Datenkompression: Übungsblatt 4

Enno Ohlebusch Timo Beller

Das Übungsblatt wird am 20.06.2013 besprochen.

Aufgabe 1

Berechnen Sie die Codewortlänge von $n \in \mathbb{N}$, wenn n mit dem Elias- γ , Elias- δ bzw. Elias- ϵ Code codiert wird. Für welche Zahlen ist die Codewortlänge des Elias- γ , Elias- δ bzw. Elias- ϵ Codes am kürzesten?

Aufgabe 2

Dekodieren Sie:

- 1. 0011010010 mit dem Elias- δ Code
- 2. 101011100110 mit dem Elias- ω Code
- 3. 000001010 mit dem Golomb₁₀ Code
- 4. 001000101 mit dem ExponentialGolomb₄ Code
- 5. 1000000011 mit dem Comma₂ Code
- 6. 0000000011 mit dem Fibonacci Code

Aufgabe 3

Das Quellalphabet sei $\Sigma = \{a, b, n, s\}$. Codieren Sie die Zeichenfolge S = anansanasababas mittels LZ77 und mittels LZSS. Benutzen Sie jeweils 7 Zeichen als Such-Puffer und 7 Zeichen als Codier-Puffer. Welches Verfahren komprimiert S besser?

Aufgabe 4

Das Quellalphabet sei $\Sigma = \{a, b, n, s\}$. Codieren Sie die Zeichenfolge S = anansanasababas mittels LZ78. Geben Sie einen String S an, der von LZ77 besser komprimiert wird als von LZ78.

Aufgabe 5

Dekodieren Sie die Folge 1, 2, 2, 1, 3, 4, 9, 3 mit dem LZW-Algorithmus unter Verwendung des "Grundwörterbuchs" (1, a), (2, n), (3, s). Geben Sie eine Implementierung des LZW-Decodieres an, der anstelle eines Tries eine Tabelle verwendet.

Hinweis: Für die obige Folge sieht die Tabelle nach der Decodierung wie folgt aus:

1	2	3	4	5	6	7	8	9	9 s
0	0	0	1	2	2	1	3	4	9
a	n	\mathbf{S}	n	n	a	\mathbf{S}	a	a	s