
Sorting by Weighted Reversals, Transpositions, and Inverted

Transpositions

Martin Bader Enno Ohlebusch

Faculty of Engineering and Computer Sciences,

University of Ulm, 89069 Ulm, Germany.

Email: martin.bader@uni-ulm.de
enno.ohlebusch@uni-ulm.de

Abstract

During evolution, genomes are subject to genome rearrangements that alter the or-
dering and orientation of genes on the chromosomes. If a genome consists of a single
chromosome (like mitochondrial, chloroplast, or bacterial genomes), the biologically rele-
vant genome rearrangements are (1) inversions—also called reversals—where a section of
the genome is excised, reversed in orientation, and reinserted and (2) transpositions, where
a section of the genome is excised and reinserted at a new position in the genome; if this
also involves an inversion, one speaks of an inverted transposition. To reconstruct ancient
events in the evolutionary history of organisms, one is interested in finding an optimal
sequence of genome rearrangements that transforms a given genome into another genome.
It is well known that this problem is equivalent to the problem of “sorting” a signed per-
mutation into the identity permutation. In this paper, we provide a 1.5-approximation
algorithm for sorting by weighted reversals, transpositions and inverted transpositions for
biologically realistic weights.

1

1 Introduction

During evolution, genomes are subject to genome rearrangements that alter the ordering and
orientation (strandedness) of genes on the chromosomes. Because these events are rare com-
pared to point mutations, they can give us valuable information about ancient events in the
evolutionary history of organisms. For this reason, one is interested in the most “plausible”
genome rearrangement scenario between two (or multiple) species. More precisely, given two
genomes, one wants to find an optimal (shortest) sequence of rearrangement operations that
transforms one into the other. Here we will focus on genomes that consist of a single (cir-
cular) molecule of DNA such as mitochondrial, chloroplast or bacterial genomes. As usual,
the genomes are represented by a signed permutation, i.e., an ordering of signed genes where
the sign indicates the orientation (the strand). In this paper we do not consider unsigned
permutations. In the single chromosome case, the relevant genome rearrangements are in-
versions (where a section of the genome is excised, reversed in orientation, and reinserted)
and transpositions (where a section of the genome is excised and reinserted at a new position
in the genome; if this also involves an inversion, one speaks of an inverted transposition).
As is usually done in bioinformatics, we will use the terms “reversal” and “transreversal” as
synonyms for “inversion” and “inverted transposition.” It is well known that the problem of
finding an optimal sequence of rearrangement operations that transforms a permutation into
another permutation is equivalent to the problem of “sorting” a permutation by the same set
of operations into the identity permutation.
Let us briefly recall what is known for various sets of operations. In a seminal paper, Han-
nenhalli and Pevzner showed that the problem of sorting signed permutations by reversals
can be solved in polynomial time [18]. The Hannenhalli-Pevzner theory was simplified [5]
and the running time of their algorithm was improved several times. To date, a subquadratic
time algorithm [26] is available, and the reversal distance problem (which asks solely for the
minimum number of required reversals, but not for the sequence of reversals) is solvable in
linear time [1, 6]. It is also worth mentioning that the problem of sorting an unsigned permu-
tation by reversals is NP-hard [10] and the currently best approximation algorithm has the
performance ratio 1.375 [8].

If one restricts the set of operations to transpositions (T), to transpositions and reversals
(T + R), or to transpositions, reversals, and transreversals (T + R + TR), the complexity
of the problem is still unknown. There exist polynomial-time approximation algorithms, and
the best of them are listed in the table below.

operations T T + R T + R + TR

performance ratio 1.375 2 1.5

references [14] [21, 27] [20]

The biologically most relevant scenario is the T + R + TR case because in reality genomes
are reorganized by all three kinds of operations. Hartman and Sharan provided a very effi-
cient 1.5-approximation algorithm for this case [20], extending a 1.5-approximation algorithm
for sorting by transpositions only [19]. However, the drawback of their algorithm is that it
applies only to the case in which reversals and transpositions are weighted equally (called
the unweighted case in this paper). Because a transposition can create two cycles in the
reality-desire diagram while a reversal can create at most one cycle (see below), the algorithm
generally favors transpositions. Consequently, the sequence of rearrangement operations re-
turned by that algorithm will often significantly deviate from the “true” evolutionary history

2

because in most organisms transpositions are observed much less frequently than reversals.
Thus, it is desirable to have the possibility of weighting reversals and transpositions differ-
ently. Given such weights, the weighted genome rearrangement problem asks for a sorting
sequence of rearrangement operations such that the sum of the weights of the operations in
the sequence is minimal. That is, a shortest sequence is not necessarily optimal. However,
this problem is poorly studied. To our knowledge, there are only two algorithms that tackle
it. The first is a (1+ε)-approximation algorithm devised by Eriksen [15]. It uses a weight pro-
portion 2:1 (transposition:reversal) and has the tendency to use as many reversals as possible.
The second algorithm is implemented in the software tool DERANGE II [9]. It is a greedy
algorithm that works on the breakpoint distance and can only guarantee an approximation
ratio of 3.
In this paper, we will present a 1.5-approximation algorithm for any weight proportion be-
tween 1:1 and 2:1. Hence, our result closes the gap between the result of Hartman and Sharan
[20] for the 1:1 proportion and that of Eriksen [15] for the 2:1 proportion. As the previous
state of the art approximation algorithms for this problem, our algorithm proceeds by case
analysis. In contrast to them, however, it is based on a (nontrivial) lower bound on the
weighted rearrangement distance that is based on the number of odd and the number of even
cycles in the reality-desire diagram. The running time of our algorithm is O(n2).

2 Preliminaries

A signed circular permutation π = (π1 . . . πn) is a permutation of (1 . . . n), in which the indices
are cyclic (i.e., n is followed by 1) and each element is labeled by plus or minus. We will
use the term “permutation” as short hand for signed circular permutation. The reflection of
a permutation π is the permutation (−πn · · · − π1). It is considered to be equivalent to π.
Two consecutive elements πi, πi+1 form an adjacency if πi = +x and πi+1 = +(x + 1), or if
πi = −x and πi+1 = −(x − 1). Otherwise, they form a breakpoint. A segment πi . . . πj (with
j ≥ i) of a permutation π is a consecutive sequence of elements in π, with πi as first element
and πj as last element.
There are three possible rearrangement operations on a permutation π. A transposition
t(i, j, k) (with i < j and k < i or k > j) is an operation that cuts the segment πi . . . πj−1 out
of π, and reinserts it before the element πk. A reversal r(i, j) (with i < j) is an operation that
inverts the order of the elements of the segment πi . . . πj−1. Additionally, the sign of every
element in the segment is flipped. A transreversal tr(i, j, k) (with i < j and k < i or k > j) is
the composition t(i, j, k)◦r(i, j) of a reversal and a transposition. In other words, the segment
πi . . . πj−1 will be cut out of π, inverted, and reinserted before πk. A sequence of operations
op1, op2, . . . , opk applied to a permutation π yields the permutation opk◦opk−1◦· · ·◦op1(π). In
the following, reversals have weight wr and transpositions as well as transreversals have weight
wt. As reversals usually occur much more frequently than transpositions and transreversals,
we assume that wr ≤ wt. The weight of a sequence is the sum of the weights of the operations
in it. The problem of sorting by weighted reversals, transpositions, and inverted transpositions
is defined as follows: Given a permutation π, find a sequence (of these operations) of minimum
weight that transforms π into the identity permutation. This minimum weight will be denoted
by w(π).

In practice, it is also of interest to sort linear permutations. It has been proven by Hartman
and Sharan [20] that sorting circular permutations is linearly equivalent to sorting linear

3

+8
-8

+5
-5

-7

+7

+10

-10

+9

-9

+1 -1

-4

c

e

f

d

a

z

y

x+2
-2

+3

-3

-6

+6

+4

Figure 1: Left: The reality-desire diagram of π = (+1+9+10+7−5+8+4+6+3+2) contains
the cycles c, d, e, and f . Cycles d and e are intersecting, cycles c and d are interleaving, and
all other pairs of cycles do not intersect. Right: The configuration that consists of the cycles
d and e. Labels x, y, and z mark three positions in the configuration, and the arc a consists
of these positions.

permutations if yet another operation revrev is used that inverts two consecutive segments
of the permutation. As long as the weights for transreversals and revrevs are the same,
the proof also holds for sorting with weighted operations. Hence, our algorithm for circular
permutations can be adapted to an algorithm for linear permutations that also uses revrevs.

2.1 The reality-desire diagram

The reality-desire diagram [25] is a graph that helps us analyzing the permutation; see Fig.
1. It is a variation of the breakpoint graph first described in [2]. The reality-desire diagram
of a permutation π = (π1 . . . πn) can be constructed as follows. First, the elements of π are
placed counterclockwise on a circle. Second, each element x of π labeled by plus is replaced
with the two nodes −x and +x, while each element x labeled by minus is replaced with +x

and −x. We call the first of these nodes the left node of x and the other the right node of
x. Third, reality-edges are drawn from the right node of πi to the left node of πi+1 for each
index i (indices are cyclic). Fourth, desire-edges or chords are drawn from node +x to node
−(x + 1) for each element x of π. We can interpret reality-edges as the actual neighborhood
relations in the permutation, and desire-edges as the desired neighborhood relations.
As each node is assigned exactly one reality-edge and one desire-edge, the reality-desire dia-
gram decomposes uniquely into cycles. The length of a cycle is the number of chords in it.
A k-cycle is a cycle of length k. If k is odd (even), we speak of an odd (even) cycle. The
number of odd (even) cycles in π is denoted by codd(π) (ceven(π)). It is easy to see that a
1-cycle corresponds to an adjacency and vice versa. A reversal cuts the permutation at two
positions, while a transposition (transreversal) cuts it at three positions. Hence each of the
operations cuts two or three reality-edges and moves the nodes. We say that the operation
acts on these edges. Desire-edges are never changed by an operation.

4

nontwisted
edge

nontwisted
edge

twisted edge

twisted chord twisted chord

nontwisted chord

Figure 2: An example for twisted reality-edges and twisted chords.

2.2 Some observations about cycles

The following notions are illustrated in Fig. 1. A configuration is a subset of the cycles of the
reality-desire diagram of a permutation. Configurations help us to focus on a few cycles in the
reality-desire diagram instead of examining the whole diagram. A position in a configuration
is the position between two consecutive reality-edges in the configuration. An arc a is a
series of consecutive positions of a configuration, bounded by two reality-edges r1 and r2.
Two chords d1 and d2 are intersecting if they intersect in the reality-desire diagram. More
precisely, the endpoints of the chords must alternate along the circle in the configuration. Two
cycles are intersecting if a pair of their chords is intersecting. Two cycles are interleaving if
their reality-edges alternate along the circle. A rearrangement operation is called xy-move if
it increases the number of cycles by x and the operation is of type y (where r stands for a
reversal, t for a transposition, and tr for a transreversal). For example, a transposition that
splits one cycle into three is a 2t-move. A reversal that merges two cycles is a −1r-move.
An m1m2 . . .mn-sequence is a sequence of n operations in which the first is an m1-move,
the second an m2-move and so on. A cycle c is called r-oriented if there is a 1r-move that
acts on two of the reality-edges of c. Otherwise, the cycle is called r-unoriented. A cycle
c is called t-oriented if there is a 2t-move or a 2tr-move that acts on three of the reality-
edges of c. Otherwise, the cycle is called t-unoriented. A reality-edge is called twisted if its
adjacent chords are intersecting; see Fig. 2. A chord is called twisted if it is adjacent to a
twisted reality-edge; otherwise, it is called nontwisted. A cycle is called k-twisted if k of its
reality-edges are twisted. If k = 0, we also say that the cycle is nontwisted.

Lemma 2.1 A 2-cycle is r-oriented if and only if it is 2-twisted.

Proof There are only two possible configurations for a 2-cycle. If the cycle is 2-twisted, a re-
versal that acts on its reality-edges splits the cycle into two 1-cycles (adjacencies). Otherwise,
no such move is possible. �

Lemma 2.2 (proven in [19]) A 3-cycle is t-oriented if and only if it is 2- or 3-twisted.

Lemma 2.3 Let c be a t-unoriented 3-cycle and let a1, a2, and a3 be the three arcs induced
by the reality-edges of c. If a transposition acts on three reality-edges, so that one of them is in
a1, one in a2, and one in a3, then c becomes t-oriented. More precisely, if c was nontwisted,
it becomes 3-twisted, and if c was 1-twisted, it becomes 2-twisted.

5

*

*

*

*

*

*

Figure 3: A transposition that acts on three reality-edges in different arcs induced by a
t-unoriented cycle c orientates c.

r1

r2

r1

r2

r2

r1

r2

r1

Figure 4: This 5-cycle allows a 2t-move that splits the cycle into a 3-cycle and two adjacencies.
First, we mark two reality-edges connected by a desire-edge with r1 and r2, remove them,
and close the cycle by a new desire-edge (dashed line). Then, we perform the transposition
(third picture). The last step is to reinsert the reality-edges r1 and r2.

Proof The transposition just moves a segment containing one of the reality-edges in between
the other reality-edges. The results of this move can be seen in Fig. 3. �

Lemma 2.4 Let c be a 5-cycle and let r1 and r2 be two reality-edges in c connected by a
desire-edge. If we remove r1, r2, and the adjacent desire-edges, and close the remaining cycle
with a new desire-edge, then we obtain a new cycle called c′ (see Fig. 4 for an example).

• There exists a 2t-move that splits c into a 3-cycle and two adjacencies if and only if
there exists a pair of reality-edges r1, r2, so that c′ is a 3-twisted 3-cycle.

• There exists a 2tr-move that splits c into a 3-cycle and two adjacencies if and only if
there exists a pair of reality-edges r1, r2, so that c′ is a 2-twisted 3-cycle.

Proof An operation can only generate an adjacency if it acts on two reality-edges that are
connected by a desire-edge. Therefore, to get two adjacencies, the operation must act on
three reality-edges that are connected by desire-edges. We can now simulate every operation

6

as follows: First, we remove the other two reality-edges (called r1 and r2) and their adjacent
desire-edges, and close the cycle with a new desire-edge. This corresponds to c′. Now, we
perform our operation on c′. As final step, we reinsert r1 and r2 into the cycle with the newly
created desire-edge. An example can be seen in Fig. 4.
If there exists a pair of reality-edges r1 and r2, so that c′ is 3-twisted, a transposition will split
c′ into three adjacencies. If we reinsert r1 and r2 into the resulting cycles, we get a 3-cycle
and two adjacencies. Conversely, if there is no such pair of reality-edges, there is also no
transposition that creates three adjacencies. Therefore, any transposition that acts on three
reality-edges that are connected by desire-edges can split c into at most two cycles.
For the 2tr-move, the argumentation is the same, except that a 2tr-move on a 3-cycle requires
a 2-twisted 3-cycle. �

Lemma 2.5 Let c be a t-unoriented 5-cycle and let d be a 3-cycle, such that between each
pair of reality-edges of d there is a reality-edge of c. Then a transposition that acts on the
reality-edges of d makes c t-oriented, and there is a second move that splits c into a 3-cycle
and two adjacencies.

Proof Let a1, a2, and a3 be the three arcs induced by the reality-edges of d. In one of these
arcs (without loss of generality, in a1) there is only one reality-edge of c. We call this edge
c1. Let c0 and c2 be the reality-edges that are directly connected to c1 by a desire-edge. If
c0 is in arc a2 and c2 is in arc a3 or vice versa, then c0, c1, and c2 form a triple of reality-
edges that are connected by desire-edges and all of them are in a different arc induced by the
reality-edges of d. If c0 and c2 are in the same arc (without loss of generality, in a2), then one
of them must be connected to a reality-edge in a3 (otherwise, there would be no reality-edge
in a3, a contradiction to our precondition). Again, there is a triple of reality-edges that are
connected by desire-edges and all are in different arcs induced by the reality-edges of d. If
we remove the remaining two reality-edges and the adjacent desire-edges, and close the cycle
with a new desire-edge, we obtain a 3-cycle that must be t-unoriented according to Lemma
2.4. A transposition that acts on the reality-edges of d makes this 3-cycle t-oriented (see
Lemma 2.3). Therefore, after the transposition, d fulfills the preconditions of Lemma 2.4 and
can be split into a 3-cycle and two adjacencies in the next move. �

Alternative proofs for Lemmata 2.4 and 2.5 can be obtained by using the canonical labeling
introduced in [11] and [20].

Lemma 2.6 (proven in [16]) If a cycle c of length ≥ 2 has a nontwisted chord, then there is
another cycle d that intersects with this nontwisted chord of c.

Two arcs a1 and a2 are called adjacent if the endpoints of a1 are connected to the endpoints
of a2 by two chords; see Fig. 5.

Lemma 2.7 (proven in [20]) Let a1 and a2 be two disjoint adjacent arcs in a configuration,
so that there is at least one position in the configuration that is not covered by a1 or a2. Then
there is a cycle with one reality-edge in a1 or a2, and another reality-edge that is neither in
a1 nor in a2.

Two interleaving 1-twisted 3-cycles form a 1-twisted pair if their twisted reality-edges are
consecutive on the circle. An example of a 1-twisted pair is the left diagram in Fig. 5. Later
on (in Lemma 3.17), we will use the fact that a 1-twisted pair has the two adjacent arcs
marked in the diagram.

7

a1

a2 a1

a2

a1

a2

Figure 5: Examples of adjacent arcs. In each diagram, the arcs a1 and a2 are adjacent. Note
that adjacent arcs can overlap (right diagram).

3 The Algorithm

We begin by introducing a new scoring function that allows us to show a very good lower
bound for sorting by weighted reversals, transpositions, and inverted transpositions. Then,
we will use the fact that a permutation can be transformed into an equivalent simple permu-
tation (defined below) without violating this lower bound. Because the sorting of the original
permutation can be mimicked by the sorting of the simple permutation, we merely have to
take care of simple permutations.

3.1 A lower bound

It has been proven by Gu et al. [16] that every operation changes the number of odd cycles
by at most two. This fact leads to the following lower bound on d(π).

Theorem 3.1 (goes back to [3, 16, 20]) For any permutation π = (π1 . . . πn), the inequality

d(π) ≥ n−codd(π)
2 holds, where d(π) denotes the minimum number of reversals, transpositions,

and inverted transpositions required to sort π into the identity permutation.

For sorting by weighted reversals, transpositions, and inverted transpositions, this bound
is not good enough because it does not distinguish between the weights of the operations.
More precisely, adapting the bound to the weighted case would lead to the bound w(π) ≥
(n−codd(π))wr

2 because wr ≤ wt. However, the only way how a reversal can increase codd by two
is to split an even cycle into two odd cycles. We will now define a scoring function that treats
such a reversal and a transposition splitting one odd cycle into three odd cycles equally.

Definition 3.2 The score σ(π) of a permutation π is defined by

σ(π) = codd(π) +

(

2 −
2wr

wt

)

ceven(π)

Let opi be a rearrangement operation. The weight wi of opi is defined to be wr if opi is a
reversal and wt otherwise. Furthermore, we define ∆σi = σ(opi(π)) − σ(π) to be the gain
in score after the application of opi to the permutation π (a negative gain is possible). By
analyzing the gain of the score for each possible operation (w.r.t. the cycles they act on and
the cycles they produce), one can verify that for each operation opi, the inequality ∆σi

wi
≤

2
wt

holds provided that wr ≤ wt ≤ 2wr. Moreover, for the two operations discussed immediately
before Definition 3.2, the inequality becomes an equality.

8

Lemma 3.3 For any permutation π = (π1 . . . πn) and weights wr, wt with wr ≤ wt ≤ 2wr:

• σ(π) = n if π is the identity permutation.

• σ(π) ≤ n − 1 if π is not the identity permutation.

Proof If π is the identity permutation, the reality-desire diagram consists of n 1-cycles
(adjacencies), so σ(π) = codd(π) = n. Otherwise, the diagram has at least one cycle of length
≥ 2. Therefore, it has at most n − 1 cycles. An odd cycle adds 1 to the score, while an even
cycle adds 2 −

2wr

wt
. With wt ≤ 2wr it follows that 2 −

2wr

wt
≤ 1. Thus, σ(π) ≤ n − 1. �

Theorem 3.4 For any permutation π and weights wr, wt with wr ≤ wt ≤ 2wr, we have

w(π) ≥ lb(π) where lb(π) = ceven(π)wr +

(

n − codd(π)

2
− ceven(π)

)

wt

Proof Let op1, op2, . . . , opk be an optimal sorting sequence of π, i.e., w(π) =
∑k

i=1 wi. We

have σ(π)+
∑k

i=1 ∆σi = n because π is transformed into the identity permutation, which has

score n. It follows from ∆σi ≤ wi
2
wt

that n ≤ σ(π) +
∑k

i=1 wi
2
wt

= σ(π) + w(π) 2
wt

. Hence
w(π) ≥ (n − σ(π))wt

2 = lb(π). �

3.2 Transformation into simple permutations

The analysis of cycles of arbitrary length is rather complicated. For this reason, a permutation
will be transformed into a so-called simple permutation. A cycle is called long if its length is
greater than 3. A permutation is called simple if it contains no long cycles. According to [18–
21], there is a padding algorithm that transforms any permutation π into a simple permutation
π̃. Each transformation step increases n and codd by 1, and leaves ceven unchanged. Hence
lb(π̃) = lb(π). As the padding algorithm just adds elements to π, π can be sorted by using a
sorting sequence of π̃ in which the added elements are ignored. Consequently, the resulting
sorting sequence of π has the same or a smaller weight than the sorting sequence of π̃. In the
next subsection, we will present an algorithm that takes a simple permutation π̃ as input and
outputs a sorting sequence op1, op2, . . . , opk of π̃ such that

∑k
i=1 wi ≤ 1.5 lb(π̃). Altogether,

this yields a 1.5-approximation for sorting by weighted reversals, transpositions, and inverted
transpositions because

∑k
i=1 wi ≤ 1.5 lb(π̃) = 1.5 lb(π) ≤ 1.5 w(π).

Note that it is not possible to transform 2-cycles into 3-cycles as done in [20] because
these transformations would change the score and the lower bound.

3.3 The algorithm for simple permutations

Given a simple permutation π, the overall goal is to find a sorting sequence op1, op2, . . . , opk

of π such that
∑k

i=1 ∆σi ≥
∑k

i=1 wi
4

3wt
. By a reasoning similar to the proof of Theorem 3.4,

it then follows
∑k

i=1 wi ≤ 1.5 lb(π). To achieve this goal, we search for a “starting sequence”

op1, . . . , opj of at most four operations (i.e., 1 ≤ j ≤ 4) such that
∑j

i=1 ∆σi ≥
∑j

i=1 wi
4

3wt
.

This procedure is iterated (i.e., we next search for a starting sequence of opj ◦ · · · ◦ op1(π)
etc.) until the identity permutation is reached.

The algorithm starts by searching for an arbitrary cycle c of length ≥ 2 in the reality-
desire diagram of π. If the cycle is an r-oriented 2-cycle or a t-oriented 3-cycle, the starting

9

Case 4

no

discard d, Case 2

yes e has a chord not
intersected by c or d

chord intersected by cycle f
discard c, Case 7

d, e interleaving

e is 2-cycle

intersection of e?

e is nontwisted 3-cycleβ

continue at ε

e is 1-twisted 3-cycle

all chords of e
intersected by c or d

Case 5

f is 2-cycle f is 3-cycle,
interleaving with d or e

discard other cycles, Case 7

f is nontwisted 3-cycle,
not interleaving with d or e

discard c, continue at γ

f is 1-twisted 3-cycle,
not interleaving with d or e

discard c, continue at δ

f is 2-cycle
c, f intersecting

discard d, e, Case 2

f is 2-cycle
c, f not intersecting
c, e not intersecting
d, f not intersecting

Case 6

three of the cycles
fulfill precondition
of Case 5 or Case 6

Case 4 or Case 5

discard c,d, take e as c

Case 3

d

c

Case 2

c is 2-cycle

intersecting cycle d?

c

d

c

discard c, take d as c
continue at ε

intersect c and e?

d

x

d

c

intersecting cycle e at x?

α

Figure 6: The algorithm’s decision tree if it begins with an r-unoriented 2-cycle c. All cycles
are considered to be r-unoriented 2-cycles or t-unoriented 3-cycles because r-oriented 2-cycles
or t-oriented 3-cycles can directly be eliminated. Cross-references α and β can be found in
this figure, γ and δ in Fig. 7, while ε, ζ, and η are in Fig. 8.

sequence can consist solely of the operation op1 that eliminates this cycle (i.e., op1 is a 1r, 2t

or 2tr move that cuts the cycle into 1-cycles). This is because ∆σ1

w1
= 2

wt
≥

4
3wt

. Otherwise,
according to Lemma 2.6, c must have a nontwisted chord that is intersected by another cycle
d. The algorithm now searches for this cycle and examines the configuration of the cycles c

and d. Depending on the configuration found, the algorithm either directly outputs a starting
sequence that meets the requirements or, again by Lemma 2.6, there must be a chord in the
configuration that is intersected by a cycle e that is not yet in the configuration. Consequently,
the algorithm searches for this cycle and adds it to the configuration. This goes on until a
configuration is found for which a starting sequence can be provided. The algorithm is based
on a decision tree that can be found in Figures 6, 7, and 8. Note that every configuration
consists of at most four cycles.

We will now list all configurations that have to be considered, i.e., all configurations in the
decision tree for which a convenient starting sequence exists. The configurations consisting
solely of 3-cycles have already been described in [19] and [20]. A careful inspection of the
starting sequences provided there reveals that these sequences also work in our case. However,
some of the sequences are only optimal for the unweighted case, and others are rather difficult
to implement, so we improved these sequences. For all cases where we use the starting
sequences provided in [19] or [20], we will refer to the source of the starting sequences. For
all other cases, we will provide our own starting sequences.

10

Case 7

interleaving with c or d
βcontinue at

e is 2-cycle γ

cycles mutually intersecting?

not interleaving with c or d
e is nontwisted 3-cycle,

αcontinue with

d is 2-cycle

Case 7

c and d are interleaving
d is 3-cycle,

e is 3-cycle,

intersecting cycle d?

c is nontwisted 3-cycle

Case 11

yes

Case 10

noyes

Case 9Case 8

no

δ

cycles mutually intersecting?

not interleaving with c or d
e is 1-twisted 3-cycle,

intersecting cycle e at x?

x

dc

ηcontinue at

dcc d

discard c, take d as c
continue at ε

Figure 7: The algorithm’s decision tree if it begins with a nontwisted 3-cycle c. All cycles are
considered to be r-unoriented 2-cycles or t-unoriented 3-cycles because r-oriented 2-cycles or
t-oriented 3-cycles can directly be eliminated. Cross-references α and β can be found in Fig.
6, γ and δ in this figure, while ε, ζ, and η are in Fig. 8.

Case 7

noyes

e intersect?
how do c and

no

intersects d nontwisted
chord of e?

Case 14

noyes

discard d, Case 3

is this a 1-twisted pair?

interleaving with c or d
e is 3-cycle,

are c and e intersecting?

cycle d intersects nontwisted chord

ε c is 1-twisted 3-cycle

Case 17

any other form

ζdiscard d, continue at

chord of e or vice versa
c intersects nontwisted

Case 15

yes

Case 16

no

Case 18

yes

no

η

nontwisted chord of d
cycle e intersects remaining

c and d are not interleaving
d is nontwisted 3-cycle,ζ

chord of d?
intersects c the nontwisted

c and d are not interleaving
d is 1-twisted 3-cycle,

are c and d a 1-twisted pair?

c and d are interleaving
d is 3-cycle,

Case 3

d is 2-cycle

e is untwisted 3-cycle,
not interleaving with c or d

continue at δ
intersect e nontwisted
chord of c?

e is 2-cycle e is 1-twisted 3-cycle,
not interleaving with c or d

Case 7 Case 18 Case 12

yes yes

Case 13

no

Figure 8: The algorithm’s decision tree if it begins with a 1-twisted 3-cycle c. Again, all cycles
are r-unoriented 2-cycles or t-unoriented 3-cycles. Cross-references α and β can be found in
Fig. 6, γ and δ in Fig. 7, while ε, ζ and η are in this figure.

11

Case 1 c is an r-oriented 2-cycle or a t-oriented 3-cycle.

For the following cases, we assume that all cycles are neither r-oriented 2-cycles nor t-oriented
3-cycles (otherwise we can reduce the case to Case 1).

Case 2 c and d are two intersecting 2-cycles (example: left configuration of Fig. 9).

Case 3 A 2-cycle c intersects the nontwisted chord of a 1-twisted 3-cycle d (example: left
configuration of Fig. 10) .

Case 4 c and e are 2-cycles, whereas d is a nontwisted 3-cycle. c and e are not intersecting,
and each nontwisted chord of d is intersected by c or e (example: left configuration of Fig.
11).

Case 5 c is a 2-cycle, whereas d and e are intersecting nontwisted 3-cycles. c intersects
the nontwisted chords of d and e that are not intersected by the other 3-cycle (example: left
configuration of Fig. 12).

Case 6 d and e are two intersecting nontwisted 3-cycles, whereas c and f are 2-cycles. c

intersects with the nontwisted chord of d that is not intersected by e, and f intersects with
the nontwisted chord of e that is not intersected by d. c and d do not intersect with f , and e

does not intersect with c (examples: left configurations of Fig. 13).

Case 7 c and d are interleaving 3-cycles, and they do not form a 1-twisted pair (examples:
left configurations of Fig. 14).

Case 8 c, d, and e are all nontwisted 3-cycles. d is intersecting with both c and e, whereas
c and e are not intersecting. The sequences are taken from [19].

Case 9 c, d, and e are mutually intersecting nontwisted 3-cycles. The sequences are taken
from [19].

Case 10 c and d are nontwisted 3-cycles, e is a 1-twisted 3-cycle. c and e are not intersecting
(example: left configuration of Fig. 15).

Case 11 Two nontwisted 3-cycles c and d and a 1-twisted 3-cycle e are mutually intersecting
(examples: left configurations of Fig. 18).

Case 12 Two 1-twisted 3-cycles c and d are intersecting, such that the nontwisted chord of
each cycle is intersected by the other cycle (examples: left configurations of Fig. 19).

Case 13 c and d are two intersecting 1-twisted 3-cycles. d intersects the nontwisted chord of
c, but c does not intersect the nontwisted chord of d (examples: Fig. 20).

Case 14 c is a 1-twisted 3-cycle, and d is a nontwisted 3-cycle that intersects the nontwisted
chord of c. The remaining chord of d (the one not intersected by c) is intersected by a 2-cycle
e that does not intersect the nontwisted chord of c (examples: left configurations of Fig. 21).

Case 15 c is a nontwisted 3-cycle, d and e are 1-twisted 3-cycles. c intersects with the
nontwisted chords of d and e; d and e do not intersect each other. The sequences are taken
from [20].

12

c
d

x

x

x

x

x

x

Figure 9: Sequence for Case 2. In this and the following figures, the operations act on the
edges marked with x or *. Two x represent a reversal, three * represent a transposition, and
two x and a * represent a transreversal that inverts the segment between the two x.

c

d

x

x

x

x

x

x
*

Figure 10: Sequence for Case 3.

Case 16 c is a nontwisted 3-cycle, d and e are 1-twisted 3-cycles. c intersects with the
nontwisted chord of d and the twisted chord of e. d and e do not intersect each other. The
sequences are taken from [20].

Case 17 c is a nontwisted 3-cycle, d and e are 1-twisted 3-cycles. c intersects with the
nontwisted chord of d and an arbitrary chord of e. d and e intersect with their twisted chords,
but are not interleaving. The sequences are taken from [20].

Case 18 Two 1-twisted 3-cycles c and d form a 1-twisted pair (examples: left configurations
of Fig. 22).

The following lemmata provide the starting sequences that are not taken from [19] or [20].

Lemma 3.5 For Case 1, there is a 1r-sequence (if c is an r-oriented 2-cycle), a 2t-sequence,
or a 2tr-sequence (if c is a t-oriented 3-cycle) that can be applied to the permutation.

Proof This is the trivial case, the sequences consist of just one operation. The existence of
these operations follows immediately from the definition of an r-oriented or t-oriented cycle.
Note that for these operations, ∆σ

w
= 2

wt
. �

Lemma 3.6 For Case 2 there exists a 0r1r1r-sequence with ∆codd = 4 and ∆ceven = −2.

Proof The sequence is described in Fig. 9. Note that
P

∆σi
P

wi
= 4

3wt
. �

13

c

d

e

*

*

*

*

*

*

*

*

*

Figure 11: Sequence for Case 4.

c

d

ex

x
x

x

*

x
x

Figure 12: Sequence for Case 5.

Lemma 3.7 For Case 3, there exists a 1r1r1r-sequence with ∆codd = 4 and ∆ceven = −1.

Proof The sequence is described in Fig. 10. Note that
P

∆σi
P

wi
= 2wr+2wt

3wrwt
. This value varies

from 4
3wt

(for wt : wr = 1 : 1) to 2
wt

(for wt : wr = 2 : 1). �

Lemma 3.8 For Case 4, there exists a 0t2t2t-sequence with ∆codd = 6 and ∆ceven = −2.

Proof The sequence is described in Fig. 11. Note that
P

∆σi
P

wi
= 2

3wt
+ 4wr

3w2

t

. This value varies

from 2
wt

(for wt : wr = 1 : 1) to 4
3wt

(for wt : wr = 2 : 1). �

Lemma 3.9 For Case 5, there exists a 0r1r2tr-sequence with ∆codd = 4 and ∆ceven = −1.

Proof The sequence is described in Fig. 12. Note that
P

∆σi
P

wi
= 2wr+2wt

wt(2wr+wt)
. This value varies

from 4
3wt

(for wt : wr = 1 : 1) to 3
2wt

(for wt : wr = 2 : 1). �

Lemma 3.10 For Case 6, there exists a 0t2t2t2t-sequence with ∆codd = 8 and ∆ceven = −2,
or a 0t2t2t-sequence with ∆codd = 4 and ∆ceven = 0.

Proof There are three possible configurations. For each of them, a sequence is described
in Fig. 13. For the 0t2t2t2t-sequence,

P

∆σi
P

wi
= 1

wt
+ wr

w2

t

. This value varies from 2
wt

(for

wt : wr = 1 : 1) to 3
2wt

(for wt : wr = 2 : 1). For the 0t2t2t-sequence,
P

∆σi
P

wi
= 4

3wt
. �

Lemma 3.11 For Case 7, there exists a sequence with weight w ≤ 3wt, ∆codd = 4 and
∆ceven = 0.

14

c

d

e

f

*

*

*
*

*
*

*

*

*
*

*

*

c d

e

f

*

*

*
*

*

*

*

*
*

*

*

*

c

d

e

f
*

*
*

*

*

*

*

*

*

Figure 13: Sequences for Case 6. For the first two sequences, the resulting configurations
consist of 10 adjacencies (not drawn in the figure).

*

*

*

*

*

*

*

*

*

*

*

*

*

x

x

x

*

x

x

x

x

*

x
x

x

Figure 14: Sequences for Case 7.

15

d0
c1

d1

c0
e1

d2

e0

C2

C2

E2

E2

c2

e1

e2

D1

D0

D2
D2

D1 c2

e1

e2

D1

D1

D0
D2

D2

Figure 15: Left: The general case of Case 10. Dashed lines represent two desire-edges sepa-
rated by a reality-edge. One of the edges e0 and e1 also can be twisted. c2 must be at one
of the positions marked with C2, and e2 must be at one of the positions marked with E2.
Middle: This is the resulting 5-cycle after the first transposition if e0 was twisted. Right: This
is the resulting 5-cycle after the first transposition if e0 was not twisted. In both pictures,
the possible positions for the reality-edges of d are marked with D0, D1, and D2.

Proof There are three cases that can occur. For all of them, the sequence is described in Fig.
14. For the first two sequences,

P

∆σi
P

wi
= 4

3wt
. For the last one,

P

∆σi
P

wi
= 4

2wr+wt
≥

4
3wt

. �

The first two of these sequences are taken from [19] and [20]. For the last case, we could
improve the sequence by increasing the number of reversals while decreasing the number of
transpositions. Note that the sequence described in [20] is optimal for the unweighted case.

Lemma 3.12 For Case 10, there exists a 0t2t2t-sequence or a 0t2t2tr-sequence with ∆codd =
4 and ∆ceven = 0.

Proof The general case is illustrated in the left picture of Fig. 15. Dashed lines represent
two desire-edges separated by a reality-edge. e0 or e1 also can be twisted. Note that c2 (the
third reality-edge of cycle c) must be at one of the positions marked with C2, and e2 (the
third reality-edge of cycle e) must be at one of the positions marked with E2. The first move
is a transposition that acts on c0, e0, and c1, cutting a part of the cycle c and inserting it
into e. This move makes d 3-twisted (see Lemma 2.3) and transforms c and e into a 5-cycle
and an adjacency. If e0 was twisted, the configuration of the 5-cycle is the one described in
the middle picture of Fig. 15, otherwise it is the one described in the right picture (where
also e2 can be twisted instead of e1). D0, D1, and D2 mark the possible positions for the
reality-edges of cycle d. In any case, the 5-cycle is t-unoriented, and each pair of reality-edges
of d is separated by a reality-edge of the 5-cycle. Therefore, the preconditions of Lemma
2.5 are fulfilled, and a transposition that acts on the edges of d (this is a 2t-move) makes
the 5-cycle t-oriented, allowing a second 2t-move or a 2tr-move. Note that for the resulting
sequence,

P

∆σi
P

wi
= 4

3wt
. �

This case has also been described by Hartman and Sharan [20]. They start their sequences
with the first move of the corresponding sequence of Case 8, such that the first transposition
does not act on a twisted edge. However, there is a case where the first move must act
on the twisted edge, and this case cannot be solved by using a symmetric configuration, as
conjectured in [20].

Lemma 3.13 For Case 11, there exists a 0t2t2t-sequence or a 0t2t2tr-sequence with ∆codd =
4 and ∆ceven = 0.

16

c0

c2

e0

x

a1

a2

Figure 16: The general situation in Case 11. The dotted line represents two chords separated
by the reality-edge c1. c1 must be in the arc a1. At least one of the reality-edges e1 and e2

must be at the position marked with x. Cycle e has no reality-edge in arc a2. For clarity, the
chords of cycle e are not drawn in the diagram.

c1

c1

Figure 17: If both chords e1 and e2 were at the position marked with x in Fig. 16, the resulting
5-cycle has one of these configurations after the second move. Left: This is the configuration
if e0 was twisted. The dotted line represents two chords separated by the reality-edge c1, and
c1 must be at one of the positions marked with x. Right: This is the configuration if e1 was
twisted. If e2 was twisted, the resulting configuration is symmetric.

17

*

*

*

*

*
*

*

x

x

*

*

*

*

*
*

x

*

x

*

*

*

*

*
*

*

x

x

*

*

*

*

*

*

x

x

*

*

*

*

*

*

*

x

*

x

*

*

*

*

*

*

*

x

x

Figure 18: The sequences for the six possible configurations of Case 11 if cycle e has only one
reality-edge in the arc between c0 and c2. The dotted line represents two chords separated
by the reality-edge c1.

18

Proof The general situation is illustrated in Fig. 16. The dotted line represents two chords
separated by the reality-edge c1. Because there exist many possibilities for the twist of cycle
e, the chords of e are not in the diagram. As c is nontwisted, c1 must be in arc a1. At least
one of the reality-edges of e is at the position marked with x. Without loss of generality,
we can assume that no reality-edge of cycle e is in the arc a2. The first move is always a
transposition that acts on c0, c2, and e0. This makes d 3-twisted, and the second move is
the transposition that eliminates d. For the third move, we must distinguish between two
cases for the positions of e1 and e2 in the starting configuration, which result in different
configurations for the 5-cycle after the first transposition:

• Both e1 and e2 are at the position marked with x in Fig. 16. If e0 was twisted, the
resulting configuration for the 5-cycle can be seen in the left picture of Fig. 17. Oth-
erwise, the configuration is that of the right picture (shown is the configuration where
e1 was twisted; if e2 was twisted, the result is symmetric). Before the first move, the
reality-edge c1 must be at one of the positions marked with x in Fig. 16. Note that it
cannot be between e1 and e2 because c and e are non-interleaving. For both positions,
the preconditions of Lemma 2.4 are fulfilled, allowing a 2tr-move.

• If only one of e1 and e2 is at the position marked with x in Fig. 16, then there are six
possible configurations. For each of them, a sequence is described in Fig. 18.

Note that for the resulting sequence,
P

∆σi
P

wi
= 4

3wt
. �

This case has also been handled in [20]. Our lemma provides a more general view of the
configuration than the one provided there. This reduces the number of subcases that have to
be considered and results in a simpler implementation.

Lemma 3.14 For Case 12, there exists a 1r2tr1r-sequence with ∆codd = 4 and ∆ceven = 0.

Proof There are three possible configurations, and the sequences for these configurations are
shown in Fig. 19. Note that for these sequences,

P

∆σi
P

wi
= 4

wt+2wr
≥

4
3wt

. �

This case has also been described in [20]. However, the sequences provided there are only
optimal for the unweighted case.

Lemma 3.15 For Case 13, we can either apply Case 3 or we can use a sequence described
in [20].

Proof There are two possible configurations, as illustrated in Fig. 20. According to Lemma
2.6, the chord marked with an x must intersect with another cycle. If this is a 2-cycle,
we can discard the cycle c and apply Case 3. If this is a 3-cycle, we can use a sequence
described in [20]. This is either a 0r2tr2tr-sequence with ∆codd = 4 and ∆ceven = 0 or a
1r2tr2tr-sequence with ∆codd = 4 and ∆ceven = 1. Note that for these sequences, either
P

∆σi
P

wi
= 4

2wt+wr
or

P

∆σi
P

wi
= 6wt−2wr

wt(2wt+wr) . The first value varies from 4
3wt

(for wt : wr = 1 : 1)

to 8
5wt

(for wt : wr = 2 : 1). The second value varies from 4
3wt

(for wt : wr = 1 : 1) to 2
wt

(for
wt : wr = 2 : 1). �

Lemma 3.16 For Case 14, there is a 0t2t2t1r-sequence or a 0t2t2tr1r-sequence with ∆codd =
6 and ∆ceven = −1.

19

x

x

x
*

x

x

x

x

x

x
*

x

x

x

x

x

x

*

x

x

x

Figure 19: Sequences for Case 12.

c

d x

c

d

x

Figure 20: The two possible starting configurations for Case 13. The chord marked with x
must intersect with another cycle.

20

c

d

e

*

*

*

*

*

*

x

*
x

x

x

c

d

e

*

*

*

*

*

*

*

*
*

x

x

c

d

e*

*

*

*

*

*

x

*

x

x

x

c

d

e

*

*

*

*

*

*

x

*

x

x

x

c

d

e*

*

*

*

*
*

*
x

x
x

x

Figure 21: Sequences for Case 14. The resulting configurations consist of 8 adjacencies (not
drawn in the figure).

21

a1

a2

a3

Figure 22: Two 1-twisted 3-cycles form a 1-twisted pair. The arcs a1 and a2 are adjacent, so
there is a third cycle that has at least one reality-edge in a1 or a2, and at least one reality-edge
that is neither in a1 nor in a2 (see Lemma 2.7). Depending on the position of this edge (in
a3 or between the two twisted reality-edges), we can choose a sequence for this case.

x

x

x

x

*

*

*

*

x

x

x

x

*

x

x

*

x

x

x

x

*

x

x

*

Figure 23: Sequences for eliminating a 1-twisted pair if there is a third cycle e that intersects
at least one of the nontwisted chords of the 1-twisted pair. The first move is a reversal that
acts on two reality-edges of e, the other two moves act on the reality-edges of the 1-twisted
pair.

22

Proof There are five possible configurations. For all of them, a sequence is described in Fig.
21. Note that for these sequences, we have

P

∆σi
P

wi
= 4wt+2wr

wt(3wt+wr) . This value varies from 10
7wt

(for wt : wr = 2 : 1) to 3
2wt

(for wt : wr = 1 : 1). �

Lemma 3.17 For Case 18, we can either apply Lemma 3.15, or we can apply a sequence
with w = 2wt + wr and ∆σ ≥ 4, or we can apply a 0tr2t2t-sequence or a 0tr2t2tr-sequence
with ∆codd = 4 and ∆ceven = 0, or we can apply a 0r2tr1r sequence with ∆codd = 4 and
∆ceven = −1.

Proof The starting configuration is illustrated in Fig. 22. The arcs a1 and a2 in the figure are
adjacent. According to Lemma 2.7, there must be a cycle e that has at least one reality-edge
(let this be e1) in one of the arcs, and at least one reality-edge (let this be e2) that is in none
of these arcs. Without loss of generality, we can assume that e1 is in the arc a1. Now, we
must distinguish between the possible positions of e2:

• If e2 is in the arc a3, we begin with a reversal that acts on e1 and e2. For all of the
three possible positions of e2, a sequence is described in Fig. 23. Each sequence has
the weight w = 2wt + wr. If the first reversal does not split the cycle e, the sequence
increases codd by 4 and leaves ceven unchanged, therefore the gain in the score is 4. If
the first reversal splits the cycle e, we either get one additional even cycle, or an even
cycle will be split into two odd cycles. Both cases increase the score.

• If e2 is not in the arc a3, we can assume without loss of generality that e has no reality-
edge in a3. If e is 1-twisted and c or d intersects the nontwisted chord of e, then we can
apply Lemma 3.15. Otherwise, there are six configurations we have to consider. For
each of them, a sequence is described in Fig. 24.

Note that for the sequences with w = 2wt + wr and
∑

∆σi ≥ 4,
P

∆σi
P

wi
≥

4
2wt+wr

≥
4

3wt
. For

the 0tr2t2t-sequence and 0tr2t2tr-sequence,
P

∆σi
P

wi
= 4

3wt
. For the 0r2tr1r-sequence,

P

∆σi
P

wi
=

2wr+2wt

wt(wt+2wr) . This value varies from 4
3wt

(for wt : wr = 1 : 1) to 3
2wt

(for wt : wr = 2 : 1). �

This case has also been handled in [20]. However, Hartman and Sharan worked with k ≥ 2
mutually interleaving 3-cycles, such that each pair forms a 1-twisted pair. We can solve this
case directly for k = 2 without extending the configuration. This leads to an easier and more
efficient implementation of this case.

4 Conclusions

We have provided a 1.5-approximation for sorting by weighted reversals, transpositions, and
inverted transpositions with a time complexity of O(n2):

• The initial transformation into a simple permutation can be done in O(n) steps [18].
The same is true for the back-transformation.

• Searching for a cycle that intersects a given desire edge in the reality-desire diagram can
be done in O(n) steps. As the depth of the decision tree can be bounded by a constant,
the time complexity of finding a starting sequence is also O(n).

23

x
x

x

x

*

x

x

x

*
x

*

*

*
*

*

*

x

*
x

*

*

*

*

*

*

x

*
x

*

*

*
x

x

*

x

*
x

*

*

*

x

x

*

x

*
x

*

*

*

x
*

x

Figure 24: Sequences for two interleaving 3-cycles forming a 1-twisted pair. These are the
sequences where we could not find a cycle that intersects one of the nontwisted chords of the
1-twisted pair.

24

• Each permutation π can be sorted with at most 1.5 lb(π)
wr

= O(n) operations (in the worst
case, w(π) = 1.5 lb(π) and all operations are reversals). Therefore, finding all necessary
starting sequences to sort the permutation has a time complexity of O(n2).

• Applying an operation to the permutation can be done in O(n) time. This step must
be performed at most O(n) times.

In practice, the algorithm can be improved by combining it with a greedy strategy: Instead of
beginning with the first cycle in the reality-desire diagram, we start the search at each cycle
in the diagram, and use a sequence with the best gain in score. This increases the running
time by a factor of n, but the algorithm will find better sorting sequences, and changes in
the weight ratio result in different sorting sequences. We have implemented this algorithm
in C ++, and it is available as web application (http://erde.informatik.uni-ulm.de:
3002/metamorphosis).
Of course, the algorithm works on a very simplified model of biological reality, and the ultimate
goal is to also take large-scale insertions, deletions [12] and duplications [13, 24] into account.
Moreover, in the future the approach should be extended to multichromosomal genomes, as
it has been done with some other biological models [7, 17, 22, 28]. Another area of research is
to consider the length of inversions [4, 23].

References

[1] D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for computing in-
version distance between signed permutations with an experimental study. Journal of
Computational Biology, 8:483–491, 2001.

[2] V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by reversals. SIAM
Journal on Computing, 25(2):272–289, 1996.

[3] V. Bafna and P.A. Pevzner. Sorting by transpositions. SIAM Journal on Discrete
Mathematics, 11(2):224–240, 1998.

[4] M.A. Bender, D. Ge, S. He, H. Hu, R.Y. Pinter, S. Skiena, and F. Swidan. Improved
bounds on sorting with length-weighted reversals. In Proc. 15th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 912–921. ACM, 2004.

[5] A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete
Applied Mathematics, 146(2):134–145, 2005.

[6] A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles and fortresses.
In Proc. 15th Annual Symposium on Combinatorial Pattern Matching, volume 3109 of
Lecture Notes in Computer Science, pages 388–399. Springer-Verlag, 2004.

[7] A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrangements.
In Proc. 6th International Workshop on Algorithms in Bioinformatics, volume 4175 of
Lecture Notes in Computer Science, pages 163–173. Springer-Verlag, 2006.

[8] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm for sorting
by reversals. In Proc. 10th Annual European Symposium on Algorithms, volume 2461 of
Lecture Notes in Computer Science, pages 200–210. Springer-Verlag, 2002.

25

[9] M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement. Gene,
172:GC11–17, 1996.

[10] A. Caprara. Sorting permutations by reversals and Eulerian cycle decompositions. SIAM
Journal on Discrete Mathematics, 12:91–110, 1999.

[11] D.A. Christie. Genome Rearrangement Problems. PhD thesis, University of Glasgow,
1998.

[12] N. El-Mabrouk. Sorting signed permutations by reversals and insertions/deletions of
contiguous segments. Journal of Discrete Algorithms, 1(1):105–122, 2001.

[13] N. El-Mabrouk. Reconstructing an ancestral genome using minimum segments duplica-
tions and reversals. Journal of Computer and System Sciences, 65:442–464, 2002.

[14] I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by transpositions.
In Proc. 5th International Workshop on Algorithms in Bioinformatics, volume 3692 of
Lecture Notes in Bioinformatics, pages 204–215. Springer-Verlag, 2005.

[15] N. Eriksen. (1 + ε)-approximation of sorting by reversals and transpositions. Theoretical
Computer Science, 289(1):517–529, 2002.

[16] Q.-P. Gu, S. Peng, and H. Sudborough. A 2-approximation algorithms for genome rear-
rangements by reversals and transpositions. Theoretical Computer Science, 210(2):327–
339, 1999.

[17] S. Hannenhalli and P.A. Pevzner. Transforming men into mice (polynomial algorithm
for genetic distance problem). In Proc. 36th Annual IEEE Symposium on Foundations
of Computer Science, pages 581–592, 1995.

[18] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. Journal of the ACM, 46(1):1–27,
1999.

[19] T. Hartman and R. Shamir. A simpler and faster 1.5-approximation algorithm for sorting
by transpositions. Information and Computation, 204(2):275–290, 2006.

[20] T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting by transpositions
and transreversals. Journal of Computer and System Sciences, 70(3):300–320, 2005.

[21] G.-H. Lin and G. Xue. Signed genome rearrangement by reversals and transpositions:
models and approximations. Theoretical Computer Science, 259:513–531, 2001.

[22] M. Ozery-Flato and R. Shamir. Two notes on genome rearrangements. Journal of
Bioinformatics and Computational Biology, 1(1):71–94, 2003.

[23] R.Y. Pinter and S. Skiena. Genomic sorting with length-weighted reversals. In Genome
Informatics 2002, volume 13, pages 103–111. Universal Academy Press, 2002.

[24] D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15:909–917, 1999.

[25] J.C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS
Publishing Company, 1997.

26

[26] E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time. In Proc. 15th
Annual Symposium on Combinatorial Pattern Matching, volume 3109 of Lecture Notes
in Computer Science, pages 1–13. Springer-Verlag, 2004.

[27] M.E.M.T. Walter, Z. Dias, and J. Meidanis. Reversal and transposition distance of linear
chromosomes. In Proc. Symposium on String Processing and Information Retrieval, pages
96–102. IEEE Computer Society, 1998.

[28] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics, 21(16):3340–3346, 2005.

27

