‘Chapter 7

Compressed Full-Text Indexes

Until now, we have used the suffix array as an index data structure, and
exact string matching was done in forward direction. This chapter is dedi-
cated to index data structures and applications in which a forward search
is replaced with a backward search. It is organized as follows. First, we
review the Burrows-Wheeler transform [48]—a well-known technique em-
ployed in lossless data compression—on which backward search is based.
Second, we describe the search algorithm discovered by Ferragina and
Manzini [100]. Third, we introduce the wavelet tree invented by Grossi et
al. [134]. This data structure supports backward search and has many
other virtues. In subsequent sections, we shed new light on solutions to
problems faced in Chapter 5, such as developing new algorithms that ad-
dress space efficiency issues, as well as problems related to bidirectional
searches and approximate string matching.

7.1 The components of a compressed full-text index

Many variations of compressed suffix trees (CSTs) have been proposed in
the literature (see e.g. [273]), and these do not all have the same func-
tionality. Because we focus on backward search, which is normally not
supported by a CST, we prefer the term “compressed full-text index”.

Definition 7.1.1 A compressed full-text index of a string S is a space-
efficient data structure that supports (at least) the following operations:

1. backward search,

2. access to the suffix array of S,
3. access to the LCP-array of S,
4

. navigation on the (virtual) suffix tree of S.

282 7 Compressed Full-Text Indexes

The compressed full-text index of the string S that is used throughout
this book consists of the following four components:

1. the wavelet tree of the Burrows-Wheeler transformed string of S,
2. the sparse suffix array of S from Section 6.2.1,
3. the compressed LCP-array as explained in Section 6.2.2,

4. the balanced parentheses sequence BPS of the LCP-array that was
introduced in Section 6.3.

We emphasize that each of the four components can be replaced with
another component that has the same functionality. For example, the
wavelet tree can be substituted by the compressed suffix array [135,270]
sketched in Section 6.2.1 because backward search can be done with
the ¢-function; see Exercise 7.3.3. Further alternatives are described
in [238]. However, the wavelet tree has many sophisticated properties
that make it most suitable for many applications. Alternative compressed
representations of the LCP-array are discussed in [126], among which is a
representation that is based on the array LCP’ from Section 6.3.6. There
are also alternatives to the BPS of the LCP-array, most notably the BPS,,.
introduced in Section 6.1; cf. [231,273]. We refer to [124] for an in-depth
experimental study of the various incarnations of compressed full-text
indexes.

7.2 The Burrows-Wheeler transform

The Burrows-Wheeler transform was introduced in a technical report writ-
ten by David Wheeler and Michael Burrows [48]; see the historical notes
in Adjeroh et al. [6]. In practice, the Burrows-Wheeler transformed string
tends to be easier to compress than the original string; see e.g. [48, Sec-
tion 3] and [215] for reasons why the transformed string compresses well.

Here we assume that the string S of length » is terminated by the sen-
tinel character $. Although this is not necessary for the Burrows-Wheeler
transform to work correctly (cf. [48]), in virtually all practical cases the file
to be compressed is terminated by a special symbol, the EOF (end of file)
character. Moreover, it allows us to use a fast suffix sorting algorithm to
compute the transformed string.

7.2.1 Encoding

The Burrows-Wheeler transform transforms a string S in three steps:

1. Form a conceptual matrix M’ whose rows are the cyclic shifts of the
string S.

7.2 The Burrows-Wheeler transform 283

F L

ctatatat$ $ ctatata t
tatatatSc a tSctata t
atatatSct a tatScta t

~ tatatscta a tatat$ct

ctatatat$ % atatSctat 2 ¢ tatatat $ ﬁj ttttSaaac
tatSctata t Sctatat a
atSctatat t atSctat a
tSctatata t atatSct a
Sctatatat t atatat$ c
M M

Figure 7.1: The Burrows and Wheeler transform applied to the string S =
ctatatats yields the output L = ttttSaaac.

2. Compute the matrix M by sorting the rows of M’ lexicographically.
3. Output the last column L of M.

An example can be found in Figure 7.1. We next show that computing
the Burrows-Wheeler transformed string of S boils down to sorting the
suffixes of S, or more precisely, the output L of the Burrows-Wheeler
transform can be derived in linear time from the suffix array SA. To this
end, we define a string BWT and show that it coincides with L.

Definition 7.2.1 For a string S of length n having the sentinel character
at the end (and nowhere else), the string BWT[1..n] is defined by BWT[i] = $
if SA[i] = 1 and BWT[i] = S[SA[i] — 1] if SA[4] # 1.

Obviously, the string BWT[1l..n] can be derived in linear time from the
suffix array SA; see Algorithm 7.1.

Algorithm 7.1 Computing BWT from SA and the string S.
for ;< 1tondo
if SA[i] = 1 then BWTJ[i] < s
else BWT[i] < S[SA[i] — 1]

If we truncate each string in the matrix M after the sentinel $, then the
truncated strings are still lexicographically ordered; see Figure 7.2. Since
these truncated strings are exactly the suffixes of S, the string BWT coin-
cides with the string L (this crucially relies on the fact that S is terminated
by $; see Exercise 7.2.2).

284 7 Compressed Full-Text Indexes

F L F L BWT F L
S ctatata t $ t t S t
a tSctata t ats t t at$ t
a tatScta t a tat$ t t atats t
a tatatSct truncate @ tatat$ t observe t atatat$ t
ctatatat $ after s ctatatat$S $ L=BWT S ctatatat$s S
t Sctatat a ts a a ts$ a
t atSctat a tats a a tat$ a
t atatSct a t atat$ a a tatat$ a
t atatat$ c t atatats ¢ c tatatats ¢

Figure 7.2: Truncate the strings (rows) after the sentinel character, and
observe that L = BWT.

i 112|3]4]5|6[7|8|9
L[i] tit|t|t|S|lalalalc
LF3G)|6|7|8|9|1]|2|3]4]|5
F[i] |$lalalalc|t|t|t]|t

Figure 7.3: LF maps the last column L to the first column F.

Exercise 7.2.2 For a string S of length n without the sentinel character at
the end, define BWT[i| = S[n] if SA[{] = 1 and BWT[:] = S[SA[i] — 1] if SA[i] # 1.
Find a string S (without sentinel) for which BWT # L.

7.2.2 Decoding

It is not obvious how the string BWT can be retransformed into the orig-
inal string S. The key to this back-transformation is the so-called LF-

mapping.

Definition 7.2.3 Let /' and L be the first and last column in the matrix
M; cf. Figure 7.1. The function LF : {1,...,n} — {1,...,n} is defined as
follows: If L[i] = c is the k-th occurrence of character c in L, then LF(i) = j
is the index so that F'[j] is the k-th occurrence of ¢ in F.

The function LF is called last-to-first mapping because it maps the last
column L to the first column F'; see Figure 7.3 for an example. In the
following, when we regard the LF- mapping as an array, we will the use
the notation LF[i] instead of LF(3).

7.2 The Burrows-Wheeler transform 285

Algorithm 7.2 Computing LF from BWT and the C-array.

forall cc ¥ do
count|c] « C|c]

for i< 1tondo
¢+ BWT]
count|c] + count[c] + 1
LF[i] + count|c]

Next, we develop a linear-time algorithm that computes LF. To achieve
this goal, we must be able to find the k-th occurrence of a character c € ¥
in F. Employing the C-array (if we consider all characters in ¥ that are
smaller than ¢, then C[¢] is the overall number of their occurrences in 5),
the index of the first occurrence of character ¢ in the array F is Clc] + 1.
Therefore, the k-th occurrence of ¢ in F' can be found at index C|c] + k.

Algorithm 7.2 shows the pseudo-code for the computation of LF. It
scans the BWT from left to right and counts how often each character
appeared already. The algorithm uses an auxiliary array count of size o.
Initially, count[c] = Clc]. Each time character ¢ appears during the scan of
BWT, countc] is incremented by one. As discussed above, if the algorithm
finds the k-th occurrence of character ¢ at index ¢ in BWT, then the k-th
occurrence of character c in F appears at index count[c] = C|c] + k. In other
words, the index LF[i] we are searching for is count]c|.

It remains to compute the original string S from BWT and LF. Lemma
7.2.4 states the crucial property of the LF-mapping that makes this pos-
sible.

Lemma 7.2.4 The first row of the matrix M contains the suffix S, = $. If
row i, 2 < i < n, of the matrix M contains the suffix S;, then row LF' (i) of M
contains the suffix S;_;.

Proof Since $ is the smallest character in ¥, the first row of M contains
$, which is the n-th suffix of S. Let ¢ # $ be a character in S, and let i; <
ig < -+ < i, be all the indices with BWT[iy]| = ¢, 1 < k < m. (So if we would
number the m occurrences of ¢ in L = BWT as ¢, ¢, . . ., ¢, then BWT[i] =
cx.) Because the suffixes in M are ordered lexicographically, we have
Ssafin] < Ssafia] < < SSAfim]- Obviously, this implies eSsafiy) < ESspfiy) < -0 <
cSsafi,,- (With the occurrence numbers as subscripts, c1Ssaji,) < c25sajiy) <
-+ < pSsaf,,)) By definition, LF(iy) is the index so that F[LF(i)] is the
k-th occurrence of ¢ in F'. Since ¢Ssay;,] = Ssaji,)-1. it follows that row LF (i)
of M contains the suffix Ssa;,|-1. a

Theorem 7.2.5 If L = BWT is the output of the Burrows-Wheeler transform
applied to the string S, and LF is the corresponding last-to-first mapping,
then Algorithm 7.3 computes S.

286 7 Compressed Full-Text Indexes

Algorithm 7.3 Computing the string S from BWT and LF.
S[n] «+ s
Jj1
for i < n — 1 downto 1 do
S[i] «+ BWTJj]
J = LF(j)

Proof Initially, the algorithm assigns $ to S[n|. This is correct because
$ is the last character of S. Since $ is the smallest character in X, row
j = 1 of the matrix M contains the suffix 5, = $. Now L[1] = BWT[1] =
S[n — 1] implies that the (n — 1)-th character of S is correctly decoded in
the first iteration of the for-loop. After the assignment j « LF(j), row j
contains the suffix S,_;. In the second iteration of the for-loop, the (n—2)-
th character of S is correctly decoded because L[j] = BWT[j] = S[n—2], and
SO on. g

Exercise 7.2.6 Extend Algorithm 7.3 so that it also computes the suffix
array of the string S. Is it possible to overwrite the LF-array with the
suffix array? (This would save space if the LF-array is no longer needed.)

An alternative way to retransform the BWT into the original string S
uses the y-function instead of the LF-mapping. We are already familiar
with the ¢-function: For a string of length n (without the sentinel charac-
ter $ at the end), (i) = ISA[SA[{] + 1] for all i with SA[i] < n; see Definition
5.5.4. Here, we assume that the string under consideration is terminated
by s. If S is a string of length n having the sentinel character at the
end (and nowhere else), then SA[l] = n because $ is the lexicographically
smallest suffix of S. So with the previous definition of the ¢-function, the
value (1) is undefined. Definition 7.2.7 provides a value for (1) so that
1) becomes a permutation.

Definition 7.2.7 The function ¢ : {1,...,n} — {1,...,n} is defined by
(i) = ISA[SAi] + 1] for all + with 2 < i <n and (1) = ISA[1].

The next two lemmata reveal the close relationship between the func-
tions LF and .

Lemma 7.2.8 We have LF(i) = ISA[SA[i] — 1] for all i with SA[i] # 1 and
LF(i) =1 for the index i so that SAJi] = 1.

Proof If SA[i] = 1, then BWT[i] = $. Since $ occurs at index 1 in the array F,
we have LF(i) = 1. Now suppose that SA[i] # 1. According to Lemma 7.2.4,
if SA[i] = j, then SA[LF(i)] = j — 1. So the equation SA[LF(i)] = SA[{] — 1
holds true. Thus, LF(i) = ISA[SA[i] — 1]. O

7.2 The Burrows-Wheeler transform 287

K | >
_ Burrows-Wheeler Move-to-Front Huffman
String S Transform

(BWT) n Coding (MTF) o Compression Code 5c

Figure 7.4: The main phases of the bzip2 compression program.

Lemma 7.2.9 The functions LF and v are inverse of each other.

Proof We will show LF(y(i)) = ¢ for all i with 1 < ¢ < n. (The equality
Y(LF(i)) = i similarly follows.) If i = 1, then (1) = ISA[1] is the index so
that SA[ISA[1]] = 1. Hence LF(y)(1)) = 1 by Lemma 7.2.8. For i > 1, it follows
from Lemma 7.2.8 and Definition 7.2.7 that LF(¢(i)) = ISA[SA[¢(i)] — 1] =

ISA[SA[ISA[SA[i] + 1]] — 1] = ISA[SA[i] + 1 — 1] = i. O

cancel

Exercise 7.2.10 This exercise makes clear that LF can be replaced with
1 in BWT-decoding.

e Modify Algorithm 7.2 so that it computes the ¢-array from BWT. You
may assume that the index index of_$, at which the character $ occurs
in the string BWT, is known (it can easily be computed during the
Burrows-Wheeler transform).

e Modify Algorithm 7.3 so that it computes the string S from BWT,
index of_$, and .

e Show how to compute the suffix array SA from BWT, index of_$, and
1. Is it possible to overwrite the ¢ -array with the suffix array? (This
would save space if the ¢-array is no longer needed.)

7.2.3 Data compression

The Burrows-Wheeler transform is used in many lossless data compres-
sion programs, of which the best known is Julian Seward’s bzip2. Figure
7.4 shows bzip2’s main phases. (Its ancestor bzip used arithmetic cod-
ing [267] instead of Huffman coding [158]. The change was made because
of a software patent restriction.) It is possible to further use a run-length
encoder (RLE) in between move-to-front (MTF) and Huffman coding, or to
replace MTF with RLE. As a matter of fact, many more variations of the
coding scheme are possible. The reader is referred to Adjeroh et al. [6]
for a detailed introduction to the current state of knowledge about data
compression with the Burrows-Wheeler transform.

288 7 Compressed Full-Text Indexes

An application of the coding scheme from Figure 7.4 to the string S =
ctatatat$ yields the code S, = 0111100010111. The intermediate steps are

BWT MTF Huffman

S = ctatatat$ => L = ttttSaaac = R = 300012003 = S, = 011110000011101

We have already seen how the Burrows-Wheeler transform works, so we
now turn to the other two steps: move-to-front and Huffman coding.

Move-to-front coding

Bentley et al. [36] introduced the move-to-front transform in 1986 but the
method was already described in 1980 by Ryabko; see [269]. The MFT
is an encoding of a string designed to improve the performance of en-
tropy encoding techniques of compression like Huffman coding [158] and
arithmetic coding [267]. The idea is that each character in the string
is replaced by its rank in a list of recently used characters. After a re-
placement, the character is moved to the front of the list of characters.
Algorithm 7.4 makes this precise.

Algorithm 7.4 Move-to-front coding of a string L € ¥".

Initialize a list containing the characters from ¥ in increasing order.
fori«+ 1tondo

R[i] + number of characters preceding character L[i] in list

move character L[i] to the front of list

Figure 7.5 shows the application of Algorithm 7.4 to the string L =
ttttSaaac; note that ‘0’ occurs more often in the resulting string R than ¢
or ¢ do in L. As you can see, every run (a run is a substring of identical
characters) is replaced by a sequence of zeros (except for the first rank).
Because a Burrows-Wheeler transformed string usually has many runs,
the proportion of zero ranks after MTF has been applied is relatively high.

Pseudo-code for the decoding of the rank vector R is shown in Algorithm
7.5, and Figure 7.6 illustrates the behavior of this algorithm applied to the
rank vector R = 300012003.

Algorithm 7.5 Move-to-front decoding of R.

Initialize a list containing the characters from ¥ in increasing order.
fori«+ 1tondo
L[i] +- character at position R[i] + 1 in list (numbering elements from 1)
move character L[i] to the front of list

7.2 The Burrows-Wheeler transform 289

[4| list [L[i] | R[] |
1| Sact| t 3
tSac| t 0
tSac| t 0
tSac| t 0
tSac| $ 1
a 2
a 0
a 0
c 3

Stac
astc
a$tc
aStc

OO0 | | U =] W

Figure 7.5: Move-to-front coding of a string L = ttttSaaac.

|4 | list [R[] [L[] |
1| Sact| 3 t
tSac| 0 t
tSac| 0 t
tSac| 0 t
tSac| 1 $
2 a
0 a
0 a
3 c

Stac
aStc
aStc
aSte

O 00| | | U = W DO

Figure 7.6: Move-to-front decoding of R = 300012003 with ¥ = {$,a, ¢, t}.

