On Reversal and Transposition Medians

Martin Bader

Ulmer Informatik-Berichte

Nr. 2009-04
März 2009

On Reversal and Transposition Medians

Martin Bader
University of Ulm, Institute of Theoretical Computer Science, 89069 Ulm, Germany
Email: martin.bader@uni-ulm.de

Abstract

During the last years, the genomes of more and more species have been sequenced, providing data for phylogenetic reconstruction based on genome rearrangement measures. A main task in all phylogenetic reconstruction algorithms is to solve the median of three problem. Although this problem is NP-hard even for the simplest distance measures, there are exact algorithms for the breakpoint median and the reversal median that are fast enough for practical use. In this paper, we extend this approach to the transposition median as well as to the weighted reversal and transposition median. Although there is no exact polynomial algorithm known even for the pairwise distances, we will show that it is in most cases possible to solve these problems exactly within reasonable time by using a branch and bound algorithm.

1 Introduction

Due to the increasing amount of sequenced genomes, the problem of reconstructing phylogenetic trees based on this data is of great interest in computational biology. In the context of genome rearrangements, a genome is usually represented as a permutation of $(1, \ldots, n)$, where each element represents a gene, i.e. the permutation represents the shuffled ordering of the genes on the genome. Additionally, the strandedness of the genes can be taken into account by giving each element an orientation. In the multiple genome rearrangement problem, one searches for a phylogenetic tree describing the most "plausible" rearrangement scenario for multiple genomes. Formally, given k genomes and a distance measure d, find a tree T with the k genomes as leaf nodes and assign ancestral genomes to internal nodes of T such that the tree is optimal w.r.t. d, i.e. the sum of rearrangement distances over all edges of the tree is minimal. If we set $k=3$, i.e. we search for an ancestor such that the sum of the distances from this ancestor to three given genomes is minimized, we speak of the median problem. All of the actual state-of-the-art algorithms for solving the multiple genome rearrangement problem rely on algorithms for solving the median problem. Unfortunately, this problem is NP-hard even for the simplest rearrangement measures, namely the breakpoint distance and the reversal distance $[12,8]$. Currently, the most interesting distance measures are:

- The reversal distance between two genomes is the minimum number of reversals required to transform one genome into the other. It can be computed in
linear time [1]. The reversal median problem has been proven to be NP-hard [8]. The currently best software tools to solve the multiple genome rearrangement problem based on this distance measure are GRAPPA [11], MGR [7], amGRP [6], and phylo [2]. All of them rely on Caprara's median solver [8] (GRAPPA can alternatively use Siepel's median solver [13]).
- The transposition distance between two genomes is the minimum number of transpositions required to transform one genome into the other. So far, it is not clear whether it is in P or not, and the currently best approximation algorithm has an approximation ratio of 1.375 [10]. An exact branch and bound algorithm is described in [9]. To the best of our knowledge, the only program that solves the multiple genome rearrangement problem based on this distance measure is GRAPPA-TP [14], which uses an extension of Siepel's median solver [13] and solves pairwise distances by a fast heuristic.
- The weighted reversal and transposition distance between two genomes is the minimum weight of a sequence consisting of reversals and transpositions that transforms one genome into the other, where reversals and transpositions are weighted differently. Again, it is not clear whether it is in P or not, but there exist a 1.5-approximation algorithm that covers each weight ratio from 1:1 to 1:2 (reversals:transpositions) [3]. As far as we know, the only program that solves the multiple genome rearrangement problem based on this distance measure is phylo [2], which uses a preliminary version of the median solver that we present in this paper.

In this paper, we will show how one can solve the transposition median as well as the weighted reversal and transposition median by extending Caprara's median solver. In order to do this, we need to calculate pairwise distances between genomes, which can be either done approximately using the algorithm devised in [3], or exactly using a new branch and bound algorithm presented in this paper. Experimental results show that the approximation rate of the first method is very good in practice, and that even the exact algorithm runs in feasible time for practical use. In Section 2 we give basic definitions. The algorithm to calculate exact pairwise distances is described in Section 3, the algorithm to solve the median problem is described in Section 4. The experimental results and a comparison with GRAPPA-TP, which was kindly provided by Jijun Tang, can be found in Section 5 . Section 6 summarizes the method and the results.

2 Preliminaries

A signed permutation $\pi=\left(\pi_{1} \ldots \pi_{n}\right)$ is a permutation of $(1 \ldots n)$, where each element π has an orientation (indicated by $\overrightarrow{\pi_{i}}$ or $\overleftarrow{\pi_{i}}$). We will use the term "permutation" as short hand for signed permutation. The permutation $i d=(\overrightarrow{1} \ldots \vec{n})$ is called the identity permutation of size n. A segment of a permutation π is a consecutive sequence of elements in π. A reversal is an operation that inverts the order of the elements of a segment in a permutation. Additionally, the orientation of every element in the segment is flipped. A transposition is an
operation that cuts a segment out of a permutation, and reinserts it at another position in the permutation. If we additionally apply a reversal on this segment, we speak of an inverted transposition. The weight of an operation op is denoted by $w(o p)$, and the weight of a sequence of operations is the sum of the weights of the operations in the sequence. In the following, reversals have weight w_{r}, whereas transpositions and inverted transpositions have weight w_{t}, and we assume that $w_{r} \leq w_{t} \leq 2 w_{r}$ (otherwise optimal sequences would have an unrealistic strong bias either towards reversals or transpositions). The problem of sorting by weighted reversals and transpositions is defined as follows. Given two permutations π^{1}, π^{2}, find a sequence of reversals and transpositions of minimum weight that transforms π^{1} into π^{2}. This minimum weight is called the weighted reversal and transposition distance (wRTD) $d_{w}\left(\pi^{1}, \pi^{2}\right)$. If we restrict the set of operations to transpositions only, the problem is called sorting by transpositions, and the corresponding distance is called the transposition distance (TD) $d_{t}\left(\pi^{1}, \pi^{2}\right)$. Since a transposition can never change the orientation of an element, all the elements in π^{1} as well as in π^{2} must have positive orientation. Given q permutations π^{1}, \ldots, π^{q}, the weighted reversal and transposition median problem (wRTMP) calls for a permutation ρ such that $\delta(\rho)=\sum_{k=1}^{q} d_{w}\left(\rho, \pi^{k}\right)$ is minimized. The transposition median problem (TMP) is defined analogously. For solving wRTMP and TMP, we will use the multiple breakpoint graph, which has been introduced by Caprara [8] and is a generalization of the breakpoint graph defined in [4]. For permutations π^{1}, \ldots, π^{q}, the MB graph $G=(V, E)$ is a multigraph with node set $V=\{-1,+1,-2,+2, \ldots,-n,+n\}$ (where n is the size of the permutations). The edge set can be obtained as follows. First, we replace in each permutation π^{k} $(1 \leq k \leq q)$ all elements with positive orientation \vec{x} by $-x+x$ and all elements with negative orientation \overleftarrow{x} by $+x-x$. Then, each permutation π^{k} induces the edge set $M^{k}=\left\{(i, j) \mid i \neq-j\right.$ and π^{k} contains the adjacent values i and $\left.j\right\}$, i.e. the edge set M^{k} corresponds to the adjacencies in π^{k}. The edge set E of the MB graph G is the union of these edge sets, i.e. $E=\bigcup_{k=1}^{q} M^{k}$. As each node is connected to exactly one edge in each edge set M^{k}, the graphs $G_{i, j}=\left(V, M^{i} \cup M^{j}\right)$ (with $1 \leq i, j \leq q$) decompose into cycles with alternating edges from the edge sets M^{i} and M^{j}. A cycle is called an odd cycle if its number of edges divided by 2 is an odd number, otherwise it is called an even cycle. Let $c_{\text {odd }}\left(\pi^{i}, \pi^{j}\right)$ denote the number of odd cycles in $G_{i, j}$, and let $c_{\text {even }}\left(\pi^{i}, \pi^{j}\right)$ denote the number of even cycles in $G_{i, j}$. The score σ between two permutations π^{i} and π^{j} is defined by $\sigma\left(\pi^{i}, \pi^{j}\right)=c_{\text {odd }}\left(\pi^{i}, \pi^{j}\right)+\left(2-\frac{2 w_{r}}{w_{t}}\right) c_{\text {even }}\left(\pi^{i}, \pi^{j}\right)$. The following theorems show how we can use this score to obtain lower and upper bounds for the wRTD.
Theorem 1. [3, 5] A lower bound $l b_{w}\left(\pi^{i}, \pi^{j}\right)$ for the weighted reversal and transposition distance $d_{w}\left(\pi^{i}, \pi^{j}\right)$ can be defined as follows.

$$
d_{w}\left(\pi^{i}, \pi^{j}\right) \geq l b_{w}\left(\pi^{i}, \pi^{j}\right), \text { where } l b_{w}\left(\pi^{i}, \pi^{j}\right):=\left(n-\sigma\left(\pi^{i}, \pi^{j}\right)\right) \frac{w_{t}}{2}
$$

A lower bound $l b_{t}\left(\pi^{i}, \pi^{j}\right)$ for the transposition distance $d_{t}\left(\pi^{i}, \pi^{j}\right)$ can be defined as follows.

$$
d_{t}\left(\pi^{i}, \pi^{j}\right) \geq l b_{t}\left(\pi^{i}, \pi^{j}\right), \text { where } l b_{t}\left(\pi^{i}, \pi^{j}\right):=\left(n-c_{o d d}\left(\pi^{i}, \pi^{j}\right) \frac{w_{t}}{2}\right.
$$

Note that if we set $w_{t}=2 w_{r}$, the lower bounds for both distances are equal. This will later simplify the description of the algorithms, as we will only use the lower bound for the wRTD.

Theorem 2. [3, 10] An upper bound $u b_{w}\left(\pi^{i}, \pi^{j}\right)$ for the weighted reversal and transposition distance $d_{w}\left(\pi^{i}, \pi^{j}\right)$ can be defined as follows.

$$
d_{w}\left(\pi^{i}, \pi^{j}\right) \leq u b_{w}\left(\pi^{i}, \pi^{j}\right), \text { where } l b_{w}\left(\pi^{i}, \pi^{j}\right):=1.5 l b_{w}\left(\pi^{i}, \pi^{j}\right)
$$

An upper bound $u b_{t}\left(\pi^{i}, \pi^{j}\right)$ for the transposition distance $d_{t}\left(\pi^{i}, \pi^{j}\right)$ can be defined as follows.

$$
d_{t}\left(\pi^{i}, \pi^{j}\right) \leq u b_{t}\left(\pi^{i}, \pi^{j}\right), \text { where } u b_{t}\left(\pi^{i}, \pi^{j}\right):=1.375 l b_{t}\left(\pi^{i}, \pi^{j}\right)
$$

3 Calculating pairwise distances

As exact polynomial algorithms are neither known for the TD nor for the wRTD, we introduce a branch and bound algorithm for the pairwise distances. The main idea of the algorithm is straightforward. W.l.o.g., the task is to find an optimal sorting sequence between a permutation π and the identity permutation $i d$ of the same size. We create a set S that contains triples $\left(\tilde{\pi}, d^{\prime}(\pi, \tilde{\pi}), l b(\tilde{\pi}, i d)\right)$, where $\tilde{\pi}$ is a permutation, $d^{\prime}(\pi, \tilde{\pi})$ is the sum of the weights of all operations that have been performed on the path from π to $\tilde{\pi}$, and $l b(\tilde{\pi}, i d)$ is the lower bound for the remaining distance towards $i d$ according to Theorem 1. Initially, we set $S=\{(\pi, 0, l b(\pi, i d))\}$. In each step, we select the triple $\left(\tilde{\pi}, d^{\prime}(\pi, \tilde{\pi}), l b(\tilde{\pi}, i d)\right)$ from S where $d^{\prime}(\pi, \tilde{\pi})+l b(\tilde{\pi}, i d)$ is minimized, and remove it from S. If $l b(\tilde{\pi}, i d)=$ 0 , then $\tilde{\pi}=i d$ and $d^{\prime}(\pi, \tilde{\pi})=d(\pi, i d)$, i.e. we have found an optimal solution and the algorithm aborts. The sequence of operations can be reconstructed by a traceback. Otherwise, for each operation op, we add the triple $\left(o p \tilde{\pi}, d^{\prime}(\pi, \tilde{\pi})+w(o p), l b(o p \tilde{\pi}, i d)\right.$ to S, i.e. we add all possible predecessors of $\tilde{\pi}$ to S. We call this step expanding $\tilde{\pi}$. We now continue by again selecting the best triple.
So far, the algorithm is just an ordinary branch and bound algorithm, and does not perform very well in practice. Thus, we improve the algorithm by a duplicate elimination. Because there are usually different optimal sequences to reach an intermediate permutation, this permutation would be stored several times, and in the worst case the number of duplicates of a permutation can be exponential in the distance to the origin permutation. Therefore, we first check if we already have generated a permutation before creating a new triple containing this permutation. Searching for a possible duplicate can be done quite efficiently by hashing techniques. We can further reduce the number of elements in S by working on the minimal permutations, which have been defined in [9] as follows. Given a permutation $\tilde{\pi}$, we obtain the minimal permutation $g l(\tilde{\pi})$ by 'gluing' all the adjacencies together, i.e. we replace each segment of elements that is identical in $\tilde{\pi}$ and $i d$ by a single element. As an example, the permutations $\tilde{\pi}=\left(\begin{array}{lll}\overrightarrow{1} & \overrightarrow{2} & \overrightarrow{4}\end{array} \overrightarrow{3}\right)$ and $\hat{\pi}=\left(\begin{array}{llll}\overrightarrow{1} & \overrightarrow{3} & \overrightarrow{4} & \overrightarrow{2}\end{array}\right)$ have both the same minimal permutation $\left(\begin{array}{lll}\overrightarrow{1} & \overrightarrow{3} & \overrightarrow{2}\end{array}\right)$.

The following lemma ensures that it is sufficient to search for an optimal sorting sequence between $g l(\tilde{\pi})$ and $i d^{\prime}$ to obtain an optimal sorting sequence between $\tilde{\pi}$ and $i d$, where $i d^{\prime}$ is the identity permutation of same size as $g l(\tilde{\pi})$.

Lemma 1. [9] Let π be a permutation and $g l(\pi)$ be its minimal permutation. Let id be the identity permutation of same size as π, and let id' be the identity permutation of same size as $g l(\pi)$. Then, an optimal sorting sequence between $g l(\pi)$ and $i d^{\prime}$ can easily be transformed into an optimal sorting sequence between π and $i d$. Both sorting sequences have the same weight, i.e. $d(\pi, i d)=d\left(\tilde{\pi}, i d^{\prime}\right)$.

Note that the original lemma in [9] only considered the TD. However, the proof for the wRTD works analogously, thus this lemma holds for the TD as well as for the wRTD. While Christie used this proof only to show that one never has to split adjacencies, we will also use it for duplicate elimination. In the example above, $\hat{\pi}$ would be considered to be a duplicate of $\tilde{\pi}$. In fact, we even do not store the original permutations but only their minimal permutations, resulting in a further space improvement.

4 The median solver

Our median solver is an extension of Caprara's reversal median solver [8]. While Caprara's algorithm solves instances of the Cycle Median Problem (CMP) and reestimates the distances using the reversal distance, we extend the CMP to the weighted Cycle Median Problem and reestimate the distances using the TD or the wRTD.
For a given wRTMP instance with permutations π^{1}, \ldots, π^{q}, and an arbitrary permutation ρ, define $\gamma(\rho):=\sum_{k=1}^{q} \sigma\left(\rho, \pi^{k}\right)$. The weighted Cycle Median Problem (wCMP) is defined as follows. Given a set of q permutations π^{1}, \ldots, π^{q}, find a permutation τ such that $q n-\gamma(\tau)$ is minimized. In the following, let ρ^{*} be the solution of a given wRTMP and let $\delta^{*}:=\delta\left(\rho^{*}\right)=\sum_{i=1}^{q} d_{w}\left(\pi^{i}, \rho^{*}\right)$ be its solution value. Let τ^{*} be the solution of the associated wCPM and let $q n-\gamma^{*}:=q n-\gamma\left(\tau^{*}\right)$ be its solution value. The following lemma shows the relation between a wRTMP instance and the associated wCMP instance.

Lemma 2. Given a wRTMP instance with solution value δ^{*} and the associated $w C M P$ instance with solution value $q n-\gamma^{*}$,

$$
\frac{w_{t}}{2}\left(q n-\gamma^{*}\right) \leq \delta^{*} \leq \frac{3 w_{t}}{4}\left(q n-\gamma^{*}\right)
$$

Proof. Using the bounds given in Theorems 1 and 2, we get $\frac{w_{t}}{2}\left(q n-\gamma^{*}\right)=$ $\frac{w_{t}}{2}\left(q n-\gamma\left(\tau^{*}\right)\right) \leq \frac{w_{t}}{2}\left(q n-\gamma\left(\rho^{*}\right)\right)=\sum_{k=1}^{q} l b\left(\pi^{k}, \rho^{*}\right) \leq \delta^{*} \leq \sum_{k=1}^{q^{2}} d\left(\pi^{k}, \tau^{*}\right) \leq$ $1.5 \sum_{k=1}^{q} l b\left(\pi^{k}, \tau^{*}\right)=\frac{3 w_{t}}{4}\left(q n-\gamma^{*}\right)$.

Note that this proof also holds for the TD if we set $w_{r}=1, w_{t}=2$, and restrict the search space of the wCMP to permutations where all elements have positive orientation. In this case, $\gamma(\tau)=\sum_{k=1}^{q} c_{o d d}\left(\pi^{k}, \tau\right)$, i.e. an optimal solution of
the wCPM maximizes the number of odd cycles. In most cases, δ^{*} is very close to the lower bound. This motivates the idea to solve a wRTMP instance by solving the associated wCMP instance and then check whether the solution of the wCMP instance is also a solution of the wRTMP instance. We will now address the problem of solving a wCMP instance. As we will use a branch and bound algorithm that successively extends a partial solution until we have a complete solution, we must extend the MB graph such that we can use it to obtain strong lower bounds for partial solutions. A graph (V, E) is weighted if each edge $e \in E$ has an integer weight $w(e)$. Given a weighted graph $G=(V, E)$ with node set $V=\{-1,+1,-2,+2, \ldots,-n,+n\}$, a weighted matching M is a set of edges in G such that each node in V is incident to at most one edge in M and each edge in M has an odd weight (restricting the weights to be odd will simplify later proofs). A weighted matching M is called perfect if each node in V is incident to exactly one edge in M. It is easy to see that the union of two matchings decomposes the graph into cycles and paths consisting of alternating edges from both matchings. The length of a cycle or path is the sum of the weights of its edges. A cycle is called an odd cycle if its length divided by 2 is an odd number, otherwise it is called an even cycle. Note that cycles always consist of an even number of edges, all having an odd weight (recall the definition of weighted matchings), thus the length of a cycle is always divisible by 2. Analogous to the definition given in Section $2, c_{o d d}\left(M^{i}, M^{j}\right)$ is the number of odd cycles in $\left(V, M^{i} \cup M^{j}\right), c_{\text {even }}\left(M^{i}, M^{j}\right)$ is the number of even cycles in $\left(V, M^{i} \cup M^{j}\right)$, and $\sigma\left(M^{i}, M^{j}\right):=c_{\text {odd }}\left(M^{i}, M^{j}\right)+\left(2-\frac{2 w_{r}}{w_{t}}\right) c_{\text {even }}\left(M^{i}, M^{j}\right)$. The base matching H is defined by $H:=\{(-k,+k) \mid 1 \leq k \leq n\}$ and $\forall e \in H: w(e)=1$. A weighted matching M is called a permutation matching if $H \cup M$ defines a Hamiltonian cycle on G, i.e. a cycle that visits each node in V exactly once.

Lemma 3. [4] There is a one-to-one correspondence between signed permutations and permutation matchings where each edge has weight 1.

In other words, we can transform each permutation matching into a permutation by ignoring the weights. On the other hand, we can reduce the search space to permutation matchings. Interpreting the MB graph as the special case of a weighted graph (where each weight is set to 1) leads to the following formulation of the wCMP. Given a node set V with $|V|=2 n$ and q permutation matchings M^{1}, \ldots, M^{q}, find a permutation matching M^{τ} with edge weights 1 that minimizes $\sum_{k=1}^{q}\left(n-\sigma\left(M^{\tau}, M^{k}\right)\right)$. Note that we do not restrict the weights of the edges of the given permutation matches. While all edges in the initial problem have weight 1, the branch and bound algorithm will create partial solutions where also other edge weights are possible.

Lemma 4. The weighted cycle distance $n-\sigma(S, T)$ on permutation matchings is a metric.

Proof. 1. Positive definiteness: $n-\sigma(S, S)=0$, because the graph decomposes into n odd cycles. For permutation matchings S, T with $S \neq T$, there must be at least one cycle with at least four edges, thus the overall number of
cycles is less than n. As each cycle adds at most 1 to $\sigma(S, T), \sigma(S, T)<n$ and $n-\sigma(S, T)>0$.
2. Symmetry: This follows directly from the symmetry of $\sigma(S, T)$.
3. Triangle inequation: We show that for permutation matchings S, T, and R, $n-\sigma(S, R)+n-\sigma(R, T) \geq n-\sigma(S, T)$. For this, we modify R successively by the following rules. (a) If $(V, S \cup R)$ contains an even cycle with only two edges, change the weight of the corresponding edge in R such that the cycle becomes odd. This increases $\sigma(S, R)$ by $2 \frac{w_{r}}{w_{t}}-1$. In $(V, R \cup T)$, this either changes an even cycle into an odd cycle, or an odd cycle into an even cycle. Thus, $\sigma(S, R)+\sigma(R, T)$ does not decrease. (b) If $(V, S \cup R)$ contains a cycle with at least four edges, remove two of the edges of R and rejoin the endpoints such that the cycle is split into two cycles. Weight the new edges such that both cycles are odd cycles. If the original cycle was even, $\sigma(S, R)$ increases by $\frac{2 w r}{w t}$. As the operation can effect at most two cycles in $(V, R \cup T)$, the worst possible effect on $\sigma(R, T)$ is that we merge two odd cycles into an even cycle. Thus, $\sigma(S, R)+\sigma(R, T)$ does not decrease. If the original cycle was odd, $\sigma(S, R)$ increases by 1 , and the overall number of odd cycles changes by 1 . As the parity of the number of odd cycles is always equal in $(V, S \cup R)$ and $(V, R \cup T)$, the worst possible effect on $\sigma(R, T)$ is that we merge two odd cycles into one odd cycle. Thus, $\sigma(S, R)+\sigma(R, T)$ does not decrease. (c) If none of the two rules above can be applied, S and R contain the same edges, but maybe with different weights. Change the weights of the edges of R such that they have the same weights as the edges in S. Note that this step has no effect on the cycles, as all cycles in $(V, S \cup R)$ are already odd. Thus, $\sigma(S, R)+\sigma(R, T)$ remains unchanged. The whole transformation transformed R into S without decreasing $\sigma(S, R)+\sigma(R, T)$. Therefore, $n-\sigma(S, R)+n-\sigma(R, T) \geq n-\sigma(S, S)+n-\sigma(S, T)=n-\sigma(S, T)$.

The following lemma will give us a lower bound for the solution value of a wCMP.
Lemma 5. Given a wCMP instance associated with weighted matchings M^{1}, \ldots, M^{q} and solution M^{τ}, we have

$$
\sum_{k=1}^{q}\left(n-\sigma\left(M^{\tau}, M^{k}\right)\right) \geq \frac{q n}{2}-\sum_{k=1}^{q-1} \sum_{l=k+1}^{q} \frac{\sigma\left(M^{k}, M^{l}\right)}{q-1}
$$

Proof. Using the triangle inequality given in Lemma 4, we get

$$
\frac{q n}{2}-\sum_{k=1}^{q-1} \sum_{l=k+1}^{q} \frac{\sigma\left(M^{k}, M^{l}\right)}{q-1}=\frac{1}{q-1} \sum_{k=1}^{q-1} \sum_{l=k+1}^{q}\left(n-\sigma\left(M^{k}, M^{l}\right)\right) \leq \sum_{k=1}^{q}\left(n-\sigma\left(M^{\tau}, M^{k}\right)\right)
$$

In order to describe partial solutions, we must introduce the contraction of an edge. Given a weighted graph $G=(V, E)$ with $|V|=2 n$ and $E=\bigcup_{k=1}^{q} M^{k}$, where each M^{k} is a permutation matching, the contraction of an edge $e=\left(v_{i}, v_{j}\right)$ is an operation that modifies G as follows. The nodes v_{i}, v_{j} are removed from V. Each permutation matching M^{k} is transformed into M^{k} / e by the following
rules. If $e \in M^{k}$, remove e from M^{k}, i.e. $M^{k} / e=M^{k} \backslash\{e\}$. Otherwise, let $\left(a, v_{i}\right)$ and $\left(b, v_{j}\right)$ be the two edges incident to v_{i} and v_{j} in M^{k}. Remove these edges and add a new edge (a, b), i.e. $M^{k} / e=M^{k} \backslash\left\{\left(a, v_{i}\right),\left(b, v_{j}\right)\right\} \cup\{(a, b)\}$. The weight of the new edge (a, b) will be set to $w(a, b):=w\left(a, v_{i}\right)+w\left(b, v_{j}\right)+1$. Note that this is also an odd number, as $w\left(a, v_{i}\right)$ and $w\left(b, v_{j}\right)$ are odd. Analogously, the base matching H will be replaced by H / e.

Lemma 6. [8] Given two perfect matchings M and L of V and an edge $\left(v_{i}, v_{j}\right) \in$ $M, M \cup L$ defines a Hamiltonian cycle of V if and only if $(M / e) \cup(L / e)$ defines a Hamiltonian cycle of $V \backslash\left\{v_{i}, v_{j}\right\}$.

Lemma 7. Let M^{1}, \ldots, M^{q} be a wCMP instance, let M^{τ} be a permutation matching with edge weights 1 , and let $e \in M^{\tau}$ be an edge. Then,

$$
\sum_{k=1}^{q}\left(n-\sigma\left(M^{\tau}, M^{k}\right)\right)=q-\sum_{k=1}^{q} \sigma\left(M^{k},\{e\}\right)+\sum_{k=1}^{q}\left(n-1-\sigma\left(M^{\tau} / e, M^{k} / e\right)\right)
$$

Proof. A cycle in $M^{\tau} \cup M^{k}$ is either absorbed by the contraction step, or it corresponds to a cycle in $M^{\tau} / e \cup M^{k} / e$ of the same length. In the first case, the absorbed cycle is equivalent to the cycle in $M^{k} \cup\{e\}$, and the sum of the scores of the absorbed cycles is $\sum_{k=1}^{q} \sigma\left(M^{k},\{e\}\right)$. As there are no new cycles in $M^{\tau} / e \cup M^{k} / e$, we get $\sum_{i=1}^{q} \sigma\left(M^{\tau}, M^{k}\right)=-\sum_{k=1}^{q} \sigma\left(M^{k},\{e\}\right)+\sum_{k=1}^{q}(n-$ $\left.\sigma\left(M^{\tau} / e, M^{k} / e\right)\right)=q-\sum_{k=1}^{q} \sigma\left(M^{k},\{e\}\right)+\sum_{k=1}^{q}\left(n-1-\sigma\left(M^{\tau} / e, M^{k} / e\right)\right)$.
By combining Lemmas 6 and 7, we get the following
Corollary 1. Given a wCMP instance $M^{1}, \ldots M^{q}$ with solution M^{τ} and an edge $e \in M^{\tau}$, then $M^{\tau} \backslash\{e\}$ is a solution of the $w C M P$ instance $M^{1} / e, \ldots, M^{q} / e$.
We are now ready to describe our branch and bound algorithm for wCMP. A partial solution consists of a matching that is not necessarily perfect, and the lower bound of a partial solution M can be calculated by contracting all edges in M and calculating the lower bound of the contracted graph, using the formulas described in Lemmas 5 and 7. In each step, we select the partial solution M with the currently least lower bound and expand it as follows. Let V^{\prime} be the nodes of V such that forall $v_{i} \in V^{\prime}, v_{j} \in V:\left(v_{i}, v_{j}\right) \notin M$, and let v_{a} be a fixed node in V^{\prime}. Then, we create new partial solutions M^{\prime} by setting $M^{\prime}=M \cup\left(v_{a}, v_{b}\right)$ for all $v_{b} \in V^{\prime}, v_{b} \neq v_{a}$. Partial solutions M^{\prime} that cannot be expanded to a permutation matching (i.e. $M^{\prime} \cup H$ contains a cycle that is not a Hamiltonian cycle) can be directly discarded, for all other partial solutions we calculate the lower bounds. The algorithm has found an optimal solution for the wCMP when the partial solution with the least lower bound is a perfect matching.
The algorithm can easily be extended such that it can solve the wRTMP or the TMP by adding the following step. Whenever the best partial solution M^{τ} is a perfect matching, create the corresponding permutation π^{τ} and test if $\sum_{k=1}^{q} d_{w}\left(\pi^{k}, \pi^{\tau}\right)$ is equal to the lower bound (of course one has to take d_{t} instead of d_{w} if one wants to solve the TMP). In this case, we have found an optimal solution. Otherwise, we increase the lower bound for M^{τ} and reinsert it
into the set of partial solutions. We can get a further speed-up of the pairwise distance algorithm by providing an upper bound (remember that we only want to test if the sum of the pairwise distances is equal to the lower bound, thus we can abort the pairwise distance algorithms if the currently best results are above this bound). If one wants to solve the TMP, partial solutions are further restricted to matchings where all edges are of the form $(+i,-j)$, because other edges correspond to a change in orientation in the permutation and therefore these permutations cannot be sorted by transpositions only.

5 Experimental results

We tested our algorithm on artificial datasets with 37 and 100 markers, reflecting the size of mitochondrian and chloroplast genomes. We created datasets by, starting from the identity permutation, creating three different sequences of operations to get the input genomes. The weight of the edges is uniformly distributed in $[0.5 r, 1.5 r]$, where r is the expected weight of an edge, varying from 2 to 15 . For the data sets to test the transposition median solver, w_{t} was set to 1 . For the data sets to test the weighted reversal and transposition median solver, w_{r} was set to 1 , and we created different data sets for $w_{t}=1, w_{t}=1.5$, and $w_{t}=2$. When creating the data sets, the probability of performing a transposition reflects the weight of w_{t}, i.e. the expected ratio of reversals to transpositions is $w_{t}: w_{r}$. For each combination of these parameters, we created 10 data sets. All tests were performed on a standard 3.16 GHz PC , the running time for each test case was limited to one hour, and RAM was limited to 4GB.
The experiments showed that the size of the datasets has only little influence on the results. Up to an expected edge length of $r=8$, we could solve all test cases exactly, most of them even in less than one second. For higher distances, the running times increased. However, we could still solve 9 instances of the TMP with $r=15$ and $n=37$ with an average running time of $6: 21 \mathrm{~min}$, and 6 instances of the TMP with $r=15$ and $n=100$ with an average running time of $16: 27 \mathrm{~min}$. For the instances of the wRTMP, the running times depend on the used weight ratio. While setting $w_{r}: w_{t}$ to $1: 2$ allowed us to solve all test cases within a few seconds, the running times increased for the other weight ratio. Moreover, we had to prune the heap due to the memory limit in some cases, which means that there is a slight chance that we missed the optimal solution. Nevertheless, we were still able to solve all test cases, except for a few test cases with $n=100$, $w_{r}: w_{t}=1: 1$, and $r>13$. Using the approximation algorithm instead of the exact algorithm for the pairwise distances resulted in better running times at almost the same accuracy. In most cases, we found a solution of same weight as with the exact algorithm, and the gap between the weights of the solutions never exceeded 1.
A comparison with GRAPPA-TP on the instances of the TMP shows that GRAPPA-TP is slightly less accurate than our median solver, but its main drawback is the speed. For $r=7$, its average running time was $3: 36 \mathrm{~min}(n=37)$ respectively 6:41 $\min (n=100)$, while our algorithm solved these test cases within less than
one second. Increasing the edge lengths further decreased the number of solved test cases. For $n=37$, none of the test cases with $r \geq 14$ could be solved within one hour. For $n=100$, none of the test cases with $r \geq 11$ could be solved within one hour.
A more detailed view of the test results can be found in Appendix A. In the tables, we list the number of solved test cases and the average running time of the approximation algorithm and the exact algorithm for each combination of parameters, as well as the average gap and the maximum gap between the solution of the approximation algorithm and the exact algorithm. Of course, the gaps can only be computed for test cases which have been solved by both algorithms, and the average running times only consider test cases that could be solved within the time limit. The column "proven exact" indicates the number of test cases where we can assure that the exact algorithm did not miss an optimal solution due to heap pruning. Note that a solution there we cannot assure this might still be exact. In fact, as we only prune the currently worst solutions, the probability of missing an optimal solution is rather low.

6 Conclusion

We presented an extension of Caprara's median solver that can solve instances of the TMP and the wRTMP. The method has been tested on artificial datasets, showing that is possible to solve the wRTMP and the TMP exactly in many cases. A comparison with GRAPPA-TP on TMPs shows that our algorithm brings a speed improvement of several orders of magnitude.

References

1. D. Bader, B. Moret, and M. Yan. A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology, 8:483-491, 2001.
2. M. Bader, M. Abouelhoda, and E. Ohlebusch. A fast algorithm for the multiple genome rearrangement problem with weighted reversals and transpositions. BMC Bioinformatics, 9:516, 2008.
3. M. Bader and E. Ohlebusch. Sorting by weighted reversals, transpositions, and inverted transpositions. Journal of Computational Biology, 14(5):615-636, 2007.
4. V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. SIAM Journal on Computing, 25(2):272-289, 1996.
5. V. Bafna and P. Pevzner. Sorting by transpositions. SIAM Journal on Discrete Mathematics, 11(2):224-240, 1998.
6. M. Bernt, D. Merkle, and M. Middendorf. Using median sets for inferring phylogenetic trees. Bioinformatics, 23:e129-e135, 2007.
7. B. Bourque and P. Pevzner. Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Research, 12(1):26-36, 2002.
8. A. Caprara. The reversal median problem. INFORMS Journal on Computing, 15(1):93-113, 2003.
9. D. Christie. Genome Rearrangement Problems. PhD thesis, University of Glasgow, 1998.
10. I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by transpositions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(4):369-379, 2006.
11. B. Moret, S. Wyman, D. Bader, T. Warnow, and M. Yan. A new implementation and detailed study of breakpoint analysis. In Pacific Symposium on Biocomputing, pages 583-594, 2001.
12. I. Pe'er and R. Shamir. The median problems for breakpoints are NP-complete. Electronic Colloquium on Computational Complexity, 5(71), 1998.
13. A. Siepel and B. Moret. Finding an optimal inversion median: Experimental results. In Proc. 1st Workshop on Algorithms, volume 2149 of Lecture Notes in Computer Science, pages 189-203. Springer-Verlag, 2001.
14. F. Yue, M. Zhang, and J. Tang. A heuristic for phylogenetic reconstruction using transposition. In Proc. 7th IEEE Conference on Bioinformatics and Bioengineering, pages 802-808, 2007.

A Detailed experimental results

r	solved app	avg gap	max gap	avg time	solved exact	proven exact	avg time
2	10	0	0	$0: 00$	10	10	$0: 00$
3	10	0	0	$0: 00$	10	10	$0: 00$
4	10	0	0	$0: 00$	10	10	$0: 00$
5	10	0	0	$0: 00$	10	10	$0: 00$
6	10	0	0	$0: 00$	10	10	$0: 00$
7	10	0	0	$0: 06$	10	9	$1: 16$
8	10	0	0	$0: 02$	10	10	$0: 04$
9	10	0	0	$0: 15$	10	9	$2: 22$
10	10	0.22	1	$1: 17$	9	5	$6: 00$
11	10	0	0	$2: 12$	8	3	$1: 54$
12	10	0.11	1	$2: 18$	9	2	$7: 22$
13	10	0.11	1	$1: 59$	8	3	$4: 17$
14	10	0.13	1	$4: 37$	8	0	$15: 32$
15	10	0.11	1	$2: 57$	9	3	$6: 21$

Table 1. $n=37$, transposition distance

| r | solved app | avg gap | max gap | avg time | solved exact | proven exact | avg time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 3 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 4 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 5 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 6 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 7 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 8 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 9 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 10 | 10 | 0 | 0 | $0: 00$ | 9 | 9 | $0: 00$ |
| 11 | 10 | 0 | 0 | $0: 04$ | 10 | 10 | $0: 04$ |
| 12 | 9 | 0 | 0 | $0: 25$ | 9 | 8 | $0: 30$ |
| 13 | 9 | 0.17 | 1 | $7: 50$ | 6 | 4 | $2: 35$ |
| 14 | 9 | 0.14 | 1 | $2: 54$ | 7 | 5 | $0: 19$ |
| 15 | 7 | 0.17 | 1 | $7: 24$ | 6 | 3 | $16: 27$ |

Table 2. $n=100$, transposition distance

| r | solved app | avg gap | max gap | avg time | solved exact | proven exact | avg time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 3 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 4 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 5 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 6 | 10 | 0.1 | 1 | $0: 00$ | 10 | 10 | $0: 00$ |
| 7 | 10 | 0 | 0 | $0: 01$ | 10 | 10 | $0: 01$ |
| 8 | 10 | 0 | 0 | $1: 20$ | 10 | 8 | $1: 24$ |
| 9 | 10 | 0.1 | 1 | $0: 06$ | 10 | 10 | $0: 03$ |
| 10 | 10 | 0.2 | 1 | $2: 48$ | 10 | 6 | $3: 01$ |
| 11 | 10 | 0 | 0 | $4: 19$ | 10 | 2 | $6: 17$ |
| 12 | 10 | 0.2 | 1 | $5: 23$ | 10 | 2 | $6: 04$ |
| 13 | 10 | 0.3 | 1 | $9: 38$ | 10 | 1 | $11: 05$ |
| 14 | 10 | 0.2 | 1 | $9: 28$ | 10 | 0 | $13: 18$ |
| 15 | 10 | 0.3 | 1 | $10: 49$ | 10 | 1 | $16: 21$ |

Table 3. $n=37, w_{r}=1, w_{t}=1$

| r | solved app | avg gap | max gap | avg time | solved exact | proven exact | avg time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 3 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 4 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 5 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 6 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 7 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 8 | 10 | 0 | 0 | $0: 05$ | 10 | 10 | $0: 05$ |
| 9 | 9 | 0 | 0 | $1: 01$ | 10 | 7 | $1: 22$ |
| 10 | 10 | 0 | 0 | $0: 38$ | 10 | 8 | $0: 52$ |
| 11 | 10 | 0 | 0 | $4: 21$ | 10 | 7 | $4: 49$ |
| 12 | 10 | 0 | 0 | $0: 53$ | 10 | 7 | $0: 58$ |
| 13 | 8 | 0 | 0 | $2: 09$ | 8 | 6 | $2: 39$ |
| 14 | 7 | 0 | 0 | $16: 46$ | 7 | 4 | $19: 33$ |
| 15 | 4 | 0 | 0 | $13: 40$ | 3 | 2 | $1: 30$ |

Table 4. $n=100, w_{r}=1, w_{t}=1$

r	solved app	avg gap	max gap	avg time	solved exact	proven exact	avg time
2	10	0	0	$0: 00$	10	10	$0: 00$
3	10	0	0	$0: 00$	10	10	$0: 00$
4	10	0	0	$0: 00$	10	10	$0: 00$
5	10	0	0	$0: 00$	10	10	$0: 00$
6	10	0.05	0.5	$0: 00$	10	10	$0: 00$
7	10	0.05	0.5	$0: 00$	10	10	$0: 00$
8	10	0.05	0.5	$0: 00$	10	10	$0: 00$
9	10	0.05	0.5	$0: 00$	10	10	$0: 00$
10	10	0.15	0.5	$0: 06$	10	9	$0: 01$
11	10	0	0	$0: 10$	10	9	$0: 11$
12	10	0.1	0.5	$0: 05$	10	8	$0: 05$
13	10	0	0	$0: 56$	10	8	$1: 16$
14	10	0.1	0.5	$1: 09$	10	7	$1: 33$
15	10	0.05	0.5	$0: 09$	10	8	$0: 09$

Table 5. $n=37, w_{r}=1, w_{t}=1.5$

| r | solved app | avg gap | max gap | avg time | solved exact | proven exact | avg time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 3 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 4 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 5 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 6 | 10 | 0.05 | 0.5 | $0: 00$ | 10 | 10 | $0: 00$ |
| 7 | 10 | 0.05 | 0.5 | $0: 00$ | 10 | 10 | $0: 00$ |
| 8 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 9 | 10 | 0.05 | 0.5 | $0: 02$ | 10 | 10 | $0: 00$ |
| 10 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 11 | 10 | 0.1 | 0.5 | $0: 00$ | 10 | 10 | $0: 00$ |
| 12 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 13 | 10 | 0.2 | 1 | $0: 01$ | 10 | 10 | $0: 01$ |
| 14 | 10 | 0.05 | 0.5 | $0: 07$ | 10 | 10 | $0: 03$ |
| 15 | 10 | 0 | 0 | $0: 20$ | 10 | 8 | $0: 19$ |

Table 6. $n=100, w_{r}=1, w_{t}=1.5$

| r | solved app | avg gap | max gap | avg time | solved exact | proven exact | avg time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 3 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 4 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 5 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 6 | 10 | 0.1 | 1 | $0: 00$ | 10 | 10 | $0: 00$ |
| 7 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 8 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 9 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 10 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 11 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 12 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 13 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 14 | 10 | 0 | 0 | $0: 02$ | 10 | 10 | $0: 03$ |
| 15 | 10 | 0 | 0 | $0: 01$ | 10 | 10 | $0: 01$ |

Table 7. $n=37, w_{r}=1, w_{t}=2$

| r | solved app | avg gap | max gap | avg time | solved exact | proven exact | avg time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 3 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 4 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 5 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 6 | 10 | 0.1 | 1 | $0: 00$ | 10 | 10 | $0: 00$ |
| 7 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 8 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 9 | 10 | 0.1 | 1 | $0: 00$ | 10 | 10 | $0: 00$ |
| 10 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 11 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 12 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 13 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 14 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |
| 15 | 10 | 0 | 0 | $0: 00$ | 10 | 10 | $0: 00$ |

Table 8. $n=100, w_{r}=1, w_{t}=2$

r	solved	avg gap	max gap	avg time						
2	10	0	0	$0: 00$						
3	10	0.2	2	$0: 04$						
4	10	0.3	2	$0: 16$						
5	9	0.2	1	$0: 22$						
6	8	0.13	1	$2: 57$						
7	8	0.5	2	$3: 36$						
8	1	0	0	$13: 25$						
9	3	0.33	1	$4: 23$						
10	3	0.2	3	$0: 21$						
11	0									
12	0									
13	0									
14	0									
15	0				\quad	r	solved	avg gap	max gap	avg time
:---	:---	:---	:---	:---	:---	:---				
2	10	0	0	$0: 00$						
3	10	0	0	$0: 05$						
4	10	0.1	1	$0: 29$						
5	10	0	0	$0: 34$						
6	10	0.4	2	$2: 06$						
7	10	0.2	1	$6: 41$						
8	10	0	0	$12: 35$						
9	7	0.43	2	$19: 08$						
10	1	1	1	$16: 16$						
11	3	0	0	$7: 54$						
12	2	0	0	$21: 34$						
13	1	1	1	$39: 55$						
14	0									
15	0									

Table 9. GRAPPA-TP, $n=37$ (left) and $n=100$ (right).

Liste der bisher erschienenen Ulmer Informatik-Berichte
 Einige davon sind per FTP von ftp.informatik.uni-ulm. de erhältlich

 Die mit * markierten Berichte sind vergriffen
List of technical reports published by the University of Ulm
 Some of them are available by FTP from ftp.informatik. uni-ulm.de Reports marked with * are out of print

91-01	Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe Instance Complexity
91-02*	K. Gladitz, H. Fassbender, H. Vogler Compiler-Based Implementation of Syntax-Directed Functional Programming
91-03*	Alfons Geser Relative Termination
91-04*	J. Köbler, U. Schöning, J. Toran Graph Isomorphism is low for Pp
91-05	Johannes Köbler, Thomas Thierauf Complexity Restricted Advice Functions
91-06*	Uwe Schöning Recent Highlights in Structural Complexity Theory
91-07*	F. Green, J. Köbler, J. Toran The Power of Middle Bit
91-08*	V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara, U. Schöning, R. Silvestri, T. Thierauf Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars
92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions
92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy
92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost Narrowing

92-08*	Uwe Schöning On Random Reductions from Sparse Sets to Tally Sets
92-09*	Hermann von Hasseln, Laura Martignon Consistency in Stochastic Network
92-10	Michael Schmitt A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any Linearly Separable Boolean Function
92-11	Johannes Köbler, Seinosuke Toda On the Power of Generalized MOD-Classes
92-12	V. Arvind, J. Köbler, M. Mundhenk Reliable Reductions, High Sets and Low Sets
92-13	Alfons Geser On a monotonic semantic path ordering
92-14*	Joost Engelfriet, Heiko Vogler The Translation Power of Top-Down Tree-To-Graph Transducers
93-01	Alfred Lupper, Konrad Froitzheim AppleTalk Link Access Protocol basierend auf dem Abstract Personal Communications Manager
93-02	M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch The COCOON Object Model
93-03	Thomas Thierauf, Seinosuke Toda, Osamu Watanabe On Sets Bounded Truth-Table Reducible to P-selective Sets
93-04	Jin-Yi Cai, Frederic Green, Thomas Thierauf On the Correlation of Symmetric Functions
93-05	K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam A Conceptual Approach to an Open Hospital Information System
93-06	Klaus Gaßner Rechnerunterstützung für die konzeptuelle Modellierung
93-07	Ullrich Keßler, Peter Dadam Towards Customizable, Flexible Storage Structures for Complex Objects
94-01	Michael Schmitt On the Complexity of Consistency Problems for Neurons with Binary Weights
94-02	Armin Kühnemann, Heiko Vogler A Pumping Lemma for Output Languages of Attributed Tree Transducers
94-03	Harry Buhrman, Jim Kadin, Thomas Thierauf On Functions Computable with Nonadaptive Queries to NP
94-04	Heinz Faßbender, Heiko Vogler, Andrea Wedel Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree Transducers

94-05	V. Arvind, J. Köbler, R. Schuler On Helping and Interactive Proof Systems
94-06	Christian Kalus, Peter Dadam
	Incorporating record subtyping into a relational data model
94-07	Markus Tresch, Marc H. Scholl
	A Classification of Multi-Database Languages
94-08	Friedrich von Henke, Harald Rueß
	Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge
94-09	F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
	Construction and Deduction Methods for the Formal Development of Software
94-10	Axel Dold
	Formalisierung schematischer Algorithmen
94-11	Johannes Köbler, Osamu Watanabe
	New Collapse Consequences of NP Having Small Circuits
94-12	Rainer Schuler
	On Average Polynomial Time
94-13	Rainer Schuler, Osamu Watanabe
	Towards Average-Case Complexity Analysis of NP Optimization Problems
94-14	Wolfram Schulte, Ton Vullinghs
	Linking Reactive Software to the X-Window System
94-15	Alfred Lupper
	Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen
94-16	Robert Regn
	Verteilte Unix-Betriebssysteme
94-17	Helmuth Partsch
	Again on Recognition and Parsing of Context-Free Grammars:
	Two Exercises in Transformational Programming
94-18	Helmuth Partsch
	Transformational Development of Data-Parallel Algorithms: an Example
95-01	Oleg Verbitsky
	On the Largest Common Subgraph Problem
95-02	Uwe Schöning
	Complexity of Presburger Arithmetic with Fixed Quantifier Dimension
95-03	Harry Buhrman,Thomas Thierauf
	The Complexity of Generating and Checking Proofs of Membership
95-04	Rainer Schuler, Tomoyuki Yamakami
	Structural Average Case Complexity
95-05	Klaus Achatz, Wolfram Schulte
	Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algor

95-06	Christoph Karg, Rainer Schuler Structure in Average Case Complexity
95-07	P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen
95-08	Jürgen Kehrer, Peter Schulthess Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik
95-09	Hans-Jörg Burtschick, Wolfgang Lindner On Sets Turing Reducible to P-Selective Sets
95-10	Boris Hartmann Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen Netzen am Beispiel Truck Backer-Upper
95-12	Klaus Achatz, Wolfram Schulte Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists
95-13	Andrea Mößle, Heiko Vogler Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes
95-14	Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß A Generic Specification for Verifying Peephole Optimizations
96-01	Ercüment Canver, Jan-Tecker Gayen, Adam Moik Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche mit VSE
96-02	Bernhard Nebel Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of Using the ORD-Horn Class
96-03	Ton Vullinghs, Wolfram Schulte, Thilo Schwinn An Introduction to TkGofer
96-04	Thomas Beuter, Peter Dadam Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am Beispiel der Domäne Concurrent-Engineering
96-05	Gerhard Schellhorn, Wolfgang Ahrendt Verification of a Prolog Compiler - First Steps with KIV
96-06	Manindra Agrawal, Thomas Thierauf Satisfiability Problems
96-07	Vikraman Arvind, Jacobo Torán A nonadaptive NC Checker for Permutation Group Intersection
96-08	David Cyrluk, Oliver Möller, Harald Rueß An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with Composition and Extraction
96-09	Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RTAnsätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids
97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P
97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure
97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
$A D E P T_{\text {flex }}$ - Supporting Dynamic Changes of Workflows Without Loosing Control
97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken
97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken
97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken
97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn Experimenteller Vergleich statischer und dynamischer Softwareprüfung für eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories
97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen
97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications
97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung
98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse
98-03 Marko Luther, Martin Strecker
A guided tour through Typelab
98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction
98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design
98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata
98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement
98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons
98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT
98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 - V2 Interaction in Early Visual Boundary Processing
98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C-Code und Statmate/Matlab-Spezifikationen: Ein Experiment

98-12	Gerhard Schellhorn Proving Properties of Directed Graphs: A Problem Set for Automated Theorem Provers
98-13	Gerhard Schellhorn, Wolfgang Reif Theorems from Compiler Verification: A Problem Set for Automated Theorem Provers
98-14	Mohammad Ali Livani SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN
98-15	Mohammad Ali Livani, Jörg Kaiser Predictable Atomic Multicast in the Controller Area Network (CAN)
99-01	Susanne Boll, Wolfgang Klas, Utz Westermann A Comparison of Multimedia Document Models Concerning Advanced Requirements
99-02	Thomas Bauer, Peter Dadam Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und Simulation
99-03	Uwe Schöning On the Complexity of Constraint Satisfaction
99-04	Ercument Canver Model-Checking zur Analyse von Message Sequence Charts über Statecharts
99-05	Johannes Köbler, Wolfgang Lindner, Rainer Schuler Derandomizing RP if Boolean Circuits are not Learnable
99-06	Utz Westermann, Wolfgang Klas Architecture of a DataBlade Module for the Integrated Management of Multimedia Assets
99-07	Peter Dadam, Manfred Reichert Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems, Applications. Paderborn, Germany, October 6, 1999, GI-Workshop Proceedings, Informatik '99
99-08	Vikraman Arvind, Johannes Köbler Graph Isomorphism is Low for $\mathrm{ZPP}^{\mathrm{NP}}$ and other Lowness results
99-09	Thomas Bauer, Peter Dadam Efficient Distributed Workflow Management Based on Variable Server Assignments
2000-02	Thomas Bauer, Peter Dadam Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-Management-System ADEPT
2000-03	Gregory Baratoff, Christian Toepfer, Heiko Neumann Combined space-variant maps for optical flow based navigation
2000-04	Wolfgang Gehring Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05	Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos
2000-06	Wolfgang Reif, Gerhard Schellhorn, Andreas Thums Fehlersuche in Formalen Spezifikationen
2000-07	Gerhard Schellhorn, Wolfgang Reif (eds.) FM-Tools 2000: The 4 ${ }^{\text {th }}$ Workshop on Tools for System Design and Verification
2000-08	Thomas Bauer, Manfred Reichert, Peter Dadam Effiziente Durchführung von Prozessmigrationen in verteilten Workflow- Management-Systemen
2000-09	Thomas Bauer, Peter Dadam Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in ADEPT
2000-10	Thomas Bauer, Manfred Reichert, Peter Dadam Adaptives und verteiltes Workflow-Management
2000-11	Christian Heinlein Workflow and Process Synchronization with Interaction Expressions and Graphs
2001-01	Hubert Hug, Rainer Schuler DNA-based parallel computation of simple arithmetic
2001-02	Friedhelm Schwenker, Hans A. Kestler, Günther Palm 3-D Visual Object Classification with Hierarchical Radial Basis Function Networks
2001-03	Hans A. Kestler, Friedhelm Schwenker, Günther Palm RBF network classification of ECGs as a potential marker for sudden cardiac death
2001-04	Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and Frequency Features and Data Fusion
2002-01	Stefanie Rinderle, Manfred Reichert, Peter Dadam Effiziente Verträglichkeitsprüfung und automatische Migration von WorkflowInstanzen bei der Evolution von Workflow-Schemata
2002-02	Walter Guttmann Deriving an Applicative Heapsort Algorithm
2002-03	Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk A Mechanically Verified Compiling Specification for a Realistic Compiler
2003-01	Manfred Reichert, Stefanie Rinderle, Peter Dadam A Formal Framework for Workflow Type and Instance Changes Under Correctness Checks
2003-02	Stefanie Rinderle, Manfred Reichert, Peter Dadam Supporting Workflow Schema Evolution By Efficient Compliance Checks
2003-03	Christian Heinlein Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04	Stefanie Rinderle, Manfred Reichert, Peter Dadam
	On Dealing With Semantically Conflicting Business Process Changes.
2003-05	Christian Heinlein
	Dynamic Class Methods in Java
2003-06	Christian Heinlein
	Vertical, Horizontal, and Behavioural Extensibility of Software Systems
2003-07	Christian Heinlein
	Safely Extending Procedure Types to Allow Nested Procedures as Values (Corrected Version)
2003-08	Changling Liu, Jörg Kaiser
	Survey of Mobile Ad Hoc Network Routing Protocols)
2004-01	Thom Frühwirth, Marc Meister (eds.)
	First Workshop on Constraint Handling Rules
2004-02	Christian Heinlein
	Concept and Implementation of C+++, an Extension of C++ to Support User-Defined Operator Symbols and Control Structures
2004-03	Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
	Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence
2005-01	Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
	19th Workshop on (Constraint) Logic Programming
2005-02	Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
	2. Krypto-Tag - Workshop über Kryptographie, Universität Ulm
2005-03	Walter Guttmann, Markus Maucher
	Constrained Ordering
2006-01	Stefan Sarstedt
	Model-Driven Development with Activecharts, Tutorial
2006-02	Alexander Raschke, Ramin Tavakoli Kolagari
	Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
	Systemen
2006-03	Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
	Eine qualitative Untersuchung zur Produktlinien-Integration über
	Organisationsgrenzen hinweg
2006-04	Thorsten Liebig
	Reasoning with OWL - System Support and Insights -
2008-01	H.A. Kestler, J. Messner, A. Müller, R. Schuler
	On the complexity of intersecting multiple circles for graphical display

2008-02	Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser, Markus Lauer Architectural Design of Flexible Process Management Technology
2008-03	Frank Raiser
	Semi-Automatic Generation of CHR Solvers from Global Constraint Automata
2008-04	Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für produktlinien-basierte Entwicklungsprozesse
2008-05	Markus Kalb, Claudia Dittrich, Peter Dadam
	Support of Relationships Among Moving Objects on Networks
2008-06	Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
	WMAN 2008 - KuVS Fachgespräch über Mobile Ad-hoc Netzwerke
2008-07	M. Maucher, U. Schöning, H.A. Kestler
	An empirical assessment of local and population based search methods with different degrees of pseudorandomness
2008-08	Henning Wunderlich
	Covers have structure
2008-09	Karl-Heinz Niggl, Henning Wunderlich
	Implicit characterization of FPTIME and NC revisited
2008-10	Henning Wunderlich
	On span- ${ }^{\text {cc }}$ and related classes in structural communication complexity
2008-11	M. Maucher, U. Schöning, H.A. Kestler
	On the different notions of pseudorandomness
2008-12	Henning Wunderlich
	On Toda's Theorem in structural communication complexity
2008-13	Manfred Reichert, Peter Dadam
	Realizing Adaptive Process-aware Information Systems with ADEPT2
2009-01	Peter Dadam, Manfred Reichert
	The ADEPT Project: A Decade of Research and Development for Robust and Fexible
	Process Support
	Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher, Martin Jurisch
Von ADEPT zur AristaFlow ${ }^{\circledR}$ BPM Suite - Eine Vision wird Realität "Correctness by Construction" und flexible, robuste Ausführung von Unternehmensprozessen

Alena Hallerbach, Thomas Bauer, Manfred Reichert Correct Configuration of Process Variants in Provop

2009-04
Martin Bader
On Reversal and Transposition Medians

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik 89069 Ulm

