Algorithmen zur Sequenzanalyse

Wintersemester 2019/2020

Übungsblatt 1

Prof. Dr. E. Ohlebusch,

Besprechung am 29.10.2019 Institut für Theoretische Informatik

Aufgabe 1.1.

Berechnen Sie mit Hilfe des Skew-Algorithmus das Suffixarray des Strings mississippi.

Aufgabe 1.2.

Im Skript wurden die Funktionen τ und τ^{-1} (für $n \mod 3 = 0$) wie folgt definiert:

$$\tau(i) = \begin{cases} \frac{i+1}{3}, & \text{falls } i \mod 3 = 2\\ \frac{n+i}{3}, & \text{falls } i \mod 3 = 0 \end{cases}$$
$$\tau^{-1}(j) = \begin{cases} 3j - 1, & \text{falls } 1 \le j \le \frac{n}{3}\\ 3j - n, & \text{falls } \frac{n}{3} < j \le \frac{2n}{3} \end{cases}$$

Zeigen Sie, dass τ^{-1} die Umkehrfunktion von τ ist, also dass gilt: $\tau(\tau^{-1}(i)) = i$

Aufgabe 1.3.

Beweisen Sie, dass für $i \neq j$ mit $i \mod 3 \neq 1$ und $j \mod 3 \neq 1$ gilt:

$$S_i < S_j$$
 gdw. $\overline{S}_{\tau(i)} < \overline{S}_{\tau(j)}$

Hinweis: Erweitern Sie die lexikografischen Namen $\overline{S}_{\tau(i)}$ und $\overline{S}_{\tau(j)}$ um die zugehörigen Tripel und benutzen Sie eine Fallunterscheidung für $i \mod 3$ und $j \mod 3$.

Aufgabe 1.4.

Gegeben sei ein String S der Länge n sowie sein Suffixarray. Geben Sie einen Algorithmus an, der die Anzahl der Vorkommen eines Musters P im String S in $O(m \log n)$ Zeit berechnet, wobei m die Länge von P ist.

Beispiel: Das Muster P = taat kommt zweimal im String S = ctaataatg vor.