
Sorting by Reversals, Block Interchanges,

Tandem Duplications, and Deletions
Martin Bader | January 15, 2009

Page 2 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Genome Rearrangement Problems

Genome rearrangement events:
Reversals
Transpositions
Translocations
Fusions/Fissions
Insertions/Deletions
Duplications

Ancestor

E
volution

Descendant

I Further restrictions: unichromosomal genomes, ancestor has no

duplicated genes

Page 2 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Genome Rearrangement Problems

Ancestor

E
volution

Descendant

Genome rearrangement events:
Reversals
Block Interchanges
Tandem Duplications
Deletions

I Further restrictions: unichromosomal genomes, ancestor has no

duplicated genes

Page 3 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Example

Sort (
−→
1
−→
2
−→
3
−→
4
−→
5) into (

−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

I (
−→
1
−→
2
−→
3
−→
4
−→
5)

?

(
−→
1 _
−→
2
−→
3
−→
4
−→
5) transposition

I (
−→
1
−→
4
−→
5
−→
2
−→
3) tandem duplication

I (
−→
1
−→
4
−→
5
−→
2
−→
5
−→
2
−→
3) reversal

I (
−→
1
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3) deletion

I (
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

Page 3 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Example

Sort (
−→
1
−→
2
−→
3
−→
4
−→
5) into (

−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

I (
−→
1 _
−→
2
−→
3
−→
4
−→
5) transposition

I (
−→
1
−→
4
−→
5
−→
2
−→
3)

(
−→
1
−→
4
−→
5
−→
2
−→
3) tandem duplication

I (
−→
1
−→
4
−→
5
−→
2
−→
5
−→
2
−→
3) reversal

I (
−→
1
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3) deletion

I (
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

Page 3 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Example

Sort (
−→
1
−→
2
−→
3
−→
4
−→
5) into (

−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

I (
−→
1 _
−→
2
−→
3
−→
4
−→
5) transposition

I (
−→
1
−→
4
−→
5
−→
2
−→
3) tandem duplication

I (
−→
1
−→
4
−→
5
−→
2
−→
5
−→
2
−→
3)

(
−→
1
−→
4
−→
5
−→
2
−→
5
−→
2
−→
3) reversal

I (
−→
1
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3) deletion

I (
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

Page 3 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Example

Sort (
−→
1
−→
2
−→
3
−→
4
−→
5) into (

−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

I (
−→
1 _
−→
2
−→
3
−→
4
−→
5) transposition

I (
−→
1
−→
4
−→
5
−→
2
−→
3) tandem duplication

I (
−→
1
−→
4
−→
5
−→
2
−→
5
−→
2
−→
3) reversal

I (
−→
1
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

(
−→
1
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3) deletion

I (
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

Page 3 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Example

Sort (
−→
1
−→
2
−→
3
−→
4
−→
5) into (

−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

I (
−→
1 _
−→
2
−→
3
−→
4
−→
5) transposition

I (
−→
1
−→
4
−→
5
−→
2
−→
3) tandem duplication

I (
−→
1
−→
4
−→
5
−→
2
−→
5
−→
2
−→
3) reversal

I (
−→
1
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3) deletion

I (
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

Page 4 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Algorithm: Outline

I Simulate Reversals and Block Interchanges by DCJs

I Start with π, sort backwards to id

⇒ apply inverse operations

I Define a lower bound on d(π, id) based on the Breakpoint Graph

I Find operations on π that decrement the lower bound

I Apply the “best” of them (Greedy algorithm)

I If no such operation exists, use additional heuristics

Page 5 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

The Breakpoint Graph

I Invented by Bafna and Pevzner for genomes without duplicates

I Write the identity genome on a straight line

I Replace −→x by −x +x

I Add boundary elements +0 and −(n +1)

I Add reality edges from +x to −(x +1)

I Add desire edges according to adjacencies in π

Example: π = (
←−
3
←−
2
−→
1
−→
4
←−
5)

Page 5 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

The Breakpoint Graph

I Invented by Bafna and Pevzner for genomes without duplicates

I Write the identity genome on a straight line

I Replace −→x by −x +x

I Add boundary elements +0 and −(n +1)

I Add reality edges from +x to −(x +1)

I Add desire edges according to adjacencies in π

−→
1

−→
2

−→
3

−→
4

−→
5

Example: π = (
←−
3
←−
2
−→
1
−→
4
←−
5)

Page 5 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

The Breakpoint Graph

I Invented by Bafna and Pevzner for genomes without duplicates

I Write the identity genome on a straight line

I Replace −→x by −x +x

I Add boundary elements +0 and −(n +1)

I Add reality edges from +x to −(x +1)

I Add desire edges according to adjacencies in π

+1 −2 +2 −3 +3 −4 +4 −5 +5−1

Example: π = (
←−
3
←−
2
−→
1
−→
4
←−
5)

Page 5 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

The Breakpoint Graph

I Invented by Bafna and Pevzner for genomes without duplicates

I Write the identity genome on a straight line

I Replace −→x by −x +x

I Add boundary elements +0 and −(n +1)

I Add reality edges from +x to −(x +1)

I Add desire edges according to adjacencies in π

+0 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6−1

Example: π = (
←−
3
←−
2
−→
1
−→
4
←−
5)

Page 5 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

The Breakpoint Graph

I Invented by Bafna and Pevzner for genomes without duplicates

I Write the identity genome on a straight line

I Replace −→x by −x +x

I Add boundary elements +0 and −(n +1)

I Add reality edges from +x to −(x +1)

I Add desire edges according to adjacencies in π

+0 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6−1

Example: π = (
←−
3
←−
2
−→
1
−→
4
←−
5)

Page 5 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

The Breakpoint Graph

I Invented by Bafna and Pevzner for genomes without duplicates

I Write the identity genome on a straight line

I Replace −→x by −x +x

I Add boundary elements +0 and −(n +1)

I Add reality edges from +x to −(x +1)

I Add desire edges according to adjacencies in π

+0 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6−1

Example: π = (
←−
3
←−
2
−→
1
−→
4
←−
5)

Page 6 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

The Breakpoint Graph revisited

+0 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6−1

Example: π = (
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

I Multiplicity of an element x : number of occurrences of x in π

I Multiplicity of a desire edge (v ,w): number of desire edges (v ,w)

in the breakpoint graph
I Loop: Desire edge (v ,v)

I Component: Connected component (graph theory)
I 1-bridge: Desire edge that can be removed to increase the number

of components
I 2-bridge: Pair of desire edges that can be removed to increase the

number of components

Page 6 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

The Breakpoint Graph revisited

+0 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6−1

Example: π = (
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

I Multiplicity of an element x : number of occurrences of x in π

I Multiplicity of a desire edge (v ,w): number of desire edges (v ,w)

in the breakpoint graph
I Loop: Desire edge (v ,v)

I Component: Connected component (graph theory)
I 1-bridge: Desire edge that can be removed to increase the number

of components
I 2-bridge: Pair of desire edges that can be removed to increase the

number of components

Page 7 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Effects of Operations: DCJ

I Cuts two desire edges and rejoins the ends

I Can split a component with a 2-bridge or two 1-bridges

I Can remove up to two loops

+0 −1 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6 +0 −1 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6

DCJ

(
−→
1
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)← (

−→
1
−→
4
−→
5
−→
2
−→
5
−→
2
−→
3)

Page 8 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Effects of Operations: Inverse Tandem Duplication

I Removes desire edge between segment end and segment start

I Removes desire edges inside the segment

I The latter desire edges have a multiplicity ≥ 2

I Splits a component if and only if the former desire edge is a

1-bridge

I Can remove one loop

I Precondition: Two consecutive identical segments

+0 −1 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6 +0 −1 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6

TD

(
−→
1
−→
4
−→
5
−→
2
−→
5
−→
2
−→
3)← (

−→
1
−→
4
−→
5
−→
2
−→
3)

Page 9 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Effects of Operations: Inverse Deletion

I Removes one desire edge

I Inserts arbitrary desire edges

I Can split a component if the removed desire edge is a 1-bridge

I Can remove one loop

+0 −1 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6 +0 −1 +1 −2 +2 −3 +3 −4 +4 −5 +5 −6

Del

(
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)← (

−→
1
−→
4
←−
2
←−
5
−→
5
−→
2
−→
3)

Page 10 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

A lower bound

I The breakpoint graph of id has n +1 components and no loops

I Thus, the distance d(π, id) can be bounded by

d(π, id)≥ lb(π) = n +1−C(π)+ ∑
Components

dSi
2
e

where C(π) is the number of components and Si is the number of

vertices with a loop in component Ci

I lb(π) = 0 if and only if π = id , otherwise lb(π) > 0

Page 11 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Additional Heuristics

Search for

I Tandem duplications that do not change the lower bound

I Reversals that create adjacencies

I Sequences for elements with multiplicity ≥ 3

I Sequences for the few remaining cases

Which of those is the best?

I Maximize the number of adjacencies

I Bring multiplicity of elements close to 1

⇒ Maximize

τ(π) := #adjacencies−2 · (#missing elements +#duplicated elements)

Page 11 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Additional Heuristics

Search for

I Tandem duplications that do not change the lower bound

I Reversals that create adjacencies

I Sequences for elements with multiplicity ≥ 3

I Sequences for the few remaining cases

Which of those is the best?

I Maximize the number of adjacencies

I Bring multiplicity of elements close to 1

⇒ Maximize

τ(π) := #adjacencies−2 · (#missing elements +#duplicated elements)

Page 11 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Additional Heuristics

Search for

I Tandem duplications that do not change the lower bound

I Reversals that create adjacencies

I Sequences for elements with multiplicity ≥ 3

I Sequences for the few remaining cases

Which of those is the best?

I Maximize the number of adjacencies

I Bring multiplicity of elements close to 1

⇒ Maximize

τ(π) := #adjacencies−2 · (#missing elements +#duplicated elements)

Page 12 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Algorithm: Pseudocode

while π 6= id do

Find all operations that decrease lb(π)

if operation found then

apply an operation that maximizes τ(π)

else

find tandem duplications

find sequences for segments with multiplicity ≥ 3

find operations that create adjacencies

find sequences for the remaining cases

apply a sequence that maximizes τ(π)

end if

end while

Page 13 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Experimental Results

I Start with id of size n (n ∈ {20,50,80,100})

I Apply αn random operations (α ∈ [0,1]))

I Use algorithm to reconstruct this sequence

I Compare # applied operations to # calculated operations

Page 14 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Experimental Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

ca

lc
ul

at
ed

 o
pe

ra
tio

ns

performed operations

n = 50

created sequence
lower bound

calculated sequence

Page 15 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Conclusion and Future work

I Algorithm works well for small values of n and α

I Possible improvements:

I Tighter lower bound

I Finding an upper bound

I Improving the heuristics

I Extending the algorithm to multichromosomal genomes

Page 16 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Acknowledgements

I Thanks to Sophia Yancopoulos for the initial idea of combining DCJ

and duplications

I Thanks to Michal Ozery-Flato for invaluable discussion

Page 17 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Thanks!

Thank you for your attention!

Page 18 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

Algorithm: Completeness

I Define

τ(π) := #adjacencies−2 · (#missing elements +#duplicated elements)

I τ(π) is maximized for π = id

I All additional heuristics increase τ(π) and do not decrease lb(π)

I Between two operations that decrease the lower bound, only a

finite number of operations can be applied

I Only a finite number of operations that decrease the lower bound

can be applied

Page 19 Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions | Martin Bader | January 15, 2009

The Double Cut and Join Operator (DCJ)

I Invented by Yancopoulos et al. (2005)

I Cuts the genome at two positions, and rejoins the ends

I Reversals can be simulated by one DCJ

I Block interchanges can be simulated by two DCJs (via circular

intermediate)

I Circular intermediates must be absorbed by the next operation

