
Hyper Explanations for Feature-Model Defect Analysis
Marc Hentze

marc.hentze1@volkswagen.de
Volkswagen Aktiengesellschaft

Germany

Tobias Pett
t.pett@tu-braunschweig.com

Technische Universität Braunschweig
Germany

Thomas Thüm
thomas.thuem@uni-ulm.de

Universität Ulm
Germany

Ina Schaefer
i.schaefer@tu-braunschweig.com

Technische Universität Braunschweig
Germany

ABSTRACT
Proprietary formats, missing analysis tools, the lack of continuous
toolchains and their complexity itself impair the maintainability of
industrial variability models, making them prone to defects. Also,
automated analysis of variability models is still not common in
industry. To gain detailed information about the defects in a vari-
ability model, it can be converted into a standardized feature model
to apply automated analyses that expose present defects. However,
resolving those defects can be challenging, as their cause can be
complex, especially for large feature models. To mitigate this, an
explanation can be generated which identifies feature model parts
that are involved in a specific defect. Although those explanations
provide valuable information, handling a high number of defects at
the same time remains a tedious task, as there is no prioritization
that states which defect is to be handled first to achieve the best
progress.
In this paper, we propose a concept to automatically derive that
prioritization based on hyper explanations, which are generated
by aggregating the information provided by the explanations of
single defects. Hyper Explanations allow to derive a prioritization
not only for defects but also for defect-creating constraints. We
applied our concept to industrial feature models and discussed the
results with domain experts, which led to an unexpected conclusion:
The models contain intentionally created dead features. We further
evaluate the usage of intentionally dead features in industry and
discuss how to handle them together with actual defects.

CCS CONCEPTS
• Software and its engineering→ Software product lines; Soft-
ware defect analysis; Feature interaction.

KEYWORDS
feature model defects, defect explanations, hyper explanations, pri-
oritization of defects, disabled features

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VaMoS ’21, February 09–11, 2021, Krems, Austria
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

ACM Reference Format:
Marc Hentze, Tobias Pett, Thomas Thüm, and Ina Schaefer. 2018. Hyper
Explanations for Feature-Model Defect Analysis. In Proceedings of VaMoS ’21:
15th International Working Conference on Variability Modelling of Software-
Intensive Systems (VaMoS ’21). ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Today, car manufacturers offer highly customizable vehicles that
can be configured to satisfy the individual needs of their customers.
Therefore, available configuration options need to bemodeled along
the constraints that define how those options can be combined. De-
spite the central relevance of the resulting variability model, its
maintenance is subject to multiple aspects that make it prone to
errors.
While the lack of a continuous toolchain affects its integrity, hetero-
geneous and proprietary formats [4] hinder the applicability of stan-
dard, automated analyses [1] [6] [16] and impair the model’s verifi-
cation. Moreover, simultaneous modifications of multiple stakehold-
ers cause frequent changes, whose side effects are hard to capture.
In addition, the model’s complexity further increases its vulnerabil-
ity to issues [4].
Hence, the resulting variability models contain high numbers of
errors, which are classified into different kinds of defects [5]. Con-
verting those models into standardized feature models [7] allows
to use standard tooling for detailed analyses which expose those
defects and provide valuable insights. By applying those analyses
to existing variability models, we revealed high numbers of config-
uration options that cannot be selected and other defects. Although
explanations [8] provide useful information about the cause of
those defects, handling and analyzing each individual explanation
in isolation turns out to remain cumbersome.
To improve the management of many defects, in this paper we
propose the concept of hyper explanations, an extension of defect
explanations [8], that allows to derive a prioritization of defects
based on their respective severity and helps to decide which defect
is to be handled first. We argue that this concept can improve the
simultaneous handling of high numbers of defects by identifying
and prioritizing erroneous model parts that are potentially respon-
sible for multiple defects. We evaluate our concept by applying it
to industrial variability models and discuss the obtained results
with domain experts, which brought interesting insights about the
reasons behind the exposed defects.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

VaMoS ’21, February 09–11, 2021, Krems, Austria Hentze, et al.

The contributions of this paper are as follows:
• We introduce the concept of hyper explanations and use
it to derive a prioritization of defects and defect-creating
constraints.

• We evaluate this concept by applying it to industrial vari-
ability models and confirm the presence of multiple dead
features. Further, we show that hyper explanations are suit-
able to identify feature model parts that are responsible for
multiple defects.

• Based on the results, we identify the technical reasons behind
dead features in industrial variability models with domain
experts and discuss mechanisms of creating them.

2 BACKGROUND AND RUNNING EXAMPLE
In this section, we introduce the running example that is used to
outline the background needed for understanding the concepts
and mechanisms explained in the following sections. Further, we
explain the structure of the used feature models and outline the
approach of defect analyses. Moreover, we introduce the concept of
defect explanations.

2.1 Feature Models
To improve the development andmaintenance of variability contain-
ing software intensive systems, they can be managed by a Software
Product Line (SPL) [14]. Therefore, the software systems are split
into dedicated features that represent specific functionalities and
are mapped to software artifacts that implement them. Individual
features can then be selected to create a configuration that is used
to compose the involved features into a software variant. Allowing
arbitrary configurations potentially results in unintended or erro-
neous variants which is why the creation of configurations needs
to be limited. To describe and model those limitations, a feature
model [7] can be used.
Feature models (Figure 1) are based on a tree structure of features
to describe their hierarchical relations, which can be refined by
different modifiers. In general, there are two types of modifiers
that are either valid for a single feature (mandatory, optional) or
groups of features (alternative, or). While mandatory features need
to be selected, optional features do not. Groups of features that are
marked as alternative imply that exactly one of those features needs
to be selected while an or-group requires that at least one of the
involved features is selected. It needs to be considered that all of
those modifiers only apply, if the parent of the respective feature is
selected.
Figure 1 shows a feature model that describes the variability of a
car and serves as the running example for this paper. It uses the
previously outlined modifiers to express how a car can be config-
ured. The features Carbody and Gearbox are mandatory, as they are
needed in every car. The gearbox requires further configuration, as
it has two child features beingManual or Automatic. Those features
are modeled as alternatives, whereby only one selection is permit-
ted. The Radio is modeled as an optional feature, indicating that
not every car needs to have one. If selected, the Radio offers further
configuration like a Bluetooth interface or Navigation functional-
ity. Besides features, their relations and modifiers, feature models

Figure 1: Example: Simplified Feature Model in the Automo-
tive Domain

further support cross-tree-constraints (CTC). Those constraints are
used to express feature relations that cannot be modeled by the tree
structure itself. In Figure 1, the constraint 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛 =⇒ 𝑈𝑆𝐵

forces the selection of the USB port if the Navigation feature is
selected.

2.2 Feature Model Defect Analysis
A feature model describes the relations of individual features and
thereby models all configurable variants of its corresponding plat-
form. However, it can contain anomalies, called defects, that violate
the intended variability, like for example features that can never
be selected. Defects emerge through interactions between differ-
ent feature model parts such as constraints, feature relations and
their modifiers. To reveal contained defects, automated analyses
can be applied. Therefore, a feature model can be translated into
an equivalent boolean formula 𝐹𝑀 [12] that creates the basis for
most of the computations performed during the analysis. Although
there are multiple different types of defects, we only consider dead
features in this paper.

Dead Features. The feature model limits the configurable vari-
ants by defining a semantic of how the individual features can be
combined. However, it is possible to create feature models that
contain features which can never be selected. The affected features
are called dead features and cannot be part of any configuration and
thereby are not present in any variant. In research, dead features
are handled as an error, as they add complexity to the model and its
maintainability without offering any benefit, similar to dead code
in programming. It is commonly recommended to resolve those
defects or to delete the respective features.
In the example shown in Figure 2 there are four dead features of
which one is the feature Manual. It is marked as dead due to the
constraint 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 =⇒ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 . This is because 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 is a
mandatory feature and therefore contained in every configuration.
To satisfy the constraint, 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 also needs to be contained in
every configuration. Because𝑀𝑎𝑛𝑢𝑎𝑙 is modeled as an alternative
to Automatic, it can never be selected, as an alternative group only
allows one selection.
Dead features, like most of defects, can be identified by utilizing
SAT solvers. A SAT solver is able to determine, whether a boolean

Hyper Explanations for Feature-Model Defect Analysis VaMoS ’21, February 09–11, 2021, Krems, Austria

Figure 2: Example Feature Model Containing Dead Features

formula has any assignment that evaluates to 𝑡𝑟𝑢𝑒 . To evaluate if a
feature 𝑓 is dead, it is determined whether the formula 𝑑𝑓 = 𝐹𝑀∧ 𝑓

is satisfiable. If it is not, the feature 𝑓 is dead.

2.3 Explanations of Defects
The cause for a feature model defect can get complex and may in-
clude many different feature model parts. To support the developer
when aiming to resolve a specific defect, it is highly beneficial to
be able to derive a precise explanation that identifies those parts.
To derive an explanation for dead features, it is initially determined
if the target feature 𝑓 is actually dead by performing the satisfiabil-
ity check based on the previously introduced formula 𝑑𝑓 = 𝐹𝑀 ∧ 𝑓 .
If the feature is dead, the explanation is generated based on the
Minimal Unsatisfiable Subset [11] of that very formula.

Definition 2.1 (Minimal Unsatisfiable Subset). Given a setM of
constraints, a subsetN ⊆ M is a minimal unsatisfiable subset (MUS)
ofM, if and only ifN is unsatisfiable and for all 𝑛 ∈ N the setN\{𝑛}
is satisfiable. [3]

Deriving the MUS is suitable to identify the set of constraints
which contribute to the unsatisfiabiliy. However, for a given set of
constraints, many different minimal unsatisfiable subsets can be
computed. To reduce the probability of missing any constraint that
contributes to the unsatisfiability of the formula, a set of MUSes is
derived. Next, for each constraint in 𝑑𝑓 , it is determined how many
of the derived MUSes contain that very constraint. This allows fur-
ther conclusions about the likeliness of the constraint to be part of
the cause for the defect. This likeliness is referred to as its confidence
and is computed by determining the ratio between the number of
MUSes that contain the constraint and the total number of derived
MUSes. A constraint that is present in many MUSes is assigned
with a high confidence while constraints that are only present in
some MUSes are assigned with a low confidence. To encode the
confidence, Kowal et al. [9] propose to color involved constraints
with a gradient from red to black, where red-colored constraints
show a high confidence and black-colored constraints show a low
confidence. For our concept, we formalize this color gradient with
a value range from 0 to 1, where the value 1 indicates the highest
confidence and the value 0 indicates the lowest confidence.

Defect Constraint Confidence

𝑑𝑀

𝐶𝑎𝑟 0.667
𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 1

¬(𝑀𝑎𝑛𝑢𝑎𝑙 ∧ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐) 1
𝐶𝑎𝑟𝑏𝑜𝑑𝑦 =⇒ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 1

𝑑𝐷𝐶

𝐶𝑎𝑟 0.667
𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 1

¬(𝑀𝑎𝑛𝑢𝑎𝑙 ∧ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐) 1
𝐶𝑎𝑟𝑏𝑜𝑑𝑦 =⇒ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 1
𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 =⇒ 𝑀𝑎𝑛𝑢𝑎𝑙 1

𝑑𝐸𝑈

𝐶𝑎𝑟 1
𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 1

¬(𝑀𝑎𝑛𝑢𝑎𝑙 ∧ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐) 1
𝐶𝑎𝑟𝑏𝑜𝑑𝑦 =⇒ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 1
𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 =⇒ 𝑀𝑎𝑛𝑢𝑎𝑙 1
𝐸𝑢𝑟𝑜𝑝𝑒 =⇒ 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 1

𝑑𝑈𝑆𝐴

𝐶𝑎𝑟 1
𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 1

¬(𝑀𝑎𝑛𝑢𝑎𝑙 ∧ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐) 1
𝐶𝑎𝑟𝑏𝑜𝑑𝑦 =⇒ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 1
𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 =⇒ 𝑀𝑎𝑛𝑢𝑎𝑙 1
𝑈𝑆𝐴 =⇒ 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 1

Table 1: Defects and their Explanations

The final explanation consists of a the defect, i.e. the dead feature,
and a set of constraints with their respective confidence. Table 1
shows the explanations of the four dead features contained in the
running example.

3 DEALINGWITH HIGH NUMBERS OF
FEATURE MODEL DEFECTS

Although automatically generated explanations can be useful for
developers when aiming to fix a specific defect, handling high
numbers of defects remains challenging, as defects can be related
and mutually dependent. Hence, it is difficult to decide which defect
or which defect-creating constraint should be prioritized to achieve
the best possible progress when aiming to resolve present defects.
To mitigate this problem, a hyper explanation can be used that
aggregates the information of explanations and provides the bases
for deriving a prioritization.

3.1 Deriving a Hyper Explanation
Formally, a hyper explanation for a set of defects is a set of 3-tuples,
one for each unique constraint that is contained in the explanation
of any defect. Those 3-tuples consist of the constraint itself, a float
value between 0 and 1 that indicates the constraints severity and a
set of defects, which contains all defects in which the respective
constraint is involved. Table 2 shows an example of the structure
of those 3-tuples based on the constraint 𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦.

Constraint Severity Defects
𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 [0 - 1.0] 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

Table 2: 3-Tuple of Constraint 𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦

VaMoS ’21, February 09–11, 2021, Krems, Austria Hentze, et al.

While the constraint and the set of defects can be directly de-
rived from the given explanations, the severity is subject to further
computation. The severity is an indicator for the relevance of the
respective constraint and is used as central information when deriv-
ing the final prioritization for defect resolving, we consider different
strategies for computing the severity.

Strategy 1: Absolute Values. The first strategy is based on the
assumption that constraints that appear in multiple explanations
should be assigned with a high severity. Therefore, this strategy
computes the severity of each constraint by counting the explana-
tions that contain this very constraint and divides the result by the
total number of explanations to obtain a value between 0 and 1.
Table 3 shows the resulting hyper explanation using this strategy
based on the explanations shown in Table 1.

Constraint Severity Defects
𝐶𝑎𝑟 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

¬(𝑀𝑎𝑛𝑢𝑎𝑙 ∧ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐) 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐶𝑎𝑟𝑏𝑜𝑑𝑦 =⇒ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 =⇒ 𝑀𝑎𝑛𝑢𝑎𝑙 0.75 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐸𝑢𝑟𝑜𝑝𝑒 =⇒ 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 0.25 𝑑𝐸𝑈
𝑈𝑆𝐴 =⇒ 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 0.25 𝑑𝑈𝑆𝐴

Table 3: Hyper Explanation by Absolute Values

Strategy 2: Average Confidence. The second strategy considers
further information that is provided by the given explanations.
Here, the severity of each constraint is derived by computing the
average confidence of the very constraint across all explanations
where explanations that do not contain the target constraint are
considered with a value of 0. Table 4 shows the resulting hyper
explanation that is obtained when applying this strategy.

Constraint Severity Defects
𝐶𝑎𝑟 0.8335 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

¬(𝑀𝑎𝑛𝑢𝑎𝑙 ∧ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐) 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐶𝑎𝑟𝑏𝑜𝑑𝑦 =⇒ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 =⇒ 𝑀𝑎𝑛𝑢𝑎𝑙 0.75 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐸𝑢𝑟𝑜𝑝𝑒 =⇒ 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 0.25 𝑑𝐸𝑈
𝑈𝑆𝐴 =⇒ 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 0.25 𝑑𝑈𝑆𝐴

Table 4: Hyper Explanation by Average Confidence

Strategy 3: Maximum Confidence. The third strategy is based
on the assumption, that only the highest confidence of a specific
constraint across all explanations is crucial for the final severity
value of that very constraint. Therefore, this strategy is based on
determining the highest confidence for each individual constraint
to use it as its severity value. The corresponding hyper explanation
is shown in Table 5. Even though all three strategies are based on
reasonable considerations, the results showed major differences

Constraint Severity Defects
𝐶𝑎𝑟 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

¬(𝑀𝑎𝑛𝑢𝑎𝑙 ∧ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐) 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐶𝑎𝑟𝑏𝑜𝑑𝑦 =⇒ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 1 𝑑𝑀 , 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 =⇒ 𝑀𝑎𝑛𝑢𝑎𝑙 1 𝑑𝐷𝐶 , 𝑑𝐸𝑈 , 𝑑𝑈𝑆𝐴

𝐸𝑢𝑟𝑜𝑝𝑒 =⇒ 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 1 𝑑𝐸𝑈
𝑈𝑆𝐴 =⇒ 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 1 𝑑𝑈𝑆𝐴

Table 5: Hyper Explanation by Maximum Confidence

that make them differently suitable for our goal of deriving a pri-
oritization. While the first strategy is able to derive differentiable
severity values, it lacks detail. Especially by ignoring the confidence
of the processed constraints, the resulting severity values are not
detailed enough to derive a reliable prioritization. This also applies
to the third strategy. Here, the severity value is computed without
considering the number of explanations that contain a specific con-
straint. In the example in Table 5, it can be seen that all constraints
are assigned with the same severity value, despite major differ-
ences in terms of involved defects. Therefore, we decided to use
the second strategy which computes the severity values based on
the average confidence, because it provides detailed values that are
computed by considering all available information that is contained
in the given explanations.

3.2 Determining a Prioritization of
Defect-Creating Constraints

By deriving the hyper explanation, we create the basis for determin-
ing a prioritization of constraints. We aim to create a mechanism
that prioritizes constraints that are involved in defects that are
mutually dependent or generally related to other defects, because
resolving those constraints potentially also resolves other defects
completely or partially. Because the severity value already encodes
this information for every constraint contained in the hyper expla-
nation, their final prioritization can be directly derived by ordering
them by their assigned severity. Table 6 shows the resulting prior-
itization of defect-creating constraints contained in the running
example. In case of two constraints showing the exact same severity
we assign them the same prioritization, as we cannot state which
constraint is to be preferred.

Constraint Severity Prioritization
𝐶𝑎𝑟 =⇒ 𝐶𝑎𝑟𝑏𝑜𝑑𝑦 1 1

¬(𝑀𝑎𝑛𝑢𝑎𝑙 ∧ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐) 1 1
𝐶𝑎𝑟𝑏𝑜𝑑𝑦 =⇒ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 1 1

𝐶𝑎𝑟 0.8335 2
𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 =⇒ 𝑀𝑎𝑛𝑢𝑎𝑙 0.75 3
𝐸𝑢𝑟𝑜𝑝𝑒 =⇒ 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 0.25 4
𝑈𝑆𝐴 =⇒ 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐶𝑎𝑟𝑑𝑠 0.25 4

Table 6: Final Prioritization of Defect-Creating Constraints

Hyper Explanations for Feature-Model Defect Analysis VaMoS ’21, February 09–11, 2021, Krems, Austria

3.3 Determining a Prioritization of Defects
Besides the prioritization of constraints, it can further be benefi-
cial to be able to derive a prioritization of the defects themselves,
because the process of handling erroneous feature models is com-
monly oriented on resolving defects. While the prioritization of
defect-creating constraints can be derived by ordering them by
their severity value, determining the prioritization of defects re-
quires further computation. Here, we argue that defects whose
explanations contain high numbers of highly severe constraints
should be prioritized. Further, we determine the severity of defects
by computing the average severity of the constraints involved in
the respective defect. Based on the determined severity value, we
are able to derive the final prioritization.

Defect Severity Prioritization
𝑑𝑀 0.96 1
𝑑𝐷𝐶 0.92 2
𝑑𝐸𝑈 0.81 3
𝑑𝑈𝑆𝐴 0.81 3

Table 7: Prioritization of Defects Based by Severity

4 EVALUATION
In this paper, we introduce the concept of hyper explanations to
derive a prioritization of defects and defect-creating constraints.
To evaluate this concept and its impact on the process of handling
multiple defects, we defined two research questions that are an-
swered to determine the benefit of hyper explanations.

RQ1: How many defects do industrial feature models contain?
With this research question, we aim to evaluate the presence and
the number of defects contained in industrial feature models to cap-
ture the significance and relevance of those anomalies in industry.

RQ2: Are hyper explanations suitable to derive a prioritization that
benefits the process of handling multiple feature model defects?
With this research question, we aim to determine the impact of
hyper explanations on the process of identifying and handling
multiple defects at once. Here, it is of special interest whether the
derived prioritization is suitable to identify defects or constraints
that resolve multiple other defects as well.

4.1 Experimental Setup
To perform the evaluation, we apply the concept of hyper expla-
nations to industrial variability models. The target models consist
of selectable configuration options along with constraints that de-
fine how those options are to be combined. To apply our concept,
we convert the target variability models into standardized feature
models by creating a feature for each configuration option and
adapting the constraints accordingly. During the conversion, we
had to consider the entry and cancellation dates which are assigned
to all configuration options and constraints and define an interval
where the respective model part is valid. Due to this temporal as-
pect, converting a single variability model results in a set of feature
models, one for each interval. For our case study, we chose to select

the feature model that contains the highest number of dead features
to gain the best possible insight into the results obtained by hyper
explanations. This feature model contains a total of 549 features of
which 94 are marked as dead. The model contains 1109 constraints.
The generated hyper explanation that is based on the explanations
of the 94 dead features contains 178 constraints.

4.2 Results
Based on the hyper explanation that was derived for the 94 dead
features contained in the selected feature model, we determine the
prioritization of defect-creating constraint and the defects them-
selves and analyze its benefit for the defect resolving process.

Prioritizing Defect-Creating Constraints. The severity values of
constraints contained in the derived hyper explanation show a
wide spread reaching from 0.002 up to a maximum of 0.95. The
distribution of the severity values is shown in the chart in Figure
3. This chart shows the severity on the X-axes and the respective
defect-creating constraints on the Y-axes. For readability reasons,
we left out the data of 150 low severe constraints.

Figure 3: Defect-Creating Constraints and their Severity

To evaluate the usefulness of hyper explanations and the re-
sulting prioritization of constraints on the process of addressing
multiple defects, we analyze the effect when resolving the most
severe constraint. As mentioned earlier, the analyzed feature model
originally contains 94 dead features. Fixing only the most severe

VaMoS ’21, February 09–11, 2021, Krems, Austria Hentze, et al.

constraint (Constraint 83) already reduces this number by 69 to a
total of 25 dead features. Continuing with fixing the second most se-
vere constraint further reduces this number to a total of 16. Overall,
fixing the three most severe constraints reduces the total number
of dead features from 94 to 12. To ensure that this effect is achieved
through the derived prioritization, we checked the effect when re-
solving the three least severe constraints, which did not reduce the
amount of dead features at all.

Prioritizing Defects. After evaluating the prioritization of defect-
creating constraints, we aim to consider the benefit of the prioriti-
zation on defect level. Therefore, we computed the severity of all
dead features contained in the target feature model and derived the
corresponding prioritization. The obtained results are visualized in
the chart shown in Figure 4. To enhance the readability, we left out
the data of 65 defects that showed a medium severity. It can be seen
that even though the computed severity values show a wide spread
from 0.02 to a maximum of 0.74, they cannot be categorized into
different groups in contrast to the previously computed severity
values of defect-creating constraints.
To evaluate the benefit of the resulting prioritization, we consider
the effect when fixing high prioritized defects and compare it to the
effect when fixing defects with a low prioritization. This evaluation
brought similar results as on constraint level. Fixing only the defect
with the highest prioritization (Defect 47) reduced the number of
dead features by 69 to a total of 25. Fixing the next two highest
prioritized defects further reduced this number to a total of 12 dead
features. On the contrary, we evaluated the effect when resolving
the three least prioritized defects. By doing so, the number of dead
features was only reduced by exactly those three defects.

4.3 Discussion
The severity values of defect-creating constraints in hyper expla-
nations provide interesting insights. It can be seen that a few con-
straints stand out by showing a significantly higher severity than
others. Moreover, the set of severity values can be subdivided into
two groups: High severity and low severity as there are hardly any
values in between. We used the derived prioritization of constraints
to evaluate its benefit when handling high numbers of defects. Here,
we were able to show that the prioritization is highly beneficial,
as removing only the three constraints with the highest priority
already reduced the amount of dead features by 74 %. This is sur-
prising, as those three constraints only represent ca. 1.6 % of all
defect-creating constraints. Moreover, we evaluated the benefit of
the prioritization of defects and were able to confirm a similar, pos-
itive effect. Further, we were able to confirm the described effects
for all variability models that we considered during our evaluation.
Based on those results, we answer the previously defined research
questions:

RQ1: How many defects are contained in industrial feature mod-
els?
We converted industrial variability models into standardized fea-
ture models to apply automated analyses and revealed that all of
the resulting feature models contain multiple defects. In the worst
case, the resulting feature model contained a total of 549 features
of which 94 were marked as dead. This equals 17 % of all contained

Figure 4: Defects and their Severity

features, which is a surprisingly high number when considering
that it is commonly recommended that those features should be
deleted. While this feature model represents the peak in terms of
present defects, the other feature models showed similar results.

RQ2: Are hyper explanations suitable to derive a prioritization that
benefits the process of handling multiple feature model defects?
Based on the selected case study, we were able to show that the
prioritization derived by hyper explanations is suitable to signifi-
cantly improve the process of managing high numbers of feature
model defects. We were able to show that modifying only a few,
highly prioritized constraints or defects already reduce the number
of defects to a large extent, which confirms our assumption that
hyper explanations are suitable to identify constraints that show a
high relation to other defects.

4.4 Threats to Validity
Although our evaluation showed the feasibility of hyper expla-
nations and brought promising results, this concept is subject to
different threats that impair its validity.
First, the evaluation was performed using exemplary converted
industrial variability models. Even though the used models are
large and contain high numbers of defects and constraints, they are
not suitable to show a general applicability and correctness of our
concept of hyper explanations and the resulting prioritization. To

Hyper Explanations for Feature-Model Defect Analysis VaMoS ’21, February 09–11, 2021, Krems, Austria

mitigate this, we considered multiple variability models to increase
the reliability of the obtained results.
Moreover, the severity values of defects and defect-creating con-
straints, which are used to determine their final prioritization, are
computed based on a manually designed metric. To limit this threat,
we considered different strategies to compute the severity and an-
alyzed their results. However, a general validity of the resulting
severity values and the respective prioritization cannot be stated
for arbitrary feature models. Furthermore, hyper explanations and
the according prioritization are based on generated explanations
and their corresponding confidence values. As those values cannot
be computed with an absolute precision due to the outlined charac-
teristics of minimal unsatisfiable subsets, the lack of precision is
transferred to our computations and the resulting prioritization.

5 DEAD FEATURES IN INDUSTRIAL
FEATURE MODELS

After translating the industrial variability models into standardized
feature models, we are able to apply automated analyses which
expose high numbers of dead features. To understand the reasons
for those defects, we conducted interviews with different domain
experts who are responsible for modeling and maintaining the
considered variability models. In this section, we summarize the
interviews and discuss potential consequences.

5.1 Intentional Use of Dead Features
Due to the high number of dead features that were revealed in the
converted variability model, we initially expected either an error
in our translation or actual defects that were modeled by accident.
However, the interviews brought two surprising insights. (1) The
presence of dead features is known and (2) most of the dead features
are not actual defects but intentionally created. According to the
domain experts, those dead features are used to model temporar-
ily disabled configuration options which are needed for various
reasons, such as:

Configuration Option is Subject to Supply Shortages. If a specific
configuration option cannot be selected due to supply shortages, it
needs to be disabled to prevent customers from selecting it until it
is available again.

Configuration Option is Planned for Later Release. If a specific
configuration option is planned for later use, it needs to be added
to the variability model before its actual release to be available in
other pre-sales systems for, e.g., logistical applications. However,
it needs to be ensured that customers are not able to select this
particular option before its planned entry date.

Configuration Option has Issues. If a specific configuration option
is involved in any issue, e.g. technical or logistical, it is disabled to
avoid its selection until the issue is fixed.

Configuration Option is Potentially Hazardous. If a specific con-
figuration option is potentially hazardous due to external influ-
ences, it needs to be disabled. Although this is a rather exceptional
case, it was applied a few years ago during the nuclear accident
in Fukushima in 2011, where the components of suppliers located
near the power plant were contaminated by radiation.

5.2 Mechanisms for Modeling Dead Features
Based on the fact that dead features are intentionally created to
model disabled configuration options, the experts further pointed
out multiple different mechanisms to create dead features in the
corresponding variability model. We were able to confirm those
mechanisms in the data of configuration options and constraints
of the previously converted variability model and classified those
mechanisms into two main categories. In the following, 𝑑 is used
to denote the feature that is to be modeled as dead.

Constraints. The first mechanism uses constraints that explicitly
prevent the selection of the target feature. This can either be done
by directly preventing the selection of the target feature with the
constraint ¬𝑑 , or by setting up a constraint that forces an invalid
configuration if 𝑑 is selected, like the deselection of a core feature 𝑐
as follows: 𝑑 =⇒ ¬𝑐 .

Temporal Validity. The entry and cancellation date of a specific
configuration option can be used to prevent its selection. There-
fore, the entry date can be set to the distant future making the
feature invalid for the current time. A similar approach is to choose
a cancellation date terminated before the entry date to prevent the
validity of the option for any point in time.

Although disabling features by making them dead is an inten-
tional and frequently used approach, none of the outlined mecha-
nisms is a defined standard according to the experts. Due to the lack
of a standardized mechanism for modeling disabled features, the
defect analysis of variability models is further complicated, because
disabled features can’t be distinguished from actual dead features.

5.3 Discussion
The interviews with domain experts have shown that the revealed
dead features are not actual defects, but intentionally modeled.
The experts outlined different reasons for the need of modeling
dead features, which all require the target feature to be disabled
temporarily. Moreover, the experts explicitly stressed that modeling
a disabled feature by temporarily deleting it is impractical as the
affected data is processed by other IT-systems, like logistics or
marketing, where the deletion would most likely result in a high
amount of issues and side-effects. In research, a dead feature is
treated as an error, implicitly stating that it needs to be resolved
or deleted. However, our analysis and evaluation revealed that
dead features are actively used in the industry to prevent their
selection. Based on those insights, we state that there is a need
for a defined mechanism to distinguish them from accidentally
created dead features and actual defects. A possible solution for this
requirement would be to use temporal feature models [13] to model
the temporal validity of the target feature. However, dealing with
the overhead that comes with this concept makes it unsuitable for
this use case, which is why we propose to extend standard feature
models with the option to mark features as disabled. Thereby, we
not only create an explicit distinction in the terminology but are
also able to define an individual handling of those features in terms
of a visual highlighting in the feature model itself or a specific
consideration during different automated analyses.

VaMoS ’21, February 09–11, 2021, Krems, Austria Hentze, et al.

6 RELATEDWORK
The field of automated feature model analysis has found a lot of
attention in research. For our work, especially the automated de-
tection of feature model defects is relevant, because it creates the
basis for our concept of hyper explanations. Benavides et. al [2]
outlined different automated analyses that create the foundation
of hyper explanations, because they allow to reveal feature model
defects such as dead features.
A further foundation of our concept of hyper explanations is the
work of Kowal et. al [8], who introduced defect explanations to
identify feature model parts whose interaction cause a specific de-
fect. While the identification of model parts that are involved in
a specific defect only supports the treatment of this very defect
in isolation, hyper explanations aggregate the information about
erroneous feature model parts and their corresponding confidence
of all explanations. This allows to reason about the severity of de-
fect and defect-creating constraints. In general, we argue that both
concepts can be used complementary to enhance the process of
resolving defects in feature models.
Another application of explanations used in the context of feature
models is introduced in [10]. Here, explanations are not used to
identify the cause of a defect, but to create a plain text explanation
of the behavior and the variability of dynamic feature models. To
derive the explanation, Kramer et. al assigned text attributes to
features and their relations (mandatory, alternative, etc.) that repre-
sent text fragments which are composed to a complete explanation
based on their path in the feature model tree.
Moreover, the defect analysis of large and proprietary variability
models has also been applied to the Linux kernel. This variabil-
ity model shows a similar complexity to our case study. Tartler et
al. [15] designed a tool that is able to perform different integrity
analyses between the kernels configuration files and the mapped
preprocessor directives in the source code that are used to compose
the configured kernel. Thereby, Tartler et al. were able to expose
inconsistencies that result in dead code. In detail, over 300 of those
anomalies were extracted.

7 CONCLUSION
Industrial variability models are subject to multiple reasons for
defects. However, automated analyses of variability models are still
not common in industry, which is why contained defects remain
undetected. To obtain detailed information about contained defects,
we converted industrial variability models into standardized fea-
ture models to apply automated analyses. We were able to show
that those variability models indeed contain high numbers of de-
fects. However, analyzing and addressing each defect in isolation
turned out to be cumbersome, since the overall complexity of the
corresponding feature models and individual defect explanations
complicates this highly manual process.
To improve the management of multiple defects at once, we in-
troduced the concept of hyper explanations that is suitable to au-
tomatically derive a prioritization of defects and defect-creating
constraints. We evaluated our concept by applying it to the previ-
ously translated industrial variability model and showed that hyper
explanations are highly beneficial when dealing with many defects.
In particular, the computation of severity values for defects and

defect-creating constraints is a major improvement for the defect
resolution process, as the resulting prioritization allows to identify
defects that, when resolved, also resolve other defects.
In addition, applying hyper explanations to real world industrial
variability models brought further insights regarding dead features.
In contrary to the common recommendation in research to resolve
or delete dead features, we were able to show that dead features are
used in practice to temporarily disable individual features. Based
on this knowledge, we propose to extend feature models by a mech-
anism that allows to disable features. This mechanism helps to
distinguish disabled features and dead features. The concept of
disabled features is subject to future work, where especially the
implementation of this mechanism is a central aspect. We propose
to introduce a flag, similar to abstract or concrete features [17], that
explicitly marks a feature as disabled. Moreover, it needs to be ana-
lyzed how those features can be handled semantically, especially in
the context of automated analyses. Here, transitive dependencies
to other features may be subject to further research.

8 DISCLAIMER
The results, opinions and conclusions expressed in this thesis are
not necessarily those of Volkswagen Aktiengesellschaft.

REFERENCES
[1] David Benavides, Antonio Ruiz-Cortés, Pablo Trinidad, and Sergio Segura. 2006.

A Survey on the Automated Analyses of Feture Models. Jornadas de Ingeniera
del Software y Bases de Datos (2006), 367–376.

[2] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615–708.

[3] Jaroslav Bendík and Ivana Černá. 2020. MUST: Minimal unsatisfiable subsets
enumeration tool. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 135–152.

[4] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. 7:1–7:8.

[5] Megha Bhushan, Arun Negi, Piyush Samant, Shivani Goel, and Ajay Kumar. 2020.
A classification and systematic review of product line feature model defects.
Software Quality Journal (2020), 1–44.

[6] José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-
Fernández, and Antonio Ruiz-Cortés. 2019. Automated Analysis of Feature
Models: Quo Vadis? Computing 101, 5 (2019), 387–433.

[7] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Software Engineering Institute.

[8] Matthias Kowal, Sofia Ananieva, and Thomas Thüm. 2016. Explaining Anomalies
in Feature Models. 132–143.

[9] Matthias Kowal, Sofia Ananieva, Thomas Thüm, and Ina Schaefer. 2017. Support-
ing the Development of Interdisciplinary Product Lines in the Manufacturing
Domain. 50, 1 (2017), 4336–4341.

[10] Dean Kramer, Christian Sauer, and Thomas Roth-Berghofer. 2013. Towards
explanation generation using featuremodels in software product lines. Knowledge
Engineering and Software Engineering (KESE) (2013), 13.

[11] Mark H. Liffiton and KaremA. Sakallah. 2008. Algorithms for ComputingMinimal
Unsatisfiable Subsets of Constraints. 40, 1 (2008), 1–33.

[12] Mike Mannion. 2002. Using First-Order Logic for Product Line Model Validation.
176–187.

[13] Michael Nieke, Christoph Seidl, and Thomas Thüm. 2018. Back to the Future:
Avoiding Paradoxes in Feature-Model Evolution. 48–51.

[14] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques.

[15] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. 2009. Dead or Alive: Finding Zombie Features in the Linux Kernel.
81–86.

[16] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. 47, 1 (2014), 6:1–6:45.

[17] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Siegmund.
2011. Abstract Features in Feature Modeling. 191–200.

	Abstract
	1 Introduction
	2 Background and Running Example
	2.1 Feature Models
	2.2 Feature Model Defect Analysis
	2.3 Explanations of Defects

	3 Dealing with High Numbers of Feature Model Defects
	3.1 Deriving a Hyper Explanation
	3.2 Determining a Prioritization of Defect-Creating Constraints
	3.3 Determining a Prioritization of Defects

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 Discussion
	4.4 Threats to Validity

	5 Dead Features in Industrial Feature Models
	5.1 Intentional Use of Dead Features
	5.2 Mechanisms for Modeling Dead Features
	5.3 Discussion

	6 Related Work
	7 Conclusion
	8 Disclaimer
	References

