Datenkompression

Sommersemester 2015 Übungsblatt 3

Prof. Dr. E. Ohlebusch

T. Beller

Institut für Theoretische Informatik

Ausgegeben am 26.05.2015

Besprechung am 02.06.2015

Aufgabe 3.1

Die Zeichenfolge S := ABABDCCCCAABABDCAABA über dem Quellenalphabet $\Sigma := \{A, B, C, D\}$ soll komprimiert werden.

- a) Verwenden Sie das LZ77-Verfahren (Suchpuffer 7 Zeichen und Codierpuffer 3 Zeichen lang). Welche Ausgabesymbole könnte man weglassen, um die Kompressionsrate zu verbessern?
- b) Verwenden Sie das LZSS-Verfahren (Suchpuffer 7 Zeichen und Codierpuffer 3 Zeichen lang). Ab welcher Länge sollte man hier (anstatt die Zeichen selbst zu codieren) das Format mit Offset und Länge verwenden?
- c) Verwenden Sie das LZ78-Verfahren.
- d) Welches der drei Verfahren komprimiert S am besten, welches am schlechtesten?

Aufgabe 3.2

Konstruieren Sie eine Zeichenkette, die sich mit LZ77 besser komprimieren lässt als mit LZ78.

Aufgabe 3.3

Wir betrachten einen LZW-Decodierer mit folgendem Anfangswörterbuch:

Index	Eintrag
1	a
2	Ъ
3	С

- a) Decodieren Sie die Folge 1,2,3,6,4,8 mit diesem LZW-Decodierer.
- b) Werden in dem Trie eines LZW-Decodierers Zeiger auf Kindknoten benötigt? Werden Zeiger auf Elternknoten benötigt?
- c) Beschreiben Sie einen LZW-Decodierer, dessen Wörterbuch mit Hilfe einer Tabelle anstelle eines Tries implementiert ist. Welche Vorteile sehen Sie in solch einem Verfahren?

Tipp: Für die Folge 1,2,2,1,3,4,9,3 könnte die Tabelle wie folgt aussehen:

1	2	3	4	5	6	7	8	9	10
0	0	0	1	2	2	1	3	4	9
a	b	С	b	b	a	С	a	a	С

Aufgabe 3.4

Diese Aufgabe bezieht sich auf den Skriptteil "Lempel-Ziv Factorization: LZ77 without Window", der auf der Vorlesungshomepage und im Skriptdrucksystem verfügbar ist.

Das Suffix-Array (und die Suffixe) des Strings $S \coloneqq \texttt{ABABDCCCCAABABDCAABA}\$$ ist in Abbildung 1 dargestellt.

- a) Berechnen Sie mit Algorithmus 4 die Arrays $\mathsf{PSV}_{\mathrm{lex}}$ und $\mathsf{NSV}_{\mathrm{lex}}$ für S.
- b) Berechnen Sie mit Algorithmus 5 die LZ-Faktorisierung von S. Wie viele Zeichenvergleiche werde benötigt?
- c) Zeigen Sie, dass die Laufzeit von Algorithmus 5 in O(n) liegt. Es wurde bereits gezeigt, dass die Arrays SA, ISA, PSV_{lex} und NSV_{lex} in linearer Zeit berechnet werden können.

i	SA	ISA	$S_{SA[i]}$
0	0		ϵ
1	21	7	\$
2	20	12	A\$
3	17	9	AABA\$
4	10	14	AABABDCAABA\$
5	18	21	ABA\$
6	11	19	ABABDCAABA\$
7	1	18	ABABDCCCCAABABDCAABA\$
8	13	17	ABDCAABA\$
9	3	16	ABDCCCCAABABDCAABA\$
10	19	4	BA\$
11	12	6	BABDCAABA\$
12	2	11	BABDCCCCAABABDCAABA\$
13	14	8	BDCAABA\$
14	4	13	BDCCCCAABABDCAABA\$
15	16	20	CAABA\$
16	9	15	CAABABDCAABA\$
17	8	3	CCAABABDCAABA\$
18	7	5	CCCAABABDCAABA\$
19	6	10	CCCCAABABDCAABA\$
20	15	2	DCAABA\$
21	5	1	DCCCCAABABDCAABA\$

Abbildung 1: Suffix Array und Inversers Suffix Array des Strings ABABDCCCCAABABDCAABA\$