metrics for a Meta-Solver. Our results show that the
solvers perform differently depending on the system. None of the
solvers was strictly superior to the others. Analyzing the meta-data
of configurable systems might enable an efficient meta-solver that
selects the most promising solver depending on a given instance.
For regular SAT, it is already known that selecting a solver based
on single instances vastly improves the performance [44].

Directly Translate Feature Models to d-DNNF. Every exper-
iment used propositional formulas in conjunctive normal form. The
translation to CNF was not considered in the runtime. However, for
the larger systems, the translation requires a considerable amount
of time. Directly translating the feature model to d-DNNF might
result in two benefits. First, the time overhead of computing the
model to CNF would be eliminated. Second, it is possible that the
direct translation is even less expensive itself.

Analyze Memory Usage. We mainly focused on the runtime
of the solvers. However, memory usage plays an important role
as well. Especially, the d-DNNF and BDD compilers need a high
amount of memory to translate the formula.

Growth of Configuration Spaces. Our results indicated that
the size of configurable systems we analyzed grow over time. How-
ever, we do not have enough data to translate this observation on
other systems. Analyzing how fast configuration spaces are grow-
ing might enable the following estimations. First, the growth might
indicate whether #SAT solvers scale for a future model. Second, the
number of valid configurations of a future model can possibly be
estimated without using a #SAT solver.
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