
Lempel-Ziv Factorization: LZ77 without

Window

Enno Ohlebusch

May 13, 2016

1 Su�x arrays

To construct the su�x array of a string S boils down to sorting all su�xes of
S in lexicographic order (also known as alphabetical order, dictionary order,
or lexical order). This order is induced by an order on the alphabet Σ. In
this manuscript, Σ is an ordered alphabet of constant size σ. It is sometimes
convenient to regard Σ as an array of size σ so that the characters appear in
ascending order in the array Σ[1..σ], i.e., Σ[1] < Σ[2] < · · · < Σ[σ]. Conversely,
each character in Σ is mapped to a number in {1, . . . , σ}. The smallest character
is mapped to 1, the second smallest character is mapped to 2, and so on. In
this way, we can use a character as an index for an array.

De�nition 1.1 Let < be a total order on the alphabet Σ. This order induces
the lexicographic order on Σ∗ (which we again denote by <) as follows: For
s, t ∈ Σ∗, de�ne s < t if and only if either s is a proper pre�x of t or there are
strings u, v, w ∈ Σ∗ and characters a, b ∈ Σ with a < b so that s = uav and
t = ubw.

To determine the lexicographic order of two strings, their �rst characters
are compared. If they di�er, then the string whose �rst character comes earlier
in the alphabet is the one which comes �rst in lexicographic order. If the �rst
characters are the same, then the second characters are compared, and so on. If
a position is reached where one string has no more characters to compare while
the other does, then the shorter string comes �rst in lexicographic order.

In algorithms that need to determine the lexicographic order of two su�xes
of the same string S, a cumbersome distinction between �has more characters�
and �has no more characters� can be avoided by appending the special symbol
$ (called sentinel character) to S. In the following, we assume that $ is smaller
than all other elements of the alphabet Σ. If $ occurs nowhere else in S and
the lexicographic order of two su�xes of S is determined as described above,
then it cannot happen that one su�x has no more characters to compare. As
we shall see later, there are other situations in which it is convenient to append
the special symbol $ to a string.

1

i SA ISA SSA[i]

1 3 5 aataatg
2 6 7 aatg
3 4 1 ataatg
4 7 3 atg
5 1 8 ctaataatg
6 9 2 g
7 2 4 taataatg
8 5 9 taatg
9 8 6 tg

Figure 1: Su�x array and inverse su�x array of the string S = ctaataatg.

De�nition 1.2 Let S be a string of length n. For every i, 1 ≤ i ≤ n, Si denotes
the i-th su�x S[i..n] of S. The su�x array SA of the string S is an array of
integers in the range 1 to n specifying the lexicographic order of the n su�xes
of the string S. That is, it satis�es SSA[1] < SSA[2] < · · · < SSA[n].

The inverse su�x array ISA is an array of size n so that for any k with
1 ≤ k ≤ n the equality ISA[SA[k]] = k holds.

The inverse su�x array is sometimes also called rank-array because ISA[i]
speci�es the rank of the i-th su�x among the lexicographically ordered su�xes.
More precisely, if j = ISA[i], then su�x Si is the j-th lexicographically smallest
su�x. Obviously, the inverse su�x array can be computed in linear time from
the su�x array. Figure 1 shows the su�x array and the inverse su�x array of
the string S = ctaataatg.

The su�x array was devised by Manber and Myers [MM93] and indepen-
dently by Gonnet et al. [GBYS92] under the name PAT array. Ten years later,
it was shown independently and contemporaneously by Kärkkäinen and Sanders
[KS03], Kim et al. [KSPP03], Ko and Aluru [KA03], and Hon et al. [HSS03] that
a direct linear-time construction of the su�x array is possible. To date, over 20
di�erent su�x array construction algorithms (SACAs) are known [PST07].

2 Lempel-Ziv factorization

For 30 years the Lempel-Ziv factorization [ZL77] of a string has played an im-
portant role in data compression (e.g. it is used in gzip), and more recently it
was used as the basis of linear-time algorithms for the detection of all maximal
repetitions (runs) in a string.

De�nition 2.1 Let S be a string of length n on an alphabet Σ. The Lempel-

Ziv factorization (or LZ-factorization for short) of S is a factorization S =
s1s2 · · · sm so that each factor sj , 1 ≤ j ≤ m, is either

2

Algorithm 1 Reconstruction of the string S, given its LZ-factorization
(p1, `1), . . . , (pm, `m).

i← 1
for j ← 1 to m do

if `j = 0 then

S[i]← pj
i← i+ 1

else

for k ← 0 to `j − 1 do

S[i]← S[pj + k]
i← i+ 1

(a) a letter c ∈ Σ that does not occur in s1s2 · · · sj−1, or

(b) the longest substring of S that occurs at least twice in s1s2 · · · sj .

The Lempel-Ziv factorization can be represented by a sequence of pairs
(p1, `1), . . . , (pm, `m), where in case (a) pj = c and `j = 0, and in case (b)
pj is a position in s1s2 · · · sj−1 at which an occurrence of sj starts and `j = |sj |.

For example, the LZ-factorization of S = acaaacatat is s1 = a, s2 = c,
s3 = a, s4 = aa, s5 = ca, s6 = t, s7 = at. This LZ-factorization can be
represented by (a, 0), (c, 0), (1, 1), (3, 2), (2, 2), (t, 0), (7, 2).

To appreciate the full value of this compression method, consider the string
an that consists solely of a's. Its LZ-factorization is (a, 0), (1, n− 1).

In this section, we will present e�cient algorithms that compress a string by
computing its LZ-factorization. These are the result of recent research e�orts
[CI08, OG11, GB13, KKP13]. The corresponding decompression algorithm is
very simple, it is given in Algorithm 1.

We start with an intuitive explanation of how the next LZ-factor starting
at a position k in S can be computed. Consider the string S = acaaacatat and
k = 4; see Figure 2. In the su�x array SA of S, we start at the index i = ISA[k]
and in an upwards scan we search for �rst entry ipsv for which SA[ipsv] < k; let
psv = SA[ipsv]. Similarly, in a downwards scan of the su�x array, starting at
the index i = ISA[k], we search for �rst entry insv for which SA[insv] < k and
de�ne nsv = SA[insv]. In the example of Figure 2, for k = 4 we have i = 2,
psv = 3, and nsv = 1. Then, we compute spsv = lcp(Spsv, Sk) and snsv =
lcp(Snsv, Sk), where lcp(u, v) denotes the longest common pre�x of the strings
u and v. If |spsv| > |snsv|, then spsv is the next LZ-factor and we output its
representation (psv, |spsv|). Otherwise snsv is the next LZ-factor and we output
its representation (nsv, |snsv|). In our example, lcp(Spsv, Sk) = lcp(S3, S4) = aa
and lcp(Snsv, Sk) = lcp(S1, S4) = a; so aa is the next LZ-factor starting at a
position 4 in S and (3, 2) is output.

Exercise 2.2 Prove the correctness of the method sketched above.

3

i SA ISA SSA[i] PSVlex[i] NSVlex[i]

0 0 ε
1 psv = 3 3 aaacatat 0 3
2 k = 4 7 aacatat 1 3
3 nsv = 1 1 acaaacatat 0 11
4 5 2 acatat 3 7
5 9 4 at 4 6
6 7 8 atat 4 7
7 2 6 caaacatat 3 11
8 6 10 catat 7 11
9 10 5 t 8 10

10 8 9 tat 8 11
11 0 0 ε

Figure 2: The su�x array (and other arrays) of the string S = acaaacatat.

Algorithm 2 Procedure LZ_Factor(k, psv, nsv)

`psv ← |lcp(Spsv, Sk)|
`nsv ← |lcp(Snsv, Sk)|
if `psv > `nsv then

(p, `)← (psv, `psv)
else

(p, `)← (nsv, `nsv)
if ` = 0 then

p← S[k]
output factor (p, `)
return k + max{`, 1}

Algorithm 2 outputs the LZ-factor starting at position k in S, based on the
values psv and nsv. Additionally, it returns the position for which the next
LZ-factor in the LZ-factorization of S must be computed.

Exercise 2.3 Slightly improve Algorithm 2 by computing |lcp(Spsv, Snsv)| �rst.

Algorithm 3 computes the LZ-factorization of a string S. However, its worst-
case time complexity is O(n2) because of the repeated scans of the su�x array
(provide a string for which the worst case occurs). To obtain a linear-time
algorithm, we must be able to compute psv and nsv in constant time. This is
possible with the arrays PSVlex and NSVlex; see Figure 2 for an example. To
deal with boundary cases, we introduce the following arti�cial entries in the
su�x array: SA[0] = 0 and SA[n + 1] = 0. Furthermore, we de�ne S0 = ε, so
that SSA[0] and SSA[n+1] are the empty string.

4

Algorithm 3 Computation of the LZ-factorization in O(n2) time

compute SA in O(n) time
for i← 1 to n do /* compute ISA in O(n) time */

ISA[SA[i]]← i /* stream SA */

k ← 1
while k ≤ n do /* stream ISA */

i← ISA[k]
compute psv by an upwards scan of SA starting at index i
compute nsv by a downwards scan of SA starting at index i
k ← LZ_Factor(k, psv, nsv)

De�nition 2.4 For any index i with 1 ≤ i ≤ n, we de�ne

PSVlex[i] = max{j : 0 ≤ j < i and SA[j] < SA[i]}

and
NSVlex[i] = min{j : i < j ≤ n+ 1 and SA[j] < SA[i]}

Algorithm 4 computes the arrays PSVlex and NSVlex in linear time. After
iteration i of the for-loop, the following two properties hold true:

• for all k with 1 ≤ k ≤ min{i, n}, the entry PSVlex[k] is correctly �lled in

• for all k with 1 ≤ k ≤ i − 1 and NSVlex[k] ≤ i, the entry NSVlex[k] is
correctly �lled in

Algorithm 4 Given SA, this procedure computes PSVlex and NSVlex.

for i← 1 to n+ 1 do /* stream SA */

j ← i− 1
while SA[i] < SA[j] do
NSVlex[j]← i
j ← PSVlex[j]

PSVlex[i]← j

Exercise 2.5 Prove that the two properties above are indeed invariants of the
for-loop of Algorithm 4.

Exercise 2.6 Devise an alternative linear-time algorithm that computes the
arrays PSVlex and NSVlex using a stack.

Now we have all the ingredients for a linear-time LZ-factorization; see Algo-
rithm 5.

5

Algorithm 5 Computation of the LZ-factorization in O(n) time

compute SA, ISA, PSVlex, and NSVlex in O(n) time
k ← 1
while k ≤ n do /* stream ISA */

psv ← SA[PSVlex[ISA[k]]]
nsv ← SA[NSVlex[ISA[k]]]
k ← LZ_Factor(k, psv, nsv)

Exercise 2.7 Show that Algorithm 5 runs in O(n) time.
Hint: Give an upper bound for the overall number of character comparisons
employed in the calls to procedure LZ_Factor.

We can get rid of the inverse su�x array in Algorithm 5 because it is possible
to directly compute the arrays PSVtext and NSVtext, de�ned as follows:

PSVtext[k] = SA[PSVlex[ISA[k]]]

NSVtext[k] = SA[NSVlex[ISA[k]]]

Figure 3 shows an example.

k 1 2 3 4 5 6 7 8 9 10
S[k] a c a a a c a t a t

PSVtext[k] 0 1 0 3 1 2 5 6 5 6
NSVtext[k] 0 0 1 1 2 0 2 0 7 8

Figure 3: The arrays PSVtext and NSVtext of the string S = acaaacatat.

Pseudo-code for the computation of PSVtext and NSVtext can be found in
Algorithm 6. In essence, the correctness of this algorithm follows from the
correctness of Algorithm 4.

Algorithm 6 Given SA, this procedure computes PSVtext and NSVtext.

for i← 1 to n+ 1 do /* stream SA */

j ← SA[i− 1]
k ← SA[i]
while k < j do /* store PSVtext and NSVtext interleaved */

NSVtext[j]← k
j ← PSVtext[j]

PSVtext[k]← j

Algorithm 7 shows the pseudo-code of our �nal algorithm for computing the
LZ-factorization of a string S.

6

Algorithm 7 Computation of the LZ-factorization in O(n) time

compute SA, PSVtext, and NSVtext

k ← 1
while k ≤ n do /* stream PSVtext and NSVtext */

k ← LZ_Factor(k,PSVtext[k],NSVtext[k])

References

[CI08] M. Crochemore and L. Ilie. Computing longest previous factor
in linear time and applications. Information Processing Letters,
106(2):75�80, 2008.

[GB13] K. Goto and H. Bannai. Simpler and faster Lempel Ziv factorization.
In Proc. 23rd Data Compression Conference, pages 133�142. IEEE
Computer Society, 2013.

[GBYS92] G.H. Gonnet, R.A. Baeza-Yates, and T. Snider. New indices for
text: PAT trees and PAT arrays. In Information Retrieval: Data

Structures and Algorithms, chapter 5, pages 66�82. Prentice-Hall,
Englewood Cli�s, NJ, 1992.

[HSS03] W.K. Hon, K. Sadakane, and W.K. Sung. Breaking a time-and-space
barrier in constructing full-text indices. In Proc. 44th Annual IEEE

Symposium on Foundations of Computer Science, pages 251�260,
2003.

[KA03] P. Ko and S. Aluru. Space e�cient linear time construction of su�x
arrays. In Proc. 14th Annual Symposium on Combinatorial Pattern

Matching, volume 2676 of Lecture Notes in Computer Science, pages
200�210. Springer-Verlag, 2003.

[KKP13] J. Kärkkäinen, D. Kempa, and S.J. Puglisi. Linear time Lempel-Ziv
factorization: Simple, fast, small. In Proc. 24th Annual Symposium

on Combinatorial Pattern Matching, volume 7922 of Lecture Notes

in Computer Science, pages 189�200. Springer, 2013.

[KS03] J. Kärkkäinen and P. Sanders. Simple linear work su�x array con-
struction. In Proc. 30th International Colloquium on Automata, Lan-

guages and Programming, volume 2719 of Lecture Notes in Computer

Science, pages 943�955. Springer, 2003.

[KSPP03] D.K. Kim, J.S. Sim, H. Park, and K. Park. Linear-time construction
of su�x arrays. In Proc. 14th Annual Symposium on Combinato-

rial Pattern Matching, volume 2676 of Lecture Notes in Computer

Science, pages 186�199. Springer-Verlag, 2003.

7

[MM93] U. Manber and E.W. Myers. Su�x arrays: A new method for on-line
string searches. SIAM Journal on Computing, 22(5):935�948, 1993.

[OG11] E. Ohlebusch and S. Gog. Lempel-Ziv factorization revisited. In
Proc. 22nd Annual Symposium on Combinatorial Pattern Matching,
volume 6661 of Lecture Notes in Computer Science, pages 15�26.
Springer, 2011.

[PST07] S.J. Puglisi, W.F. Smyth, and A. Turpin. A taxonomy of su�x array
construction algorithms. ACM Computing Surveys, 39(2):Article 4,
2007.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337�
343, 1977.

8

