
Sorting by Weighted Reversals, Transpositions,

and Inverted Transpositions

Martin Bader and Enno Ohlebusch

Computer Science Faculty,
University of Ulm, 89069 Ulm, Germany.

Email: martin.bader@uni-ulm.de
enno.ohlebusch@uni-ulm.de

Abstract. During evolution, genomes are subject to genome rearrange-
ments that alter the ordering and orientation of genes on the chromo-
somes. If a genome consists of a single chromosome (like mitochondrial,
chloroplast or bacterial genomes), the biologically relevant genome re-
arrangements are (1) inversions—also called reversals—where a section
of the genome is excised, reversed in orientation, and reinserted and (2)
transpositions, where a section of the genome is excised and reinserted
at a new position in the genome; if this also involves an inversion, one
speaks of an inverted transposition. To reconstruct ancient events in the
evolutionary history of organisms, one is interested in finding an opti-
mal sequence of genome rearrangements that transforms a given genome
into another genome. It is well known that this problem is equivalent
to the problem of “sorting” a signed permutation into the identity per-
mutation. The complexity of the problem is still unknown. The best
polynomial-time approximation algorithm, recently devised by Hartman
and Sharan, has a 1.5 performance ratio. However, it applies only to the
case in which reversals and transpositions are weighted equally. Because
in most organisms reversals occur more often than transpositions, it is
desirable to have the possibility of weighting reversals and transpositions
differently. In this paper, we provide a 1.5-approximation algorithm for
sorting by weighted reversals, transpositions and inverted transpositions
for biologically realistic weights.

1 Introduction

During evolution, genomes are subject to genome rearrangements that alter the
ordering and orientation (strandedness) of genes on the chromosomes. Because
these events are rare compared to point mutations, they can give us valuable
information about ancient events in the evolutionary history of organisms. For
this reason, one is interested in the most “plausible” genome rearrangement sce-
nario between two (or multiple) species. More precisely, given two genomes, one
wants to find an optimal (shortest) sequence of rearrangement operations that
transforms one into the other. Here we will focus on genomes that consists of a
single (circular) molecule of DNA such as mitochondrial, chloroplast or bacte-
rial genomes. As usual, the genomes are represented by a signed permutation,

i.e., an ordering of signed genes where the sign indicates the orientation (the
strand). In this paper we do not consider unsigned permutations. In the single
chromosome case, the relevant genome rearrangements are inversions (where a
section of the genome is excised, reversed in orientation, and reinserted) and
transpositions (where a section of the genome is excised and reinserted at a new
position in the genome; if this also involves an inversion, one speaks of an in-
verted transposition). As is usually done in bioinformatics, we will use the terms
“reversal” and “transreversal” as synonyms for “inversion” and “inverted trans-
position.” It is well known that the problem of finding an optimal sequence of
rearrangement operations that transforms a permutation into another permuta-
tion is equivalent to the problem of “sorting” a permutation by the same set of
operations into the identity permutation. Let us briefly recall what is known for
various sets of operations. In a seminal paper, Hannenhalli and Pevzner showed
that the problem of sorting by reversals can be solved in polynomial time [13].
The Hannenhalli-Pevzner theory was simplified [5] and the running time of their
algorithm was improved several times. To date, a subquadratic time algorithm
[19] is available, and the reversal distance problem (which asks solely for the
minimum number of required reversals, but not for the sequence of reversals)
is solvable in linear time [1, 6]. It is also worth mentioning that the problem of
sorting an unsigned permutation by reversals is NP-hard [9] and the currently
best approximation algorithm has the performance ratio 1.375 [7].

If one restricts the set of operations to transpositions (T), to transpositions
and reversals (T + R), or to transpositions, reversals, and transreversals (T + R
+ TR), the complexity of the problem is still unknown. There exist polynomial-
time approximation algorithms, and the best of them are listed in the table
below.

operations T T + R T + R + TR
performance ratio 1.375 2 1.5
references [10] [17, 20] [15]

The biologically most relevant scenario is the T + R + TR case because in re-
ality genomes are reorganized by all three kinds of operations. A drawback of
Hartman and Sharan’s [15] 1.5-approximation algorithm is that it applies only
to the case in which reversals and transpositions are weighted equally (called the
unweighted case in this paper). Because a transposition can create two cycles in
the reality-desire diagram while a reversal can create at most one cycle (see be-
low), the algorithm generally favors transpositions. Consequently, the sequence
of rearrangement operations returned by that algorithm will often significantly
deviate from the “true” evolutionary history because in most organisms transpo-
sitions are observed much less frequently than reversals. Thus, it is desirable to
have the possibility of weighting reversals and transpositions differently. Given
such weights, the weighted genome rearrangement problem asks for a sorting
sequence of rearrangement operations such that the sum of the weights of the
operations in the sequence is minimal. That is, a shortest sequence is not nec-
essarily optimal. However, this problem is poorly studied. To our knowledge,
there are only two algorithms that tackle it. The first is a (1+ε)-approximation

algorithm devised by Eriksen [11]. It uses a weight proportion 2:1 (transposi-
tion:reversal) and has the tendency to use as much reversals as possible. The
second algorithm is implemented in the software tool DERANGE II [8]. It is a
greedy algorithm that works on the breakpoint distance and can only guarantee
an approximation ratio of 3. In this paper, we will present a 1.5-approximation
algorithm for any weight proportion between 1:1 and 2:1. Hence, our result closes
the gap between the result of Hartman and Sharan [15] for the 1:1 proportion
and that of Eriksen [11] for the 2:1 proportion. As the previous state of the art
approximation algorithms for this problem, our algorithm proceeds by case anal-
ysis. In contrast to them, however, it is based on a (nontrivial) lower bound on
the weighted rearrangement distance that is based on the number of odd and the
number of even cycles. The running time of our algorithm is O(n2) in the naive
implementation, but the time complexity can be improved to O(n3/2 log n).

2 Preliminaries

A signed circular permutation π = (π1 . . . πn) is a permutation of (1 . . . n), in
which the indices are cyclic (i.e., n is followed by 1) and each element is la-
beled by plus or minus. We will use the term “permutation” as short hand for
signed circular permutation. The reflection of a permutation π is the permu-
tation (−πn · · · − π1). It is considered to be equivalent to π. Two consecutive
elements πi, πi+1 form an adjacency if πi = +x and πi+1 = +(x + 1), or if
πi = −x and πi+1 = −(x − 1). Otherwise, they form a breakpoint. A segment
πi . . . πj (with j ≥ i) of a permutation π is a consecutive sequence of elements in
π, with πi as first element and πj as last element. There are three possible rear-
rangement operations on a permutation π. A transposition t(i, j, k) (with i < j
and k < i or k > j) is an operation that cuts the segment πi . . . πj−1 out of π, and
reinserts it before the element πk. A reversal r(i, j) (with i < j) is an operation
that inverts the order of the elements of the segment πi . . . πj−1. Additionally,
the sign of every element in the segment is flipped. A transreversal tr(i, j, k)
(with i < j and k < i or k > j) is the composition t(i, j, k) ◦ r(i, j) of a reversal
and a transposition. In other words, the segment πi . . . πj−1 will be cut out of
π, inverted, and reinserted before πk. A sequence of operations op1, op2, . . . , opk

applied to a permutation π yields the permutation opk ◦ opk−1 ◦ · · · ◦ op1(π).
In the following, reversals have weight wr and transpositions as well as transre-
versals have weight wt. As reversals usually occur much more frequently than
transpositions and transreversals, we assume that wr ≤ wt. The weight of a se-
quence is the sum of the weights of the operations in it. The problem of sorting
by weighted reversals, transpositions, and inverted transpositions is defined as
follows: Given a permutation π, find a sequence (of these operations) of min-
imum weight that transforms π into the identity permutation. This minimum
weight will be denoted by w(π).

In practice, it is also of interest to sort linear permutations. It has been
proven by Hartman and Sharan [15] that sorting circular permutations is linearly
equivalent to sorting linear permutations if yet another operation revrev is used

that inverts two consecutive segments of the permutation. As long as the weights
for transreversals and revrevs are the same, the proof also holds for sorting
with weighted operations. Hence, our algorithm for circular permutations can
be adapted to an algorithm for linear permutations that also uses revrevs.

2.1 The reality-desire diagram

+8
-8

+5
-5

-7

+7

+10

-10

+9

-9

+1 -1

-4

c

e

f

d

a

z

y

x+2
-2

+3

-3

-6

+6

+4

Fig. 1. Left: The reality-desire diagram of π = (+1 +9 +10 +7− 5 +8 +4 +6 + 3+ 2)
contains the cycles c, d, e, and f . Cycles d and e are intersecting, cycles c and d are
interleaving, and all other pairs of cycles do not intersect. Right: The configuration
that consists of the cycles d and e. Labels x, y, and z mark three positions in the
configuration and the arc a consists of these positions.

The reality-desire diagram [18] is a graph that helps us analysing the per-
mutation; see Fig. 1. It is a variation of the breakpoint graph first described
in [3]. The reality-desire diagram of a permutation π = (π1 . . . πn) can be con-
structed as follows. First, the elements of π are placed counterclockwise on a
circle. Second, each element x of π labeled by plus is replaced with the two
nodes −x and +x, while each element x labeled by minus is replaced with +x
and −x. We call the first of these nodes the left node of x and the other the
right node of x. Third, reality-edges are drawn from the right node of πi to the
left node of πi+1 for each index i (indices are cyclic). Fourth, desire-edges or
chords are drawn from node +x to node −(x + 1) for each element x of π. We
can interpret reality-edges as the actual neighborhood relations in the permu-
tation, and desire-edges as the desired neighborhood relations. As each node is
assigned exactly one reality-edge and one desire-edge, the reality-desire diagram
decomposes into cycles. The length of a cycle is the number of chords in it. A
k-cycle is a cycle of length k. If k is odd (even), we speak of an odd (even) cycle.
The number of odd (even) cycles in π is denoted by codd(π) (ceven(π)). It is easy
to see that a 1-cycle corresponds to an adjacency and vice versa. A reversal cuts
the permutation at two positions, while a transposition (transreversal) cuts it at
three positions. Hence each of the operations cuts two or three reality-edges and

nontwisted
edge

nontwisted
edge

twisted edge

twisted chord twisted chord

nontwisted chord

Fig. 2. An example for twisted reality-edges and twisted chords.

moves the nodes. We say that the operation acts on these edges. Desire-edges
are never changed by an operation.

2.2 Some observations about cycles

The following notions are illustrated in Fig. 1. A configuration is a subset of the
cycles of the reality-desire diagram of a permutation. Configurations help us to
focus on a few cycles in the reality-desire diagram instead of examining the whole
diagram. A position in a configuration is the position between two consecutive
reality-edges in the configuration. An arc a is a series of consecutive positions
of a configuration, bounded by two reality-edges r1 and r2. Two chords d1 and
d2 are intersecting if they intersect in the reality-desire diagram. More precisely,
the endpoints of the chords must alternate along the circle in the configuration.
Two cycles are intersecting if a pair of their chords is intersecting. Two cycles
are interleaving if their reality-edges alternate along the circle. A rearrangement
operation is called xy-move if it increases the number of cycles by x and the
operation is of type y (where r stands for a reversal, t for a transposition, and tr
for a transreversal). For example, a transposition that splits one cycle into three
is a 2t-move. A reversal that merges two cycles is a −1r-move. An m1m2 . . . mn-
sequence is a sequence of n operations in which the first is an m1-move, the
second an m2-move and so on. A cycle c is called r-oriented if there is a 1r-
move that acts on two of the reality-edges of c. Otherwise, the cycle is called
r-unoriented. A cycle c is called t-oriented if there is a 2t-move or a 2tr-move that
acts on three of the reality-edges of c. Otherwise, the cycle is called t-unoriented.
A reality-edge is called twisted if its adjacent chords are intersecting; see Fig. 2.
A chord is called twisted if it is adjacent to a twisted reality-edge; otherwise, it is
called nontwisted. A cycle is called k-twisted if k of its reality-edges are twisted.
If k = 0, we also say that the cycle is nontwisted.

Lemma 1. A 2-cycle is r-oriented if and only if it is 2-twisted.

Proof. There are only two possible configurations for a 2-cycle. If the cycle is 2-
twisted, a reversal that acts on its reality-edges splits the cycle into two 1-cycles
(adjacencies). Otherwise, no such move is possible.

Lemma 2. (proven in [14]) A 3-cycle is t-oriented if and only if it is 2- or
3-twisted.

Lemma 3. (proven in [12]) If a cycle c of length ≥ 2 has a nontwisted chord,
then there is another cycle d that intersects with this nontwisted chord of c.

3 The Algorithm

We begin by introducing a new scoring function that allows us to show a very
good lower bound for sorting by weighted reversals, transpositions, and inverted
transpositions. Then, we will use the fact that a permutation can be transformed
into an equivalent simple permutation without violating this lower bound. Be-
cause the sorting of the original permutation can be mimicked by the sorting of
the simple permutation, we merely have to take care of simple permutations.

3.1 A lower bound

It has been proven by Gu et al. [12] that every operation changes the number of
odd cycles by at most two. This fact leads to the following lower bound on d(π).

Theorem 4. (goes back to [4, 12, 15]) For any permutation π = (π1 . . . πn), the
inequality d(π) ≥ (n−codd(π))/2 holds, where d(π) denotes the minimum number
of reversals, transpositions, and inverted transpositions required to sort π into
the identity permutation.

For sorting by weighted reversals, transpositions, and inverted transpositions,
this bound is not good enough because it does not distinguish between the
weights of the operations. More precisely, adapting the bound to the weighted
case would lead to the bound w(π) ≥ (n − codd(π))wr/2 because wr ≤ wt.
However, the only way how a reversal can increase codd by two is to split an
even cycle into two odd cycles. We will now define a scoring function that treats
such a reversal and a transposition splitting one odd cycle into three odd cycles
equally.

Definition 5. The score σ(π) of a permutation π is defined by

σ(π) = codd(π) +

(

2 −
2wr

wt

)

ceven(π)

Let opi be a rearrangement operation. The weight wi of opi is defined to be wr if
opi is a reversal and wt otherwise. Furthermore, we define ∆σi = σ(opi(π))−σ(π)
to be the gain in score after the application of opi to the permutation π (a
negative gain is possible). It is not difficult to verify that for each operation opi,
the inequality ∆σi/wi ≤ 2/wt holds provided that wr ≤ wt ≤ 2wr. Moreover,
for the two operations discussed immediately before Definition 5, the inequality
becomes an equality.

Lemma 6. For any permutation π = (π1 . . . πn) and weights wr, wt with wr ≤
wt ≤ 2wr:

– σ(π) = n if π is the identity permutation
– σ(π) ≤ n − 1 if π is not the identity permutation

Proof. If π is the identity permutation, the reality-desire diagram consists of n
1-cycles (adjacencies), so σ(π) = codd(π) = n. Otherwise, the diagram has at
least one cycle of length ≥ 2. Therefore, it has at most n − 1 cycles. An odd
cycle adds 1 to the score, while an even cycle adds 2 − 2wr

wt

. With wt ≤ 2wr it

follows that 2− 2wr

wt

≤ 1. Thus, σ(π) ≤ n − 1.

Theorem 7. For any permutation π and weights wr, wt with wr ≤ wt ≤ 2wr,
we have

w(π) ≥ lb(π) where lb(π) = ceven(π)wr +

(

n − codd(π)

2
− ceven(π)

)

wt

Proof. Let op1, op2, . . . , opk be an optimal sorting sequence of π, i.e., w(π) =
∑k

i=1
wi. We have σ(π) +

∑k
i=1

∆σi = n because π is transformed into the
identity permutation, which has score n. It follows from ∆σi ≤ wi

2

wt

that n ≤
σ(π) +

∑k
i=1

wi
2

wt

= σ(π) + w(π) 2

wt

. Hence w(π) ≥ (n − σ(π))wt

2
= lb(π).

3.2 Transformation into simple permutations

The analysis of cycles of arbitrary length is rather complicated. For this reason,
a permutation will be transformed into a so-called simple permutation. A cycle is
called long if its length is greater than 3. A permutation is called simple if it con-
tains no long cycles. According to [13–15,17], there is a padding algorithm that
transforms any permutation π into a simple permutation π̃. Each transformation
step increases n and codd by 1, and leaves ceven unchanged. Hence lb(π̃) = lb(π).
As the padding algorithm just adds elements to π, π can be sorted by using a
sorting sequence of π̃ in which the added elements are ignored. Consequently, the
resulting sorting sequence of π has the same or a smaller weight than the sorting
sequence of π̃. In the next subsection, we will present an algorithm that takes a
simple permutation π̃ as input and outputs a sorting sequence op1, op2, . . . , opk

of π̃ such that
∑k

i=1
wi ≤ 1.5 lb(π̃). Altogether, this yields a 1.5-approximation

for sorting by weighted reversals, transpositions, and inverted transpositions be-
cause w(π) ≤

∑k
i=1

wi ≤ 1.5 lb(π̃) = 1.5 lb(π) ≤ 1.5 w(π).
Note that it is not possible to transform 2-cycles into 3-cycles as done in [15]

because these transformations would change the score and the lower bound.

3.3 The algorithm for simple permutations

Given a simple permutation π, the overall goal is to find a sorting sequence
op1, op2, . . . , opk of π such that

∑k
i=1

∆σi ≥
∑k

i=1
wi

4

3wt

. By a reasoning similar

intersecting cycle e at x

Do c and e intersect?

e is 2-cycle

f is 3-cycle,
interleaving with d or e

discard other cycles
[14], Lemma 12

f is 2-cycle
three of the cycles
fulfill precondition
of Case 3 or Case 4

Case 3 or Case 4

f is nontwisted 3-cycle,
not interleaving with d or e

discard c, continue at

intersecting cycle d

f is 1-twisted 3-cycle,

discard c, continue atd

f is 2-cycle
c, f intersecting

discard d, e, Case 1

e is nontwisted 3-cycleb

type of intersection of e?

c is 2-cycle

g

Case 2

a

d, e interleaving

discard c
[13] Lemma 8

c, e not intersecting

f is 2-cycle
c, f not intersecting

d, f not intersecting

Case 5

not interleaving with d or e

c

d

discard c, take d as c
continue at e

yes

d

c

Case 1

Case 3

no

discard d, Case 1

discard c,d, take e as c

c

d

x

d

c

continue at e

e is 1-twisted 3-cycle

all chords of e
intersected by c or d

Case 4

e has a chord not
intersected by c or d

chord intersected by cycle f

Table 1. The algorithm’s decision tree if it begins with an r-unoriented 2-cycle c. All cycles are considered to be r-unoriented 2-cycles or
t-unoriented 3-cycles because r-oriented 2-cycles or t-oriented 3-cycles can directly be eliminated. Cross-references α and β can be found
in this table, γ and δ in Table 2, while ε, ζ, and η are in Table 3.

continue at a

hcontinue at

dc

g

[13], Lemma 10

not interleaving with c or d
e is nontwisted 3-cycle,

d is 2-cycle

e is 3-cycle,

[14], Lemma 12

interleaving with c or d

intersecting cycle d

c is nontwisted 3-cycle

[14], Lemma 12

c and d are interleaving

d is 3-cycle,

intersecting cycle e at x

x

dc

d

[14], Lemma 13

not interleaving with c or d
e is 1-twisted 3-cycle,

bcontinue at

e is 2-cycle

econtinue at
discard c, take d as c

dc

Table 2. The algorithm’s decision tree if it begins with a nontwisted 3-cycle c. All cycles are considered to be r-unoriented 2-cycles or
t-unoriented 3-cycles because r-oriented 2-cycles or t-oriented 3-cycles can directly be eliminated. Cross-references α and β can be found
in Table 1, γ and δ in this table, while ε, ζ, and η are in Table 3.

yes

[14], Lemma 18

no

[14], Lemma 19

any other form

[14], Lemma 19

Case 6

no

[14], Lemma 12How do c and
e intersect?

yes

nontwisted chord of e?
Does d intersect the

no
no

c is 1-twisted 3-cyclee

cycle d intersects nontwisted chord

d is nontwisted 3-cycle,
c and d are not interleaving

cycle e intersects remaining
nontwisted chord of d

h

not interleaving with c or d

Are c and e intersecting?

e is nontwisted 3-cycle,
not interleaving with c or d

continue atd

discard d, Case 2

yes

d is 1-twisted 3-cycle,
c and d are not interleaving

e is 1-twisted 3-cycle,

d is 2-cycle

Case 2

d is 3-cycle,
c and d are interleaving

Are c and d a 1-twisted pair?

e is 3-cycle,
interleaving with c or d

Is this a 1-twisted pair?

Does c intersect the

chord of e or vice versa

discard d, continue at z

[14], Lemma 17

yesno

[14], Lemma 12

nontwisted chord of c?
Does e intersect the

e is 2-cycle

c intersects nontwisted

nontwisted chord of d?

z

Case 7

no

Case 8

yes

yes

Case 8

Table 3. The algorithm’s decision tree if it begins with a 1-twisted 3-cycle c. Again, all cycles are r-unoriented 2-cycles or t-unoriented
3-cycles. Cross-references α and β can be found in Table 1, γ and δ in Table 2, while ε, ζ and η are in this table.

to the proof of Theorem 7, it then follows
∑k

i=1
wi ≤ 1.5 lb(π). To achieve this

goal, we search for a “starting sequence” op1, . . . , opj of at most four operations

(i.e., 1 ≤ j ≤ 4) such that
∑j

i=1
∆σi ≥

∑j
i=1

wi
4

3wt

. This procedure is iterated
(i.e., we next search for a starting sequence of opj ◦ · · · ◦ op1(π) etc.) until the
identity permutation is reached.

The algorithm starts by searching for an arbitrary cycle c of length ≥ 2
in the reality-desire diagram of π. If the cycle is an r-oriented 2-cycle or a t-
oriented 3-cycle, the starting sequence can consist solely of the operation op1

that eliminates this cycle (i.e., op1 is a 1r, 2t or 2tr move that cuts the cycle
into 1-cycles). This is because ∆σ1/w1 = 2/wt ≥ 4/3wt. Otherwise, according
to Lemma 3, c must have a nontwisted chord that is intersected by another cycle
d. The algorithm now searches for this cycle and examines the configuration of
the cycles c and d. Depending on the configuration found, the algorithm either
directly outputs a starting sequence that meets the requirements or, again by
Lemma 3, there must be a chord in the configuration that is intersected by a
cycle e that is not yet in the configuration. Consequently, the algorithm searches
for this cycle and adds it to the configuration. This goes on until a configuration
is found for which a starting sequence can be provided. The algorithm is based
on a descision tree that can be found in Tables 1, 2, and 3. Note that every
configuration consists of at most four cycles.

A careful inspection of the starting sequences described in [14] and [15] for
configurations that do not contain 2-cycles reveals that these sequences also
work in our case. Therefore, we merely have to consider configurations with at
least one r-unoriented 2-cycle (recall that r-oriented 2-cycles can immediately
be eliminated). These cases are listed below and example configurations can be
found in Fig. 3.

c

d

a)

c

d

b)

c

d

e

c)

c
d

e

d)

cd

e f

e)

c

d

e

f)

c

d
g)

c

d
h)

Fig. 3. Example configurations for the new cases to be taken into account.

Case 1 c and d are two intersecting 2-cycles (Fig. 3a).

Case 2 A 2-cycle c intersects the nontwisted chord of a 1-twisted 3-cycle d (Fig.
3b).

Case 3 c and e are 2-cycles, whereas d is a nontwisted 3-cycle. c and e are not
intersecting, and each nontwisted chord of d is intersected by c or e (Fig. 3c).

Case 4 c is a 2-cycle, whereas d and e are intersecting nontwisted 3-cycles. c
intersects the nontwisted chords of d and e that are not intersected by the other
3-cycle (Fig. 3d).

Case 5 d and e are two intersecting nontwisted 3-cycles, whereas c and f are
2-cycles. c intersects with the nontwisted chord of d that is not intersected by e,
and f intersects with the nontwisted chord of e that is not intersected by d. c
and d do not intersect with f , and e does not intersect with c (Fig. 3e).

Case 6 c is a 1-twisted 3-cycle and d is a nontwisted 3-cycle that intersects the
nontwisted chord of c. The remaining chord of d (the one not intersected by c) is
intersected by a 2-cycle e that does not intersect the nontwisted chord of c (Fig.
3f).

Case 7 c and d are two intersecting 1-twisted 3-cycles. d intersects the non-
twisted chord of c, but c does not intersect the nontwisted chord of d (Fig. 3g).

Case 8 Two 1-twisted 3-cycles c and d form a 1-twisted pair (Fig. 3h).

Although the last two cases do not contain a 2-cycle, they have to be taken
into account because in these cases we need a further intersecting cycle, which
may be a 2-cycle.

To exemplify our method, we will give the starting sequences for Cases 4 and
6. Figs. 4 and 5 depict the configurations before and after the application of
an operation in the sequence. In each configuration, the reality-edges on which
the next operation acts are marked with x or ∗. If three edges are marked with
∗, the operation is a transposition. If two edges are marked with x and one is
marked with ∗, the operation is a transreversal, and the segment between the
two x will be inverted. If two edges are marked with x and none is marked with
∗, the operation is a reversal.

A full listing of the starting sequences can be found in [2]. In the following
∆codd (∆ceven) denotes the change in the number of odd (even) cycles after the
application of the starting sequence.

Lemma 8. For Case 4, there is a 0r1r2tr-sequence with ∆codd = 4 and ∆ceven =
−1.

Proof. The sequence is described in Fig. 4. We have
∑

∆σi/
∑

wi = 2(wr +
wt)/wt(2wr + wt). This value varies from 4/3wt (for wt : wr = 1 : 1) to 3/2wt

(for wt : wr = 2 : 1).

c

d

ex

x
x

x

*

x
x

Fig. 4. Sequence for Case 4.

c

d

e

*

*

*

*

*

*

x

*
x

x

x

c

d

e

*

*

*

*

*

*

*

*
*

x

x

c

d

e
*

*

*

*

*

*

x

*

x

x

x

c

d

e

*

*

*

*

*

*

x

*

x

x

x

c

d

e
*

*

*

*

*
*

*
x

x
x

x

Fig. 5. The sequences for Case 6.

Lemma 9. For Case 6, there is a 0t2t2t1r-sequence or a 0t2t2tr1r-sequence with
∆codd = 6 and ∆ceven = −1.

Proof. There are five possible configurations. For all of them, a sequence is de-
scribed in Fig. 5. The last operation of each sequence is a reversal that splits
the last 2-cycle into adjacencies (the resulting configurations are not shown in
the figure). Note that for these sequences, we have

∑

∆σi/
∑

wi = (4wt +
2wr)/wt(3wt +wr). This value varies from 10/7wt (for wt : wr = 2 : 1) to 3/2wt

(for wt : wr = 1 : 1).

4 Further Improvements

Our algorithm is implemented in C++ and it has time complexity O(n2). There
are several possible improvements to the basic algorithm that can decrease its
running time or its approximation ratio. Some of these improvements are:

– Using a special data structure described in [16], it is possible to find the dif-
ferent cases in sublinear time. The running time improves to O(n3/2

√
log n);

cf. [15].
– Examining configurations with more cycles could improve the approxima-

tion ratio. Using this strategy, Elias and Hartman [10] recently succeeded
in improving the performance ratio for sorting by transpositions from 1.5
to 1.375. It is highly expected that this strategy can also improve the per-
formance ratio of sorting by weighted reversals, transpositions, and inverted
transpositions.

– The algorithm can be combined with a greedy strategy: Instead of beginning
with the first cycle in the reality-desire diagram, we start the search at
each cycle in the diagram, and use a sequence with the best gain in score.
This increases the running time by a factor of n, but the algorithm will
find better sorting sequences, and changes in the weight function result in
different sorting sequences.

References

1. D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for computing in-
version distance between signed permutations with an experimental study. Journal

of Computational Biology, 8:483–491, 2001.

2. M. Bader. Sorting by weighted transpositions and reversals. Master’s thesis, Uni-
versity of Ulm, December 2005.

3. V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25(2):272–289, 1996.

4. V. Bafna and P.A. Pevzner. Sorting by transpositions. SIAM Journal on Discrete

Mathematics, 11(2):224–240, 1998.

5. A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory.
Discrete Applied Mathematics, 146(2):134–145, 2005.

6. A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles and
fortresses. In Proc. 15th Annual Symposium on Combinatorial Pattern Match-

ing, volume 3109 of Lecture Notes in Computer Science, pages 388–399. Springer-
Verlag, 2004.

7. P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm
for sorting by reversals. In Proc. of the 10th Annual European Symposium on

Algorithms, volume 2461 of Lecture Notes in Computer Science, pages 200–210.
Springer-Verlag, 2002.

8. M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement.
Gene, 172:GC11–17, 1996.

9. A. Caprara. Sorting permutations by reversals and Eulerian cycle decompositions.
Journal on Discrete Mathematics, 12:91–110, 1999.

10. I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by transpo-
sitions. In Proc. of 5th International Workshop on Algorithms in Bioinformatics,
volume 3692 of Lecture Notes in Bioinformatics, pages 204–215. Springer-Verlag,
2005.

11. N. Eriksen. (1 + ε)-approximation of sorting by reversals and transpositions. The-

oretical Computer Science, 289(1):517–529, 2002.
12. Q.-P. Gu, S. Peng, and I.H. Sudborough. A 2-approximation algorithm for genome

rearrangements by reversals and transpositions. Theoretical Computer Science,
210(2):327–339, 1999.

13. S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations by reversals). Journal of the ACM,
48:1–27, 1999.

14. T. Hartman. A simpler 1.5-approximation algorithm for sorting by transpositions.
In Proc. of the 14th Annual Symposium on Combinatorial Pattern Matching, vol-
ume 2676 of Lecture Notes in Computer Science, pages 156–169. Springer-Verlag,
2003.

15. T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting by transpo-
sitions and transreversals. In Proc. of 4th International Workshop on Algorithms

in Bioinformatics, volume 3240 of Lecture Notes in Bioinformatics, pages 50–61.
Springer-Verlag, 2004.

16. H. Kaplan and E. Verbin. Efficient data structures and a new randomized ap-
proach for sorting signed permutations by reversals. In Proc. of 14th Symposium

on Combinatorial Pattern Matching, volume 2676 of Lecture Notes in Computer

Science, pages 170–185. Springer-Verlag, 2003.
17. G.-H. Lin and G. Xue. Signed genome rearrangement by reversals and transpo-

sitions: Models and approximations. Theoretical Computer Science, 259(1-2):513–
531, 2001.

18. J. Setubal and J. Meidanis. Introduction to Computational Molecular Biology.
PWS Publishing, Boston, M.A., 1997.

19. E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time. In Proc.

of the 15th Annual Symposium on Combinatorial Pattern Matching, volume 3109
of Lecture Notes in Computer Science, pages 1–13. Springer-Verlag, 2004.

20. M.E.T. Walter, Z. Dias, and J. Meidanis. Reversal and transposition distance of
linear chromosomes. In Proc. of the Symposium on String Processing and Infor-

mation Retrieval, pages 96–102. IEEE Computer Society, 1998.

