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Abstract. During the last years, the genomes of more and more species
have been sequenced, providing data for phylogenetic reconstruction
based on genome rearrangement measures. A main task in all phylo-
genetic reconstruction algorithms is to solve the median of three prob-
lem. Although this problem is NP-hard even for the simplest distance
measures, there are exact algorithms for the breakpoint median and the
reversal median that are fast enough for practical use. In this paper,
we extend this approach to the transposition median as well as to the
weighted reversal and transposition median. Although there is no ex-
act polynomial algorithm known even for the pairwise distances, we will
show that it is in most cases possible to solve these problems exactly
within reasonable time by using a branch and bound algorithm.

1 Introduction

Due to the increasing amount of sequenced genomes, the problem of reconstruct-
ing phylogenetic trees based on this data is of great interest in computational
biology. In the context of genome rearrangements, a genome is usually repre-
sented as a permutation of (1, . . . , n), where each element represents a gene, i.e.
the permutation represents the shuffled ordering of the genes on the genome.
Additionally, the strandedness of the genes can be taken into account by giving
each element an orientation. In the multiple genome rearrangement problem,
one searches for a phylogenetic tree describing the most “plausible” rearrange-
ment scenario for multiple genomes. Formally, given k genomes and a distance
measure d, find a tree T with the k genomes as leaf nodes and assign ancestral
genomes to internal nodes of T such that the tree is optimal w.r.t. d, i.e. the sum
of rearrangement distances over all edges of the tree is minimal. If we set k = 3,
i.e. we search for an ancestor such that the sum of the distances from this ances-
tor to three given genomes is minimized, we speak of the median problem. All of
the actual state-of-the-art algorithms for solving the multiple genome rearrange-
ment problem rely on algorithms for solving the median problem. Unfortunately,
this problem is NP-hard even for the simplest rearrangement measures, namely
the breakpoint distance and the reversal distance [12, 8]. Currently, the most
interesting distance measures are:

– The reversal distance between two genomes is the minimum number of rever-
sals required to transform one genome into the other. It can be computed in



linear time [1]. The reversal median problem has been proven to be NP-hard
[8]. The currently best software tools to solve the multiple genome rearrange-
ment problem based on this distance measure are GRAPPA [11], MGR [7], amGRP
[6], and phylo [2]. All of them rely on Caprara’s median solver [8] (GRAPPA
can alternatively use Siepel’s median solver [13]).

– The transposition distance between two genomes is the minimum number of
transpositions required to transform one genome into the other. So far, it is
not clear whether it is in P or not, and the currently best approximation
algorithm has an approximation ratio of 1.375 [10]. An exact branch and
bound algorithm is described in [9]. To the best of our knowledge, the only
program that solves the multiple genome rearrangement problem based on
this distance measure is GRAPPA-TP [14], which uses an extension of Siepel’s
median solver [13] and solves pairwise distances by a fast heuristic.

– The weighted reversal and transposition distance between two genomes is the
minimum weight of a sequence consisting of reversals and transpositions that
transforms one genome into the other, where reversals and transpositions are
weighted differently. Again, it is not clear whether it is in P or not, but there
exist a 1.5-approximation algorithm that covers each weight ratio from 1:1 to
1:2 (reversals:transpositions) [3]. As far as we know, the only program that
solves the multiple genome rearrangement problem based on this distance
measure is phylo [2], which uses a preliminary version of the median solver
that we present in this paper.

In this paper, we will show how one can solve the transposition median as well as
the weighted reversal and transposition median by extending Caprara’s median
solver. In order to do this, we need to calculate pairwise distances between
genomes, which can be either done approximately using the algorithm devised
in [3], or exactly using a new branch and bound algorithm presented in this
paper. Experimental results show that the approximation rate of the first method
is very good in practice, and that even the exact algorithm runs in feasible
time for practical use. In Section 2 we give basic definitions. The algorithm to
calculate exact pairwise distances is described in Section 3, the algorithm to
solve the median problem is described in Section 4. The experimental results
and a comparison with GRAPPA-TP, which was kindly provided by Jijun Tang,
can be found in Section 5. Section 6 summarizes the method and the results.

2 Preliminaries

A signed permutation π = (π1 . . . πn) is a permutation of (1 . . . n), where each el-
ement π has an orientation (indicated by −→πi or←−πi). We will use the term “permu-
tation” as short hand for signed permutation. The permutation id = (

−→
1 . . .−→n )

is called the identity permutation of size n. A segment of a permutation π is
a consecutive sequence of elements in π. A reversal is an operation that in-
verts the order of the elements of a segment in a permutation. Additionally,
the orientation of every element in the segment is flipped. A transposition is an



operation that cuts a segment out of a permutation, and reinserts it at another
position in the permutation. If we additionally apply a reversal on this segment,
we speak of an inverted transposition. The weight of an operation op is denoted
by w(op), and the weight of a sequence of operations is the sum of the weights
of the operations in the sequence. In the following, reversals have weight wr,
whereas transpositions and inverted transpositions have weight wt, and we as-
sume that wr ≤ wt ≤ 2wr (otherwise optimal sequences would have an unrealis-
tic strong bias either towards reversals or transpositions). The problem of sorting
by weighted reversals and transpositions is defined as follows. Given two permu-
tations π1, π2, find a sequence of reversals and transpositions of minimum weight
that transforms π1 into π2. This minimum weight is called the weighted reversal
and transposition distance (wRTD) dw(π1, π2). If we restrict the set of operations
to transpositions only, the problem is called sorting by transpositions, and the
corresponding distance is called the transposition distance (TD) dt(π1, π2). Since
a transposition can never change the orientation of an element, all the elements
in π1 as well as in π2 must have positive orientation. Given q permutations
π1, . . . , πq, the weighted reversal and transposition median problem (wRTMP)
calls for a permutation ρ such that δ(ρ) =

∑q
k=1 dw(ρ, πk) is minimized. The

transposition median problem (TMP) is defined analogously. For solving wRTMP
and TMP, we will use the multiple breakpoint graph, which has been introduced
by Caprara [8] and is a generalization of the breakpoint graph defined in [4]. For
permutations π1, . . . , πq, the MB graph G = (V,E) is a multigraph with node
set V = {−1,+1,−2,+2, . . . ,−n,+n} (where n is the size of the permutations).
The edge set can be obtained as follows. First, we replace in each permutation πk

(1 ≤ k ≤ q) all elements with positive orientation −→x by −x +x and all elements
with negative orientation←−x by +x −x. Then, each permutation πk induces the
edge set Mk = {(i, j) | i 6= −j and πk contains the adjacent values i and j }, i.e.
the edge set Mk corresponds to the adjacencies in πk. The edge set E of the MB
graph G is the union of these edge sets, i.e. E =

⋃q
k=1M

k. As each node is con-
nected to exactly one edge in each edge set Mk, the graphs Gi,j = (V,M i ∪M j)
(with 1 ≤ i, j ≤ q) decompose into cycles with alternating edges from the edge
sets M i and M j . A cycle is called an odd cycle if its number of edges divided by
2 is an odd number, otherwise it is called an even cycle. Let codd(πi, πj) denote
the number of odd cycles in Gi,j , and let ceven(πi, πj) denote the number of even
cycles in Gi,j . The score σ between two permutations πi and πj is defined by
σ(πi, πj) = codd(πi, πj) + (2 − 2wr

wt
)ceven(πi, πj). The following theorems show

how we can use this score to obtain lower and upper bounds for the wRTD.

Theorem 1. [3, 5] A lower bound lbw(πi, πj) for the weighted reversal and trans-
position distance dw(πi, πj) can be defined as follows.

dw(πi, πj) ≥ lbw(πi, πj), where lbw(πi, πj) := (n− σ(πi, πj))
wt
2

A lower bound lbt(πi, πj) for the transposition distance dt(πi, πj) can be defined
as follows.

dt(πi, πj) ≥ lbt(πi, πj), where lbt(πi, πj) := (n− codd(πi, πj)
wt
2



Note that if we set wt = 2wr, the lower bounds for both distances are equal.
This will later simplify the description of the algorithms, as we will only use the
lower bound for the wRTD.

Theorem 2. [3, 10] An upper bound ubw(πi, πj) for the weighted reversal and
transposition distance dw(πi, πj) can be defined as follows.

dw(πi, πj) ≤ ubw(πi, πj), where lbw(πi, πj) := 1.5lbw(πi, πj)

An upper bound ubt(πi, πj) for the transposition distance dt(πi, πj) can be defined
as follows.

dt(πi, πj) ≤ ubt(πi, πj), where ubt(πi, πj) := 1.375lbt(πi, πj)

3 Calculating pairwise distances

As exact polynomial algorithms are neither known for the TD nor for the wRTD,
we introduce a branch and bound algorithm for the pairwise distances. The main
idea of the algorithm is straightforward. W.l.o.g., the task is to find an optimal
sorting sequence between a permutation π and the identity permutation id of the
same size. We create a set S that contains triples (π̃, d′(π, π̃), lb(π̃, id)), where
π̃ is a permutation, d′(π, π̃) is the sum of the weights of all operations that
have been performed on the path from π to π̃, and lb(π̃, id) is the lower bound
for the remaining distance towards id according to Theorem 1. Initially, we set
S = {(π, 0, lb(π, id))}. In each step, we select the triple (π̃, d′(π, π̃), lb(π̃, id)) from
S where d′(π, π̃) + lb(π̃, id) is minimized, and remove it from S. If lb(π̃, id) =
0, then π̃ = id and d′(π, π̃) = d(π, id), i.e. we have found an optimal so-
lution and the algorithm aborts. The sequence of operations can be recon-
structed by a traceback. Otherwise, for each operation op, we add the triple
(op π̃, d′(π, π̃) + w(op), lb(op π̃, id) to S, i.e. we add all possible predecessors of
π̃ to S. We call this step expanding π̃. We now continue by again selecting the
best triple.
So far, the algorithm is just an ordinary branch and bound algorithm, and does
not perform very well in practice. Thus, we improve the algorithm by a duplicate
elimination. Because there are usually different optimal sequences to reach an
intermediate permutation, this permutation would be stored several times, and
in the worst case the number of duplicates of a permutation can be exponential
in the distance to the origin permutation. Therefore, we first check if we already
have generated a permutation before creating a new triple containing this permu-
tation. Searching for a possible duplicate can be done quite efficiently by hashing
techniques. We can further reduce the number of elements in S by working on
the minimal permutations, which have been defined in [9] as follows. Given a
permutation π̃, we obtain the minimal permutation gl(π̃) by ‘gluing’ all the ad-
jacencies together, i.e. we replace each segment of elements that is identical in π̃
and id by a single element. As an example, the permutations π̃ = (

−→
1
−→
2
−→
4
−→
3 )

and π̂ = (
−→
1
−→
3
−→
4
−→
2 ) have both the same minimal permutation (

−→
1
−→
3
−→
2 ).



The following lemma ensures that it is sufficient to search for an optimal sorting
sequence between gl(π̃) and id′ to obtain an optimal sorting sequence between
π̃ and id, where id′ is the identity permutation of same size as gl(π̃).

Lemma 1. [9] Let π be a permutation and gl(π) be its minimal permutation.
Let id be the identity permutation of same size as π, and let id′ be the identity
permutation of same size as gl(π). Then, an optimal sorting sequence between
gl(π) and id′ can easily be transformed into an optimal sorting sequence between
π and id. Both sorting sequences have the same weight, i.e. d(π, id) = d(π̃, id′).

Note that the original lemma in [9] only considered the TD. However, the proof
for the wRTD works analogously, thus this lemma holds for the TD as well as
for the wRTD. While Christie used this proof only to show that one never has
to split adjacencies, we will also use it for duplicate elimination. In the example
above, π̂ would be considered to be a duplicate of π̃. In fact, we even do not
store the original permutations but only their minimal permutations, resulting
in a further space improvement.

4 The median solver

Our median solver is an extension of Caprara’s reversal median solver [8]. While
Caprara’s algorithm solves instances of the Cycle Median Problem (CMP) and
reestimates the distances using the reversal distance, we extend the CMP to the
weighted Cycle Median Problem and reestimate the distances using the TD or
the wRTD.
For a given wRTMP instance with permutations π1, . . . , πq, and an arbitrary
permutation ρ, define γ(ρ) :=

∑q
k=1 σ(ρ, πk). The weighted Cycle Median Prob-

lem (wCMP) is defined as follows. Given a set of q permutations π1, . . . , πq,
find a permutation τ such that qn − γ(τ) is minimized. In the following, let
ρ∗ be the solution of a given wRTMP and let δ∗ := δ(ρ∗) =

∑q
i=1 dw(πi, ρ∗)

be its solution value. Let τ∗ be the solution of the associated wCPM and let
qn − γ∗ := qn − γ(τ∗) be its solution value. The following lemma shows the
relation between a wRTMP instance and the associated wCMP instance.

Lemma 2. Given a wRTMP instance with solution value δ∗ and the associated
wCMP instance with solution value qn− γ∗,

wt
2

(qn− γ∗) ≤ δ∗ ≤ 3wt
4

(qn− γ∗)

Proof. Using the bounds given in Theorems 1 and 2, we get wt

2 (qn − γ∗) =
wt

2 (qn − γ(τ∗)) ≤ wt

2 (qn − γ(ρ∗)) =
∑q
k=1 lb(π

k, ρ∗) ≤ δ∗ ≤
∑q
k=1 d(πk, τ∗) ≤

1.5
∑q
k=1 lb(π

k, τ∗) = 3wt

4 (qn− γ∗).

Note that this proof also holds for the TD if we set wr = 1, wt = 2, and restrict
the search space of the wCMP to permutations where all elements have positive
orientation. In this case, γ(τ) =

∑q
k=1 codd(π

k, τ), i.e. an optimal solution of



the wCPM maximizes the number of odd cycles. In most cases, δ∗ is very close
to the lower bound. This motivates the idea to solve a wRTMP instance by
solving the associated wCMP instance and then check whether the solution of
the wCMP instance is also a solution of the wRTMP instance. We will now
address the problem of solving a wCMP instance. As we will use a branch and
bound algorithm that successively extends a partial solution until we have a
complete solution, we must extend the MB graph such that we can use it to
obtain strong lower bounds for partial solutions. A graph (V,E) is weighted if
each edge e ∈ E has an integer weight w(e). Given a weighted graph G = (V,E)
with node set V = {−1,+1,−2,+2, . . . ,−n,+n}, a weighted matching M is a
set of edges in G such that each node in V is incident to at most one edge in M
and each edge in M has an odd weight (restricting the weights to be odd will
simplify later proofs). A weighted matching M is called perfect if each node in
V is incident to exactly one edge in M . It is easy to see that the union of two
matchings decomposes the graph into cycles and paths consisting of alternating
edges from both matchings. The length of a cycle or path is the sum of the weights
of its edges. A cycle is called an odd cycle if its length divided by 2 is an odd
number, otherwise it is called an even cycle. Note that cycles always consist of an
even number of edges, all having an odd weight (recall the definition of weighted
matchings), thus the length of a cycle is always divisible by 2. Analogous to
the definition given in Section 2, codd(M i,M j) is the number of odd cycles in
(V,M i ∪M j), ceven(M i,M j) is the number of even cycles in (V,M i ∪M j), and
σ(M i,M j) := codd(M i,M j) + (2− 2wr

wt
)ceven(M i,M j). The base matching H is

defined by H := {(−k,+k) | 1 ≤ k ≤ n} and ∀e ∈ H : w(e) = 1. A weighted
matching M is called a permutation matching if H ∪M defines a Hamiltonian
cycle on G, i.e. a cycle that visits each node in V exactly once.

Lemma 3. [4] There is a one-to-one correspondence between signed permuta-
tions and permutation matchings where each edge has weight 1.

In other words, we can transform each permutation matching into a permuta-
tion by ignoring the weights. On the other hand, we can reduce the search space
to permutation matchings. Interpreting the MB graph as the special case of a
weighted graph (where each weight is set to 1) leads to the following formulation
of the wCMP. Given a node set V with |V | = 2n and q permutation matchings
M1, . . . ,Mq, find a permutation matching Mτ with edge weights 1 that mini-
mizes

∑q
k=1(n − σ(Mτ ,Mk)). Note that we do not restrict the weights of the

edges of the given permutation matches. While all edges in the initial problem
have weight 1, the branch and bound algorithm will create partial solutions
where also other edge weights are possible.

Lemma 4. The weighted cycle distance n− σ(S, T ) on permutation matchings
is a metric.

Proof. 1. Positive definiteness: n− σ(S, S) = 0, because the graph decomposes
into n odd cycles. For permutation matchings S, T with S 6= T , there must
be at least one cycle with at least four edges, thus the overall number of



cycles is less than n. As each cycle adds at most 1 to σ(S, T ), σ(S, T ) < n
and n− σ(S, T ) > 0.

2. Symmetry: This follows directly from the symmetry of σ(S, T ).
3. Triangle inequation: We show that for permutation matchings S, T , and R,
n− σ(S,R) + n− σ(R, T ) ≥ n− σ(S, T ). For this, we modify R successively
by the following rules. (a) If (V, S ∪ R) contains an even cycle with only
two edges, change the weight of the corresponding edge in R such that the
cycle becomes odd. This increases σ(S,R) by 2wr

wt
− 1. In (V,R ∪ T ), this

either changes an even cycle into an odd cycle, or an odd cycle into an even
cycle. Thus, σ(S,R) + σ(R, T ) does not decrease. (b) If (V, S ∪ R) contains
a cycle with at least four edges, remove two of the edges of R and rejoin
the endpoints such that the cycle is split into two cycles. Weight the new
edges such that both cycles are odd cycles. If the original cycle was even,
σ(S,R) increases by 2wr

wt . As the operation can effect at most two cycles in
(V,R ∪ T ), the worst possible effect on σ(R, T ) is that we merge two odd
cycles into an even cycle. Thus, σ(S,R) + σ(R, T ) does not decrease. If the
original cycle was odd, σ(S,R) increases by 1, and the overall number of odd
cycles changes by 1. As the parity of the number of odd cycles is always equal
in (V, S ∪R) and (V,R ∪ T ), the worst possible effect on σ(R, T ) is that we
merge two odd cycles into one odd cycle. Thus, σ(S,R) + σ(R, T ) does not
decrease. (c) If none of the two rules above can be applied, S and R contain
the same edges, but maybe with different weights. Change the weights of
the edges of R such that they have the same weights as the edges in S.
Note that this step has no effect on the cycles, as all cycles in (V, S ∪ R)
are already odd. Thus, σ(S,R) + σ(R, T ) remains unchanged. The whole
transformation transformed R into S without decreasing σ(S,R) + σ(R, T ).
Therefore, n−σ(S,R)+n−σ(R, T ) ≥ n−σ(S, S)+n−σ(S, T ) = n−σ(S, T ).

The following lemma will give us a lower bound for the solution value of a wCMP.

Lemma 5. Given a wCMP instance associated with weighted matchings M1, . . . ,Mq

and solution Mτ , we have

q∑
k=1

(n− σ(Mτ ,Mk)) ≥ qn

2
−
q−1∑
k=1

q∑
l=k+1

σ(Mk,M l)
q − 1

Proof. Using the triangle inequality given in Lemma 4, we get

qn

2
−
q−1∑
k=1

q∑
l=k+1

σ(Mk,M l)
q − 1

=
1

q − 1

q−1∑
k=1

q∑
l=k+1

(n−σ(Mk,M l)) ≤
q∑

k=1

(n−σ(Mτ ,Mk))

In order to describe partial solutions, we must introduce the contraction of an
edge. Given a weighted graph G = (V,E) with |V | = 2n and E =

⋃q
k=1M

k,
where each Mk is a permutation matching, the contraction of an edge e = (vi, vj)
is an operation that modifies G as follows. The nodes vi, vj are removed from
V . Each permutation matching Mk is transformed into Mk/e by the following



rules. If e ∈Mk, remove e from Mk, i.e. Mk/e = Mk \{e}. Otherwise, let (a, vi)
and (b, vj) be the two edges incident to vi and vj in Mk. Remove these edges and
add a new edge (a, b), i.e. Mk/e = Mk \ {(a, vi), (b, vj)} ∪ {(a, b)}. The weight
of the new edge (a, b) will be set to w(a, b) := w(a, vi) + w(b, vj) + 1. Note that
this is also an odd number, as w(a, vi) and w(b, vj) are odd. Analogously, the
base matching H will be replaced by H/e.

Lemma 6. [8] Given two perfect matchings M and L of V and an edge (vi, vj) ∈
M , M ∪L defines a Hamiltonian cycle of V if and only if (M/e)∪ (L/e) defines
a Hamiltonian cycle of V \ {vi, vj}.

Lemma 7. Let M1, . . . ,Mq be a wCMP instance, let Mτ be a permutation
matching with edge weights 1, and let e ∈Mτ be an edge. Then,

q∑
k=1

(n− σ(Mτ ,Mk)) = q −
q∑

k=1

σ(Mk, {e}) +
q∑

k=1

(n− 1− σ(Mτ/e,Mk/e))

Proof. A cycle in Mτ ∪ Mk is either absorbed by the contraction step, or it
corresponds to a cycle in Mτ/e ∪Mk/e of the same length. In the first case,
the absorbed cycle is equivalent to the cycle in Mk ∪ {e}, and the sum of the
scores of the absorbed cycles is

∑q
k=1 σ(Mk, {e}). As there are no new cycles

in Mτ/e ∪Mk/e, we get
∑q
i=1 σ(Mτ ,Mk) = −

∑q
k=1 σ(Mk, {e}) +

∑q
k=1(n −

σ(Mτ/e,Mk/e)) = q −
∑q
k=1 σ(Mk, {e}) +

∑q
k=1(n− 1− σ(Mτ/e,Mk/e)).

By combining Lemmas 6 and 7, we get the following

Corollary 1. Given a wCMP instance M1, . . .Mq with solution Mτ and an
edge e ∈Mτ , then Mτ \{e} is a solution of the wCMP instance M1/e, . . . ,Mq/e.

We are now ready to describe our branch and bound algorithm for wCMP. A
partial solution consists of a matching that is not necessarily perfect, and the
lower bound of a partial solution M can be calculated by contracting all edges in
M and calculating the lower bound of the contracted graph, using the formulas
described in Lemmas 5 and 7. In each step, we select the partial solution M with
the currently least lower bound and expand it as follows. Let V ′ be the nodes of
V such that forall vi ∈ V ′, vj ∈ V : (vi, vj) 6∈ M , and let va be a fixed node in
V ′. Then, we create new partial solutions M ′ by setting M ′ = M ∪(va, vb) for all
vb ∈ V ′, vb 6= va. Partial solutions M ′ that cannot be expanded to a permutation
matching (i.e. M ′ ∪H contains a cycle that is not a Hamiltonian cycle) can be
directly discarded, for all other partial solutions we calculate the lower bounds.
The algorithm has found an optimal solution for the wCMP when the partial
solution with the least lower bound is a perfect matching.
The algorithm can easily be extended such that it can solve the wRTMP or
the TMP by adding the following step. Whenever the best partial solution
Mτ is a perfect matching, create the corresponding permutation πτ and test
if

∑q
k=1 dw(πk, πτ ) is equal to the lower bound (of course one has to take dt

instead of dw if one wants to solve the TMP). In this case, we have found an
optimal solution. Otherwise, we increase the lower bound for Mτ and reinsert it



into the set of partial solutions. We can get a further speed-up of the pairwise
distance algorithm by providing an upper bound (remember that we only want
to test if the sum of the pairwise distances is equal to the lower bound, thus
we can abort the pairwise distance algorithms if the currently best results are
above this bound). If one wants to solve the TMP, partial solutions are further
restricted to matchings where all edges are of the form (+i,−j), because other
edges correspond to a change in orientation in the permutation and therefore
these permutations cannot be sorted by transpositions only.

5 Experimental results

We tested our algorithm on artificial datasets with 37 and 100 markers, reflect-
ing the size of mitochondrian and chloroplast genomes. We created datasets
by, starting from the identity permutation, creating three different sequences of
operations to get the input genomes. The weight of the edges is uniformly dis-
tributed in [0.5r, 1.5r], where r is the expected weight of an edge, varying from 2
to 15. For the data sets to test the transposition median solver, wt was set to 1.
For the data sets to test the weighted reversal and transposition median solver,
wr was set to 1, and we created different data sets for wt = 1, wt = 1.5, and
wt = 2. When creating the data sets, the probability of performing a transposi-
tion reflects the weight of wt, i.e. the expected ratio of reversals to transpositions
is wt : wr. For each combination of these parameters, we created 10 data sets.
All tests were performed on a standard 3.16 GHz PC, the running time for each
test case was limited to one hour, and RAM was limited to 4GB.
The experiments showed that the size of the datasets has only little influence on
the results. Up to an expected edge length of r = 8, we could solve all test cases
exactly, most of them even in less than one second. For higher distances, the run-
ning times increased. However, we could still solve 9 instances of the TMP with
r = 15 and n = 37 with an average running time of 6:21 min, and 6 instances of
the TMP with r = 15 and n = 100 with an average running time of 16:27 min.
For the instances of the wRTMP, the running times depend on the used weight
ratio. While setting wr : wt to 1 : 2 allowed us to solve all test cases within a
few seconds, the running times increased for the other weight ratio. Moreover,
we had to prune the heap due to the memory limit in some cases, which means
that there is a slight chance that we missed the optimal solution. Nevertheless,
we were still able to solve all test cases, except for a few test cases with n = 100,
wr : wt = 1 : 1, and r > 13. Using the approximation algorithm instead of the
exact algorithm for the pairwise distances resulted in better running times at
almost the same accuracy. In most cases, we found a solution of same weight
as with the exact algorithm, and the gap between the weights of the solutions
never exceeded 1.
A comparison with GRAPPA-TP on the instances of the TMP shows that GRAPPA-TP
is slightly less accurate than our median solver, but its main drawback is the
speed. For r = 7, its average running time was 3:36 min (n = 37) respectively
6:41 min (n = 100), while our algorithm solved these test cases within less than



one second. Increasing the edge lengths further decreased the number of solved
test cases. For n = 37, none of the test cases with r ≥ 14 could be solved within
one hour. For n = 100, none of the test cases with r ≥ 11 could be solved within
one hour.
A more detailed view of the test results can be found in Appendix A. In the
tables, we list the number of solved test cases and the average running time
of the approximation algorithm and the exact algorithm for each combination
of parameters, as well as the average gap and the maximum gap between the
solution of the approximation algorithm and the exact algorithm. Of course, the
gaps can only be computed for test cases which have been solved by both al-
gorithms, and the average running times only consider test cases that could be
solved within the time limit. The column “proven exact” indicates the number of
test cases where we can assure that the exact algorithm did not miss an optimal
solution due to heap pruning. Note that a solution there we cannot assure this
might still be exact. In fact, as we only prune the currently worst solutions, the
probability of missing an optimal solution is rather low.

6 Conclusion

We presented an extension of Caprara’s median solver that can solve instances
of the TMP and the wRTMP. The method has been tested on artificial datasets,
showing that is possible to solve the wRTMP and the TMP exactly in many
cases. A comparison with GRAPPA-TP on TMPs shows that our algorithm brings
a speed improvement of several orders of magnitude.
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A Detailed experimental results

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0 0 0:00 10 10 0:00

7 10 0 0 0:06 10 9 1:16

8 10 0 0 0:02 10 10 0:04

9 10 0 0 0:15 10 9 2:22

10 10 0.22 1 1:17 9 5 6:00

11 10 0 0 2:12 8 3 1:54

12 10 0.11 1 2:18 9 2 7:22

13 10 0.11 1 1:59 8 3 4:17

14 10 0.13 1 4:37 8 0 15:32

15 10 0.11 1 2:57 9 3 6:21
Table 1. n = 37, transposition distance



r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0 0 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0 0 0:00 10 10 0:00

10 10 0 0 0:00 9 9 0:00

11 10 0 0 0:04 10 10 0:04

12 9 0 0 0:25 9 8 0:30

13 9 0.17 1 7:50 6 4 2:35

14 9 0.14 1 2:54 7 5 0:19

15 7 0.17 1 7:24 6 3 16:27
Table 2. n = 100, transposition distance

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.1 1 0:00 10 10 0:00

7 10 0 0 0:01 10 10 0:01

8 10 0 0 1:20 10 8 1:24

9 10 0.1 1 0:06 10 10 0:03

10 10 0.2 1 2:48 10 6 3:01

11 10 0 0 4:19 10 2 6:17

12 10 0.2 1 5:23 10 2 6:04

13 10 0.3 1 9:38 10 1 11:05

14 10 0.2 1 9:28 10 0 13:18

15 10 0.3 1 10:49 10 1 16:21
Table 3. n = 37, wr = 1, wt = 1



r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0 0 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:05 10 10 0:05

9 9 0 0 1:01 10 7 1:22

10 10 0 0 0:38 10 8 0:52

11 10 0 0 4:21 10 7 4:49

12 10 0 0 0:53 10 7 0:58

13 8 0 0 2:09 8 6 2:39

14 7 0 0 16:46 7 4 19:33

15 4 0 0 13:40 3 2 1:30
Table 4. n = 100, wr = 1, wt = 1

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.05 0.5 0:00 10 10 0:00

7 10 0.05 0.5 0:00 10 10 0:00

8 10 0.05 0.5 0:00 10 10 0:00

9 10 0.05 0.5 0:00 10 10 0:00

10 10 0.15 0.5 0:06 10 9 0:01

11 10 0 0 0:10 10 9 0:11

12 10 0.1 0.5 0:05 10 8 0:05

13 10 0 0 0:56 10 8 1:16

14 10 0.1 0.5 1:09 10 7 1:33

15 10 0.05 0.5 0:09 10 8 0:09
Table 5. n = 37, wr = 1, wt = 1.5



r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.05 0.5 0:00 10 10 0:00

7 10 0.05 0.5 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0.05 0.5 0:02 10 10 0:00

10 10 0 0 0:00 10 10 0:00

11 10 0.1 0.5 0:00 10 10 0:00

12 10 0 0 0:00 10 10 0:00

13 10 0.2 1 0:01 10 10 0:01

14 10 0.05 0.5 0:07 10 10 0:03

15 10 0 0 0:20 10 8 0:19
Table 6. n = 100, wr = 1, wt = 1.5

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.1 1 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0 0 0:00 10 10 0:00

10 10 0 0 0:00 10 10 0:00

11 10 0 0 0:00 10 10 0:00

12 10 0 0 0:00 10 10 0:00

13 10 0 0 0:00 10 10 0:00

14 10 0 0 0:02 10 10 0:03

15 10 0 0 0:01 10 10 0:01
Table 7. n = 37, wr = 1, wt = 2



r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.1 1 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0.1 1 0:00 10 10 0:00

10 10 0 0 0:00 10 10 0:00

11 10 0 0 0:00 10 10 0:00

12 10 0 0 0:00 10 10 0:00

13 10 0 0 0:00 10 10 0:00

14 10 0 0 0:00 10 10 0:00

15 10 0 0 0:00 10 10 0:00
Table 8. n = 100, wr = 1, wt = 2

r solved avg gap max gap avg time

2 10 0 0 0:00

3 10 0.2 2 0:04

4 10 0.3 2 0:16

5 9 0.22 1 0:22

6 8 0.13 1 2:57

7 8 0.5 2 3:36

8 1 0 0 13:25

9 3 0.33 1 4:23

10 3 0.2 3 0:21

11 0

12 0

13 0

14 0

15 0

r solved avg gap max gap avg time

2 10 0 0 0:00

3 10 0 0 0:05

4 10 0.1 1 0:29

5 10 0 0 0:34

6 10 0.4 2 2:06

7 10 0.2 1 6:41

8 10 0 0 12:35

9 7 0.43 2 19:08

10 1 1 1 16:16

11 3 0 0 7:54

12 2 0 0 21:34

13 1 1 1 39:55

14 0

15 0

Table 9. GRAPPA-TP, n = 37 (left) and n = 100 (right).
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