

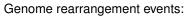
ulm university universität **UUU**

Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions

Martin Bader | January 15, 2009

Genome Rearrangement Problems

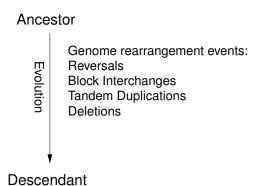
Ancestor



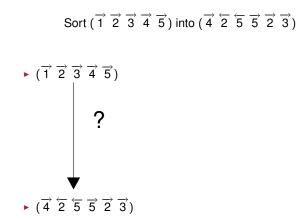
- Reversals Evolutior
 - Transpositions
 - Translocations
 - **Fusions/Fissions**
 - Insertions/Deletions
 - **Duplications**

Descendant

Genome Rearrangement Problems



 Further restrictions: unichromosomal genomes, ancestor has no duplicated genes



Sort
$$(\overrightarrow{1} \ \overrightarrow{2} \ \overrightarrow{3} \ \overrightarrow{4} \ \overrightarrow{5})$$
 into $(\overrightarrow{4} \ \overleftarrow{2} \ \overleftarrow{5} \ \overrightarrow{5} \ \overrightarrow{2} \ \overrightarrow{3})$



$$(\overrightarrow{1} \overrightarrow{4} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3})$$

$$(\overrightarrow{4} \ \overleftarrow{2} \ \overleftarrow{5} \ \overrightarrow{5} \ \overrightarrow{2} \ \overrightarrow{3})$$

Sort
$$(\overrightarrow{1} \ \overrightarrow{2} \ \overrightarrow{3} \ \overrightarrow{4} \ \overrightarrow{5})$$
 into $(\overrightarrow{4} \ \overleftarrow{2} \ \overleftarrow{5} \ \overrightarrow{5} \ \overrightarrow{2} \ \overrightarrow{3})$



transposition

tandem duplication

Sort
$$(\overrightarrow{1} \ \overrightarrow{2} \ \overrightarrow{3} \ \overrightarrow{4} \ \overrightarrow{5})$$
 into $(\overrightarrow{4} \ \overleftarrow{2} \ \overleftarrow{5} \ \overrightarrow{5} \ \overrightarrow{2} \ \overrightarrow{3})$

Sort
$$(\overrightarrow{1} \ \overrightarrow{2} \ \overrightarrow{3} \ \overrightarrow{4} \ \overrightarrow{5})$$
 into $(\overrightarrow{4} \ \overleftarrow{2} \ \overleftarrow{5} \ \overrightarrow{5} \ \overrightarrow{2} \ \overrightarrow{3})$

Algorithm: Outline

- Simulate Reversals and Block Interchanges by DCJs
- Start with π, sort backwards to id
 - \Rightarrow apply inverse operations
- Define a lower bound on $d(\pi, id)$ based on the Breakpoint Graph
- Find operations on π that decrement the lower bound
- Apply the "best" of them (Greedy algorithm)
- If no such operation exists, use additional heuristics

Invented by Bafna and Pevzner for genomes without duplicates

1

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line

$$\vec{2}$$
 $\vec{3}$ $\vec{4}$ $\vec{5}$
Example: $\pi = (\vec{3} \ \vec{2} \ \vec{1} \ \vec{4} \ \vec{5})$

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \overrightarrow{x} by -x + x

-1 +1 -2 +2 -3 +3 -4 +4 -5 +5

Example:
$$\pi = (\overleftarrow{3} \overleftarrow{2} \overrightarrow{1} \overrightarrow{4} \overleftarrow{5})$$

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \overrightarrow{x} by -x + x
- Add boundary elements +0 and -(n+1)

$$+0 \quad -1 \quad +1 \quad -2 \quad +2 \quad -3 \quad +3 \quad -4 \quad +4 \quad -5 \quad +5 \quad -6$$

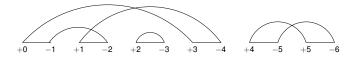
Example:
$$\pi = (\overleftarrow{3} \ \overleftarrow{2} \ \overrightarrow{1} \ \overrightarrow{4} \ \overleftarrow{5})$$

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \overrightarrow{x} by -x + x
- Add boundary elements +0 and -(n+1)
- Add reality edges from +x to -(x+1)

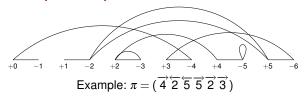
$$+\overline{0 - 1} + \overline{1 - 2} + \overline{2 - 3} + \overline{3 - 4} + \overline{4 - 5} + \overline{5 - 6}$$

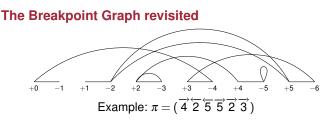
Example:
$$\pi = (\overleftarrow{3} \overleftarrow{2} \overrightarrow{1} \overrightarrow{4} \overleftarrow{5})$$

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \overrightarrow{x} by -x + x
- Add boundary elements +0 and -(n+1)
- ► Add reality edges from +x to -(x+1)
- Add desire edges according to adjacencies in π



Example: $\pi = (\overleftarrow{3} \overleftarrow{2} \overrightarrow{1} \overrightarrow{4} \overleftarrow{5})$

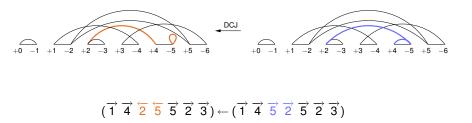




- Multiplicity of an element x: number of occurrences of x in π
- ► Multiplicity of a desire edge (v, w): number of desire edges (v, w) in the breakpoint graph
- Loop: Desire edge (v, v)
- Component: Connected component (graph theory)
- 1-bridge: Desire edge that can be removed to increase the number of components
- 2-bridge: Pair of desire edges that can be removed to increase the number of components

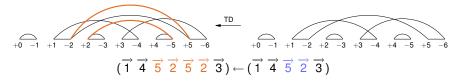
Effects of Operations: DCJ

- Cuts two desire edges and rejoins the ends
- Can split a component with a 2-bridge or two 1-bridges
- Can remove up to two loops



Effects of Operations: Inverse Tandem Duplication

- Removes desire edge between segment end and segment start
- Removes desire edges inside the segment
- The latter desire edges have a multiplicity ≥ 2
- Splits a component if and only if the former desire edge is a 1-bridge
- Can remove one loop
- Precondition: Two consecutive identical segments



Effects of Operations: Inverse Deletion

- Removes one desire edge
- Inserts arbitrary desire edges
- Can split a component if the removed desire edge is a 1-bridge
- Can remove one loop



 $(\overrightarrow{4}\ \overleftarrow{2}\ \overleftarrow{5}\ \overrightarrow{5}\ \overrightarrow{2}\ \overrightarrow{3}) \leftarrow (\overrightarrow{1}\ \overrightarrow{4}\ \overleftarrow{2}\ \overleftarrow{5}\ \overrightarrow{5}\ \overrightarrow{2}\ \overrightarrow{3})$

A lower bound

- The breakpoint graph of *id* has n+1 components and no loops
- Thus, the distance $d(\pi, id)$ can be bounded by

$$d(\pi, id) \geq lb(\pi) = n + 1 - C(\pi) + \sum_{Components} \lceil \frac{S_i}{2} \rceil$$

where $C(\pi)$ is the number of components and S_i is the number of vertices with a loop in component C_i

• $lb(\pi) = 0$ if and only if $\pi = id$, otherwise $lb(\pi) > 0$

Additional Heuristics

Search for

- Tandem duplications that do not change the lower bound
- Reversals that create adjacencies
- ► Sequences for elements with multiplicity ≥ 3
- Sequences for the few remaining cases

Additional Heuristics

Search for

- Tandem duplications that do not change the lower bound
- Reversals that create adjacencies
- ► Sequences for elements with multiplicity ≥ 3
- Sequences for the few remaining cases

Which of those is the best?

- Maximize the number of adjacencies
- Bring multiplicity of elements close to 1

Additional Heuristics

Search for

- Tandem duplications that do not change the lower bound
- Reversals that create adjacencies
- ► Sequences for elements with multiplicity ≥ 3
- Sequences for the few remaining cases

Which of those is the best?

- Maximize the number of adjacencies
- Bring multiplicity of elements close to 1

 $\Rightarrow \text{Maximize}$

 $\tau(\pi) := \#$ adjacencies – 2 · (#missing elements + #duplicated elements)

Algorithm: Pseudocode

while $\pi \neq id$ do

Find all operations that decrease $lb(\pi)$

if operation found then

apply an operation that maximizes $\tau(\pi)$

else

find tandem duplications

find sequences for segments with multiplicity \geq 3

find operations that create adjacencies

find sequences for the remaining cases

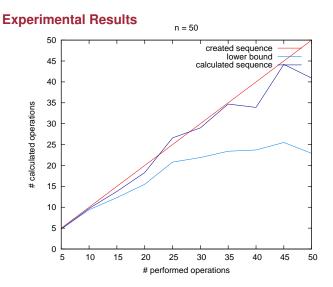
apply a sequence that maximizes $\tau(\pi)$

end if

end while

Experimental Results

- Start with *id* of size n (n ∈ {20, 50, 80, 100})
- Apply αn random operations ($\alpha \in [0, 1]$))
- Use algorithm to reconstruct this sequence
- Compare # applied operations to # calculated operations



Conclusion and Future work

- Algorithm works well for small values of n and α
- Possible improvements:
 - Tighter lower bound
 - Finding an upper bound
 - Improving the heuristics
 - Extending the algorithm to multichromosomal genomes

Acknowledgements

- Thanks to Sophia Yancopoulos for the initial idea of combining DCJ and duplications
- Thanks to Michal Ozery-Flato for invaluable discussion

Thanks!

Thank you for your attention!

Algorithm: Completeness

Define

 $\tau(\pi) := \#$ adjacencies – 2 · (#missing elements + #duplicated elements)

- $\tau(\pi)$ is maximized for $\pi = id$
- All additional heuristics increase $\tau(\pi)$ and do not decrease $lb(\pi)$
- Between two operations that decrease the lower bound, only a finite number of operations can be applied
- Only a finite number of operations that decrease the lower bound can be applied

The Double Cut and Join Operator (DCJ)

- Invented by Yancopoulos et al. (2005)
- Cuts the genome at two positions, and rejoins the ends
- Reversals can be simulated by one DCJ
- Block interchanges can be simulated by two DCJs (via circular intermediate)
- Circular intermediates must be absorbed by the next operation