7

Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions

Genome Rearrangement Problems

Genome Rearrangement Problems

- Further restrictions: unichromosomal genomes, ancestor has no duplicated genes

Example

Example

- ($\left.\overrightarrow{1} _\overrightarrow{2} \overrightarrow{3} \overrightarrow{4} \overrightarrow{5}\right)$
transposition
- ($\overrightarrow{1} \overrightarrow{4} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3}$)
- $(\overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3})$

Example

- ($\overrightarrow{1}-\overrightarrow{2} \overrightarrow{3} \overrightarrow{4} \overrightarrow{5})$
- ($\overrightarrow{1} \overrightarrow{4} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3})$
- ($\overrightarrow{1} \overrightarrow{4} \overrightarrow{5} \overrightarrow{2} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3})$
- ($\overrightarrow{4} \stackrel{\rightharpoonup}{2} \stackrel{5}{5} \overrightarrow{2} \overrightarrow{3})$

Example

$$
\begin{aligned}
& \text { Sort (} \overrightarrow{1} \overrightarrow{2} \overrightarrow{3} \overrightarrow{4} \overrightarrow{5} \text {) into (} \overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3} \text {) } \\
& \text { - }\left(\overrightarrow{1} _\overrightarrow{2} \overrightarrow{3} \overrightarrow{4} \overrightarrow{5}\right) \\
& \text { - (} \overrightarrow{1} \overrightarrow{4} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3} \text {) } \\
& \text { - (} \overrightarrow{1} \overrightarrow{4} \overrightarrow{5} \overrightarrow{2} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3} \text {) } \\
& \text { - }(\overrightarrow{1} \overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3}) \\
& \text { - }(\overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3})
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { Sort (} \overrightarrow{1} \overrightarrow{2} \overrightarrow{3} \overrightarrow{4} \overrightarrow{5} \text {) into (} \overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3} \text {) } \\
& \text { - }\left(\overrightarrow{1} _\overrightarrow{2} \overrightarrow{3} \overrightarrow{4} \overrightarrow{5}\right) \\
& \text { - (} \overrightarrow{1} \overrightarrow{4} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3} \text {) } \\
& \text { - (} \overrightarrow{1} \overrightarrow{4} \overrightarrow{5} \overrightarrow{2} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3} \text {) } \\
& \text { - (} \overrightarrow{1} \overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3}) \\
& \text { - }(\overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3}) \\
& \text { tandem duplication } \\
& \text { reversal } \\
& \text { deletion } \\
& \text { - }(\overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3})
\end{aligned}
$$

Algorithm: Outline

- Simulate Reversals and Block Interchanges by DCJs
- Start with π, sort backwards to id
\Rightarrow apply inverse operations
- Define a lower bound on $d(\pi, i d)$ based on the Breakpoint Graph
- Find operations on π that decrement the lower bound
- Apply the "best" of them (Greedy algorithm)
- If no such operation exists, use additional heuristics

The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates

The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
$\overrightarrow{1}$
$\overrightarrow{2}$
$\overrightarrow{3}$
$\overrightarrow{4}$
$\overrightarrow{5}$

Example: $\pi=(\overleftarrow{3} \overleftarrow{2} \overrightarrow{1} \overrightarrow{4} \overleftarrow{5})$

The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \vec{x} by $-x+x$
$\begin{array}{llllllllll}-1 & +1 & -2 & +2 & -3 & +3 & -4 & +4 & -5 & +5\end{array}$

Example: $\pi=(\overleftarrow{3} \overleftarrow{2} \overrightarrow{1} \overrightarrow{4} \overleftarrow{5})$

The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \vec{x} by $-x+x$
- Add boundary elements +0 and $-(n+1)$
$\begin{array}{llllllllllll}+0 & -1 & +1 & -2 & +2 & -3 & +3 & -4 & +4 & -5 & +5 & -6\end{array}$

Example: $\pi=(\overleftarrow{3} \overleftarrow{2} \overrightarrow{1} \overrightarrow{4} \overleftarrow{5})$

The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \vec{x} by $-x+x$
- Add boundary elements +0 and $-(n+1)$
- Add reality edges from $+x$ to $-(x+1)$

$$
+\overline{0}-1 \quad \overline{1}-2 \quad+\overline{2}-3 \quad \overline{+3}-4 \quad+\overline{4}-5 \quad+\overline{5}-6
$$

Example: $\pi=(\overleftarrow{3} \overleftarrow{2} \overrightarrow{1} \overrightarrow{4} \overleftarrow{5})$

The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \vec{x} by $-x+x$
- Add boundary elements +0 and $-(n+1)$
- Add reality edges from $+x$ to $-(x+1)$
- Add desire edges according to adjacencies in π

Example: $\pi=\left(\begin{array}{l}3 \\ \hline\end{array} \overrightarrow{1} \overrightarrow{4} \overleftarrow{5}\right)$

The Breakpoint Graph revisited

The Breakpoint Graph revisited

Example: $\pi=(\overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3})$

- Multiplicity of an element x : number of occurrences of x in π
- Multiplicity of a desire edge (v, w): number of desire edges (v, w) in the breakpoint graph
- Loop: Desire edge (v, v)
- Component: Connected component (graph theory)
- 1-bridge: Desire edge that can be removed to increase the number of components
- 2-bridge: Pair of desire edges that can be removed to increase the number of components

Effects of Operations: DCJ

- Cuts two desire edges and rejoins the ends
- Can split a component with a 2-bridge or two 1-bridges
- Can remove up to two loops

$$
(\overrightarrow{1} \overrightarrow{4} \overleftarrow{2} \stackrel{5}{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3}) \leftarrow(\overrightarrow{1} \overrightarrow{4} \overrightarrow{5} \overrightarrow{2} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3})
$$

Effects of Operations: Inverse Tandem Duplication

- Removes desire edge between segment end and segment start
- Removes desire edges inside the segment
- The latter desire edges have a multiplicity ≥ 2
- Splits a component if and only if the former desire edge is a 1-bridge
- Can remove one loop
- Precondition: Two consecutive identical segments

Effects of Operations: Inverse Deletion

- Removes one desire edge
- Inserts arbitrary desire edges
- Can split a component if the removed desire edge is a 1-bridge
- Can remove one loop

$$
(\overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3}) \leftarrow(\overrightarrow{1} \overrightarrow{4} \overleftarrow{2} \overleftarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3})
$$

A lower bound

- The breakpoint graph of id has $n+1$ components and no loops
- Thus, the distance $d(\pi, i d)$ can be bounded by

$$
d(\pi, i d) \geq l b(\pi)=n+1-C(\pi)+\sum_{\text {Components }}\left\lceil\frac{S_{i}}{2}\right\rceil
$$

where $C(\pi)$ is the number of components and S_{i} is the number of vertices with a loop in component C_{i}

- $l b(\pi)=0$ if and only if $\pi=i d$, otherwise $l b(\pi)>0$

Additional Heuristics

Search for

- Tandem duplications that do not change the lower bound
- Reversals that create adjacencies
- Sequences for elements with multiplicity ≥ 3
- Sequences for the few remaining cases

Additional Heuristics

Search for

- Tandem duplications that do not change the lower bound
- Reversals that create adjacencies
- Sequences for elements with multiplicity ≥ 3
- Sequences for the few remaining cases

Which of those is the best?

- Maximize the number of adjacencies
- Bring multiplicity of elements close to 1

Additional Heuristics

Search for

- Tandem duplications that do not change the lower bound
- Reversals that create adjacencies
- Sequences for elements with multiplicity ≥ 3
- Sequences for the few remaining cases

Which of those is the best?

- Maximize the number of adjacencies
- Bring multiplicity of elements close to 1
\Rightarrow Maximize
$\tau(\pi):=\#$ adjacencies $-2 \cdot(\#$ missing elements + \#duplicated elements $)$

Algorithm: Pseudocode

while $\pi \neq i d$ do
Find all operations that decrease $l b(\pi)$
if operation found then
apply an operation that maximizes $\tau(\pi)$
else
find tandem duplications
find sequences for segments with multiplicity ≥ 3
find operations that create adjacencies
find sequences for the remaining cases
apply a sequence that maximizes $\tau(\pi)$
end if
end while

Experimental Results

- Start with id of size $n(n \in\{20,50,80,100\})$
- Apply αn random operations $(\alpha \in[0,1]))$
- Use algorithm to reconstruct this sequence
- Compare \# applied operations to \# calculated operations

Experimental Results

$$
\mathrm{n}=50
$$

Conclusion and Future work

- Algorithm works well for small values of n and α
- Possible improvements:
- Tighter lower bound
- Finding an upper bound
- Improving the heuristics
- Extending the algorithm to multichromosomal genomes

Acknowledgements

- Thanks to Sophia Yancopoulos for the initial idea of combining DCJ and duplications
- Thanks to Michal Ozery-Flato for invaluable discussion

Thanks!

Thank you for your attention!

Algorithm: Completeness

- Define
$\tau(\pi):=\#$ adjacencies $-2 \cdot(\#$ missing elements + \#duplicated elements $)$
- $\tau(\pi)$ is maximized for $\pi=i d$
- All additional heuristics increase $\tau(\pi)$ and do not decrease $l b(\pi)$
- Between two operations that decrease the lower bound, only a finite number of operations can be applied
- Only a finite number of operations that decrease the lower bound can be applied

The Double Cut and Join Operator (DCJ)

- Invented by Yancopoulos et al. (2005)
- Cuts the genome at two positions, and rejoins the ends
- Reversals can be simulated by one DCJ
- Block interchanges can be simulated by two DCJs (via circular intermediate)
- Circular intermediates must be absorbed by the next operation

