
Universität Ulm

Institut für Theoretische Informatik

Leiter: Prof. Dr. Uwe Schöning

GENOME REARRANGEMENT ALGORITHMS

DISSERTATION

zur Erlangung des Doktorgrades Dr.rer.nat.

der Fakultät für Ingenieurwissenschaften und Informatik der
Universität Ulm

vorgelegt von

Martin Bader

aus Friedrichshafen

2011

Amtierender Dekan: Prof. Dr. Klaus Dietmayer

Gutachter: Prof. Dr. Enno Ohlebusch
Prof. Dr. Jacobo Torán
Prof. Dr. Jens Stoye

Tag der Promotion:

Summary

With the increasing amount of sequenced genomes, a comparison of species based on
these data becomes more and more interesting. In contrast to the classical approach,
where only point mutations were considered, genome rearrangement problems ignore
small mutations and only consider large-scale mutations that change the gene order on
the chromosomes. This makes these problems a powerful tool when studying organisms
that have diverged millions of years ago, or very fast evolving genomes, like those of
cancerous cells.
A large variety of problems arises from genome rearrangements, like the calculation of
evolutionary distances, the reconstruction of evolutionary events and the gene order of
hypothetical ancestors, or even the reconstruction of whole phylogenetic trees. Due
to the high complexity of most of these problems, the algorithms are based on highly
simplified models of the reality. For example, most algorithms consider only a single
type or a small set of evolutionary events. Therefore, one biological problem results in
several algorithmic problems, depending on the chosen model.
Genome rearrangement problems are often very challenging. For many problems, it is
not known whether they can be solved exactly in polynomial time w.r.t. the size of the
genomes (like sorting by transpositions), others are known to be NP-hard even for the
most simple models, like the median problem or the multiple genome rearrangement
problem. For some problems, their complexity depends on the chosen model. Many of
the problems can be solved in polynomial time if every gene occurs in each genome
exactly once, but become NP-hard as soon as duplications are allowed.
From a computer scientist’s point of view, this raises both theoretical and algorithmic
tasks. For each problem, it is desirable either to find an exact algorithm or to prove
that the problem is NP-hard. In some cases, the examination of a simplified version
of the problem and the connection between this simplified problem and the actual
problem can be helpful (actually, this approach helped Hannenhalli and Pevzner to
obtain their famous result about sorting by reversals). If a problem has been shown to

iii

Summary

be NP-hard, still many instances of the problem can be solved exactly and efficiently
by clever algorithms. Where even this strategy fails, we seek for efficient heuristic
algorithms.
The major results contained in this thesis are as follows:

• We provide a linear time transformation from an arbitrary permutation into
its equivalent simple permutation, and an O(n log n) time back-transformation.
Transformations like these were used in several sorting-by-reversals algorithms,
and can give new insight into other genome rearrangement problems.

• We prove the NP-completeness of the transposition median problem. As a direct
consequence, also the reversal and transposition median problem is NP-complete
if both operations are weighted equally.

• We provide an exact branch and bound algorithm for the transposition median
problem and the weighted reversal and transposition median problem which is
fast enough to be used in practice. As a byproduct, we improve Christie’s exact
algorithm for sorting by transpositions, and extend it to sorting by weighted
reversals and transpositions.

• We introduce a new pairwise distance measure which also considers operations
that change the genome content, namely tandem duplications and deletions. We
develop a lower bound for this distance and a greedy algorithm based on this
lower bound. We provide two versions of this algorithm, one for unichromosomal
circular genomes and one for multichromosomal linear genomes.

iv

Contents

Summary iii

Contents v

Preface ix

1 Introduction 1
1.1 Biological background . 1

1.1.1 The structure of the genome . 1
1.1.2 Genome dynamics . 2
1.1.3 Prokaryotic and eukaryotic DNA 3
1.1.4 Computational challenges and genome rearrangement problems 3

1.2 Preliminaries . 4
1.2.1 Elementary definitions . 4
1.2.2 Relevance of the operations . 7
1.2.3 Circular versus linear genomes 7
1.2.4 The breakpoint graph . 8

1.3 Genome rearrangement problems and distance measures 10
1.4 Simple permutations . 11
1.5 On median problems . 12
1.6 Phylogenetic reconstruction . 14
1.7 Genome rearrangements with duplications 15

2 Simple Permutations 17
2.1 Fundamental definitions and results . 17
2.2 Transforming a permutation into its equivalent simple permutation . . 19

2.2.1 The canonical labeling of cycles 19

v

CONTENTS

2.2.2 (b, g)-splits . 20

2.2.3 The data structure . 23

2.2.4 The algorithm . 24

2.3 Transforming back the simple permutation 29

2.3.1 The data structure . 30

2.3.2 Transforming a reversal on πsimple into a reversal on π 31

2.3.3 Update of the data structure 32

3 On Median Problems 35
3.1 Fundamental definitions and results 35

3.1.1 The multiple breakpoint graph 37

3.2 The transposition median problem is NP-complete 40

3.2.1 Reduction from mdECD to oCMP 41

3.2.2 Reduction from oCMP to TMP 48

3.3 A branch and bound algorithm . 54

3.3.1 Exact calculation of pairwise distances 54

3.3.2 The median solver . 55

3.3.3 Adaption to the TMP . 60

3.3.4 Experimental results . 61

3.4 Conclusion and open problems . 63

4 Phylogenetic Reconstruction 69
4.1 Fundamental definitions . 69

4.2 The algorithm . 70

4.2.1 Creating the tree . 70

4.2.2 Creating the clouds . 72

4.2.3 Improving the topology . 73

4.2.4 Improving internal nodes . 74

4.2.5 Implementation details . 75

4.3 Experimental results . 76

4.3.1 Data sets . 76

4.3.2 Weight ratios . 76

4.3.3 Other tools using the reversal distance 77

4.3.4 Results . 78

4.4 Conclusion and discussion . 78

5 Rearrangement Distances with Duplications and Deletions 81
5.1 Sorting unichromosomal genomes . 81

5.1.1 Problem definition . 81

5.1.2 Idea of the algorithm . 82

5.1.3 The breakpoint graph revisited 82

vi

CONTENTS

5.1.4 A lower bound . 84
5.1.5 The algorithm . 87

5.2 Sorting multichromosomal genomes . 94
5.2.1 Additional definitions . 94
5.2.2 A further extension of the breakpoint graph 95
5.2.3 A lower bound . 96
5.2.4 The algorithm . 100

5.3 Experimental results . 103
5.3.1 Creating artificial data . 103
5.3.2 Results on artificial data . 105
5.3.3 Evaluating the algorithm on cancer karyotypes 105

5.4 Conclusion and Discussion . 114

List of Tables 117

List of Figures 119

List of Algorithms 123

List of Abbreviations 125

Bibliography 127

vii

Preface

Acknowledgements

First of all I want to thank Enno Ohlebusch for supervising me. I am grateful for his
helpful comments and proofreading of all my papers, but also for his motivating words
during the last years.
I also would like to thank Sophia Yancopoulos and Michal Ozery-Flato. The discussions
we had on the RECOMB-CG workshop in San Diego laid the foundation for my work
on genome rearrangement distances with duplications.
Furthermore, I would like to thank Guillaume Bourque and Glenn Tesler for providing
MGR, Jijun Tang for providing GRAPPA-TP and DCM-GRAPPA, and Matthias Bernt for
providing amGRP. All of them also helped me to find the best parameters for their
programs.
Finally, I would like to thank Holger Dammertz, Fabian Wagner, Thomas Schnattinger,
Dominikus Krüger, and my parents for proofreading this thesis.

List of Publications

• Gog, S. and Bader, M. Fast algorithms for transforming back and forth between
a signed permutation and its equivalent simple permutation. Journal of Compu-
tational Biology 15(8):1-13, 2008.

The contents of this paper are presented in Chapter 2. The transformation into
an equivalent simple permutation was developed together with Simon Gog, who
contributed the main ideas of the algorithm.

• Bader M., Abouelhoda, M.I., and Ohlebusch, E. A fast algorithm for the multiple
genome rearrangement problem with weighted reversals and transpositions. BMC

ix

Preface

Bioinformatics 9:516, 2008.

The contents of this paper are presented in Chapter 4. The algorithm was
developed together with Mohamed Abouelhoda and Enno Ohlebusch, where
Mohamed had the initial idea of using clouds instead of a median solver.

• Bader, M. Sorting by Reversals, Block Interchanges, Tandem Duplications, and
Deletions. BMC Bioinformatics 10(Suppl 1):S9, 2009.

The contents of this paper are presented in Section 5.1. However, the algorithm
has been adapted to circular genomes, so as to make it more consistent with the
rest of this thesis.

• Bader, M. On Reversal and Transposition Medians. In Proceedings of World
Academy of Science, Engineering and Technology 54:667-675, 2009.

The contents of this paper are presented in Section 3.3. Our median solver has
been improved since the publication of the paper. These improvements are also
described in this section.

• Bader, M. Genome rearrangements with duplications. BMC Bioinformatics
11(Suppl 1):S27, 2010.

The contents of this paper are presented in Section 5.2.

• Bader, M. The Transposition Median Problem is NP-complete. To be published
in Theoretical Computer Science, doi:10.1016/j.tcs.2010.12.009.

The contents of this paper are presented in Section 3.2.

x

http://dx.doi.org/10.1016/j.tcs.2010.12.009

1 Introduction

In this chapter, we cover the biological background, some fundamental definitions and
concepts of genome rearrangements, as well as results from related literature.
The chapter is organized as follows. In Section 1.1, some biological background and the
motivation for genome rearrangement problems is provided. In Section 1.2, some fun-
damental definitions and common concepts of the algorithms are shown. In Section 1.3,
the most important genome rearrangement based distance measures are introduced. In
Sections 1.4 to 1.7, the topics covered by this thesis and the related work from existing
literature are briefly summarized.

1.1 Biological background

For understanding genome rearrangement problems, a certain knowledge of biology
and molecular genetics is necessary. Therefore, we will give a brief introduction to
molecular genetics. This introduction only covers the subjects that are relevant for
understanding genome rearrangement problems, additional information can be found
in any textbook about molecular biology, like e.g. [Bro02].

1.1.1 The structure of the genome

The genetic information of an organism is stored in large molecules, called deoxyri-
bonucleic acid (short DNA). These molecules consist of an ordered chain of nucleotides
(i.e., there is a natural direction in reading them), and each nucleotide is characterized
by its base, which is one of adenine (A), cytosine (C), guanine (G), and thymine (T).
Thus, on an abstract level, a DNA molecule can be seen as a string over the alphabet
{A,C,G, T}. Pairs of DNA molecules are combined to the famous double-helix struc-
ture, which has been discovered by Watson and Crick in 1953 [WC53]. The two chains
of a double helix (called its strands) have opposite orientations and are connected

1

1 Introduction

by hydrogen bonds between the bases of their single nucleotides. These bonds are
(almost) always between two complementary bases (where adenine and thymine as well
as cytosine and guanine are complementary). Therefore, each strand is the reverse
complement of the other strand, i.e., it can be obtained by reading the bases of the
strand backwards and replacing them by their complementary base.
A single double helix is called a chromosome. The whole genetic information of an
organism is stored in its genome, which can consist of one or several chromosomes. The
size of a genome is measured in million base pairs (short Mbp). Segments of a chromo-
some can encode proteins. Such a segment is called a gene. Depending on which strand
is encoding the protein, we can assign an orientation to each gene. On an even higher
level of abstraction than before, a chromosome is a string of oriented genes. Note that
this orientation is only relative to the other genes on the same chromosome, because
the strand which encodes genes with positive orientation can be chosen arbitrarily.
Thus, a chromosome is equivalent to its reverse complement, which can be obtained by
reading the chromosome backwards and inverting the orientation of every gene.

1.1.2 Genome dynamics

The genome of an organism is stored in each of its cells. Over time, a genome can
change, due to replication errors and chemical or physical influences. Some of these
changes destroy the functionality of the cell and let the cell die. Others change the
behavior of the cell, and lead to malfunctions of the cell. This happens for example in
cancer cells. However, most of the changes have no influence at all, and some can even
result in benefits for the organism. These changes are inherited by child cells, leading
to organisms with a slightly modified genome.
These modifications are classified into two different types. While mutations affect only a
short segment of the genome (often only a single base pair), genome rearrangements are
large-scale modifications of the genome. A few examples for genome rearrangements are
deletions (where a whole segment of the chromosome is deleted), duplications (where
an exact copy of a segment of the chromosome is inserted), or inversions (where a
segment of the chromosome is excised, inverted in orientation, and reinserted).
The replication mechanism of DNA is combined with a very efficient error-fixing
mechanism, therefore mutations are rare events in nature. For example, the overall
error rate for replication in E.coli is 1 in 1010 to 1 in 1011 base pairs [Bro02]. With a
genome length of about 4.65 Mbp, 10000 copies of the E.coli genome contain about
1 point mutation. Although this seems like a very small value, these point mutations
soon accumulate, and are not suitable to compare species whose last common ancestor
lived millions of years ago. Genome rearrangements are observed much less frequently
than point mutations, among vertebrates there are about 0.2 to 2 rearrangements
per million years [BBD+99]. Therefore, it is often still possible to reconstruct these
evolutionary events that happened between two highly diverged species.

2

1.1 Biological background

1.1.3 Prokaryotic and eukaryotic DNA

In biology, organisms are classified into the three domains of bacteria, archaea, and
eukaryotes. Although archaea are more closely related to eukaryotes than to bacte-
ria [IKH+89], their cell and genome structure shares many properties with the bacteria.
Therefore, bacteria and archaea are often united to the prokaryotes. The main difference
of cell and genome structure between prokaryotes and eukaryotes can be summarized
as follows.

Prokaryotes: Prokaryotic cells contain no nucleus. Their genome mostly consists of a
single circular chromosome, i.e., the double helix builds a ring. Prokaryotic DNA
is relatively small (most prokaryotes have a DNA smaller than 5 Mbp), but it
contains only small non-coding regions, and only a few of its genes are duplicated.
Prokaryotes can have additional small DNA molecules, called plasmides. The
genes carried by the plasmides appear to be not necessary for the function of
the organism, but can encode quite useful functions, like for example antibiotic
resistance.

Eukaryotes: Eukaryotic cells contain a nucleus, the DNA molecules of eukaryotes are
within this nucleus. The eukaryotic genome normally consists of several linear
chromosomes. The DNA molecules are large compared to prokaryotic DNA (the
whole human genome has about 3000 Mbp), and contain many non-coding or
duplicated regions.
Eukaryotic cells often contain subunits called organelles, like chloroplasts and
mitochondria. Organelles are found outside the cell nucleus and contain their
own small genomes. The genome of an organelle is mostly a single circular DNA,
and often highly conserved (i.e., it changes very slowly during evolution), and
therefore is often used to compare more distant species.

Due to these differences, it is preferable to design an algorithm either for unichromosomal
circular genomes, or for multichromosomal linear genomes. Considering duplicated
segments is especially of interest for multichromosomal genomes.

1.1.4 Computational challenges and genome rearrangement problems

With the rapidly increasing amount of sequenced genomes, comparisons of species based
on these data become more and more interesting. However, this task is very challenging,
not only because of the size of the data but also because of the structural complexity
of some problems. While there are also many interesting problems considering point
mutations, we will cover in this thesis only problems that ignore small mutations and
only consider large-scale genome rearrangements. These so-called genome rearrangement
problems can roughly be classified into four different categories.

3

1 Introduction

1. Calculate the evolutionary distance between two genomes.

2. Reconstruct the evolutionary events that happened between two species.

3. Reconstruct the gene order of the genome of a hypothetical ancestor of two
species.

4. Reconstruct a phylogenetic tree for a set of genomes.

Of course, some problems cover more than just one task. For example, the multiple
genome rearrangement problem asks for a phylogenetic tree of a set of genomes, and
the gene orders of the hypothetical ancestors at the internal nodes of the tree.

1.2 Preliminaries

We will start with some basic definitions and concepts on which all algorithms in
this work rely. As most of the algorithms work on unichromosomal genomes, we give
the definitions for this case. In biology, most unichromosomal genomes are circular,
therefore also our model will use circular genomes. Note that in the following, we use
the distance formulas for circular genomes, which often differ by 1 from the formulas
for linear genomes. Most of the formulas and algorithms can easily be adjusted to linear
chromosomes, which will be discussed in Section 1.2.3.
For multichromosomal genomes, some of the definitions have to be adjusted, which will
be done in Chapter 5.2. Furthermore, some of the concepts, like the breakpoint graph,
have to be extended for the different problems. Thus, we give the basic definitions in
this chapter, the required extensions will be defined in the corresponding chapters.

1.2.1 Elementary definitions

A genome π = (π1 . . . πm) is a string over the alphabet Σn = {1, . . . , n}, in which the
indices are cyclic (i.e., m is followed by 1, and genomes that differ solely by a cyclic
shift of the elements are considered to be equivalent) and each element x has a positive

or negative orientation (indicated by
−→
x or

←−
x , respectively). The number of occurrences

of an element x (with arbitrary orientation) in a genome π is called its multiplicity, and
is denoted by mult(x, π). In classical genome rearrangement problems, it is required
that all genomes contain each element of Σn exactly once. To emphasize this condition,
we call the genome a permutation. The set of all genomes over Σn (or, depending on
the context, the set of all permutations over Σn) is denoted by Σ∗n. We get the inverse
of an element πi (indicated by −πi) by inverting its orientation. The reflection of a
genome π = (π1 . . . πm) is the genome −π = (−πm . . . −π1). It is considered to be
equivalent to π. Each element x in a genome can also be represented by the ordered set
of its extremities xt (the tail) and xh (the head), where the ordering of the extremities
is xtxh if x has positive orientation, and xhxt otherwise. For example, the genome

4

1.2 Preliminaries

rev(3, 7) · (
−→
1
←−
4
←−
6
←−
11
←−
10
−→
3
−→
7
−→
5
←−
8
−→
2
−→
9) = (

−→
1
←−
4
←−
3
−→
10
−→
11
−→
6
−→
7
−→
5
←−
8
−→
2
−→
9)

tp(4, 9, 1) · (
−→
1
←−
4
←−
3
−→
10
−→
11
−→
6
−→
7
−→
5
←−
8
−→
2
−→
9) = (

−→
1
←−
4
←−
3
←−
8
−→
2
−→
9
−→
10
−→
11
−→
6
−→
7
−→
5)

itp(2, 5, 10) · (
−→
1
←−
4
←−
3
←−
8
−→
2
−→
9
−→
10
−→
11
−→
6
−→
7
−→
5) = (

−→
1
−→
2
−→
9
−→
10
−→
11
−→
6
−→
7
−→
8
−→
3
−→
4
−→
5)

bi(3, 6, 9, 1) · (
−→
1
−→
2
−→
9
−→
10
−→
11
−→
6
−→
7
−→
8
−→
3
−→
4
−→
5) = (

−→
1
−→
2
−→
3
−→
4
−→
5
−→
6
−→
7
−→
8
−→
9
−→
10
−→
11)

(a)

dcj(3, 9,−) · (
−→
1
−→
2 N
−→
9
−→
10
−→
11
−→
6
−→
7
−→
8 N
−→
3
−→
4
−→
5) = (

−→
1
−→
2 N
−→
3
−→
4
−→
5) + CI(

−→
9
−→
10
−→
11
−→
6
−→
7
−→
8 N)

dcj(1, CI4,−)(N
−→
1
−→
2
−→
3
−→
4
−→
5) + CI(

−→
9
−→
10
−→
11N
−→
6
−→
7
−→
8) = (N

−→
1
−→
2
−→
3
−→
4
−→
5 N
−→
6
−→
7
−→
8
−→
9
−→
10
−→
11)

(b)

Figure 1.1: (a) Examples for the operations. Note that indices are cyclic, thus the last
parameter of the transposition and the block interchange corresponds to a
cut after the last element. (b) The block interchange can be simulated by
two DCJs. The first DCJ cuts out a circular intermediate (marked with
CI), the second rejoins the genomes.

π = (
−→
2
−→
3
−→
1
←−
4) can also be written as π = (2t 2h 3t 3h 1t 1h 4h 4t). This notation

is called the extremities notation. Two extremities belonging to the same element are

also called co-elements. The genome id = (
−→
1 . . .

−→
n) is called the identity genome. An

unordered pair of extremities {xt/h, yt/h} is called an adjacency of two genomes π and
ρ if xt/h and yt/h are adjacent in both π and ρ. If xt/h and yt/h are adjacent in π but
not in ρ, it is called a breakpoint of π w.r.t. ρ. In the example above, {2h, 3t} is an
adjacency of π and id, while {3h, 1t}, {1h, 4h}, and {4t, 2t} are breakpoints of π w.r.t.
id. A segment πi . . . πj is a consecutive sequence of elements of a genome. An operation
op transforms a genome π into the genome op ·π. Note that we prefer this notation over
the standard notation op(π), because it better distinguishes between parameters of the
operation and the genome where it is applied to, and because of its better readability
when concatenating operations.
In this work, we will mainly consider the following operations (additional operations
will be described in Chapter 5). Examples for these operations can be seen in Fig. 1.1.

• A reversal rev(i, j) inverts the order of the elements of the segment πi . . . πj−1.
Additionally, the orientation of each element is flipped, i.e., applying the reversal
rev(i, j) on π yields the genome rev(i, j)·π = (π1 . . . πi−1 −πj−1 . . .−πi πj . . . πm).

5

1 Introduction

• A transposition tp(i, j, k) cuts the segment πi . . . πj−1 out of π, and reinserts it
before the element πk, i.e., applying the transposition tp(i, j, k) on π yields the
genome tp(i, j, k) · π = (π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πm).

• An inverted transposition itp(i, j, k) has the same effect as a transposition, but
additionally inverts the segment πi . . . πj−1 before reinserting, i.e., itp(i, j, k) ·π =
tp(i, j, k) · rev(i, j) · π.

• A block interchange bi(i, j, k, l) cuts the segments πi . . . πj−1 and πk . . . πl−1
out of a genome, and swaps their positions. That is, applying the block inter-
change bi(i, j, k, l) on π yields the genome bi(i, j, k, l) · π = (π1 . . . πi−1πk . . . πl−1
πj . . . πk−1πi . . . πj−1πl . . . πm). Note that a transposition is a special case of a
block interchange, where the segments are consecutive.

• A double cut and join operation dcj(i, j, x) (with i, j ∈ [1,m] and x ∈ {+,−})
cuts the genome π before the elements πi and πj , and rejoins the cut ends in two
new pairs. If x = +, we rejoin such that the elements πi−1 and πj−1 as well as
the elements πi and πj become adjacent. This is equivalent to the reversal of the
segment πi . . . πj−1, i.e., dcj(i, j,+) ·π = rev(i, j) ·π. If x = −, we rejoin such that
the elements πi−1 and πj as well as the elements πi and πj−1 become adjacent.
This cuts π into the genomes (π1 . . . πi−1πj . . . πm) and (πi . . . πj−1). The latter
genome is called a circular intermediate, and can be absorbed by another double
cut and join operation with one cutting point in each of the genomes. Depending
on how we rejoin, those two operations are equivalent to either two consecutive
reversals or to one block interchange.

A sequence of operations op1 . . . opk applied on π yields the genome opk · . . . · op1 · π. If
a sequence of operations transforms a genome π into a genome ρ, we say it is a sorting
sequence of π w.r.t. ρ. A genome π′ with π′ = opj · . . . · op1 ·π for a j ∈ [1, k] lies on the
sorting sequence. A weighting function w : Operations→ R+

0 assigns each operation op
a non-negative weight w(op). The weight of a sequence of operations is the sum of the
weights of its operations. A genome rearrangement problem is defined as follows. Given
two genomes π and ρ, a set of operations, and a weighting function, find a sorting
sequence of π w.r.t. ρ of minimal weight. The weight of this sequence is called the
distance d(π, ρ) between the genomes. For example, in the problem sorting by reversals,
the set of operations consists solely of reversals, and the weighting function weights each
reversal with 1, i.e., one searches for a minimal sequence of reversals that transforms π
into ρ. The reversal distance drev(π, ρ) is the minimum number of reversals required
to transform π into ρ. For more rearrangement problems and distance measures, see
Section 1.3.

6

1.2 Preliminaries

1.2.2 Relevance of the operations

The first evidence of a reversal has already been found by Sturtevant in 1926 with the
help of light microscopes [Stu26]. Shortly after, Dobzhansky and Sturtevant provided ev-
idence of several reversals in giant chromosomes in strains of Drosophila pseudoobscura
coming from different geographical regions [DS38]. Nowadays, reversals are considered
to be the most frequent rearrangements in unichromosomal genomes, especially in
plant mitochondrial DNA [PH88] and bacteria [Hug00]. But also transpositions and
inverted transpositions play an important role in evolution, as it has been shown by
several authors (see e.g. [DEEA02, KBH+03]).
The relevance of block interchanges and the double cut and join operation (short

DCJ) is still unclear. Although the creation of circular intermediates and their ab-
sorption by another DCJ is a well-known process in the immune response of higher
animals [KM07] and has also been observed in the genome of the bacterium Borrelia
burgdorferi [CPvV+00], there is no evidence that these operations are relevant in
evolution.
Despite of this question, the possibility of unifying several different operations by
using DCJs is advantageous enough to study this operation, especially as DCJs can
also simulate translocations, fusions, and fissions in multichromosomal genomes. The
original algorithm for sorting by double cut and join by Yancopoulos et al. [YAF05] has
been extended by Bergeron et al. to a universal framework where linear and circular
chromosomes can co-exist [BMS06]. By restricting the set of allowed DCJs in this
framework, one can adjust the set of simulated biological operations [LHWC06, BMS09].
This leads to simplified versions of existing algorithms [BMS09] or efficient algorithms
for new models [LHWC06].

1.2.3 Circular versus linear genomes

Although most unichromosomal genomes are circular in reality, it is sometimes desirable
to also have an algorithm for linear unichromosomal genomes. Fortunately, most of the
problems for linear genomes are linearly equivalent to the corresponding problems for
circular genomes, i.e., the algorithms for circular genomes can easily be modified such
that they solve the problem for linear genomes without changing their time or space
complexity.
The idea of this modification has been presented by Meidanis et al. in [MWD00]. They

add a boundary element
−→
0 at the end of the linear genomes, and assume that the

genomes are now circular. As long as an operation does not affect a segment containing
the boundary element, there is a corresponding operation for the linear problem. If
an operation affects the boundary element, it has to be replaced by an equivalent
operation that does not affect it, where two operations op and op′ are considered to
be equivalent if op · π and op′ · π are considered to be equivalent (remember that two

7

1 Introduction

circular genomes are equivalent if one is the cyclic shifted version or the reflection
of the other). It has been proven in [MWD00] that for each reversal that affects the
boundary element, there exists an equivalent reversal that does not affect it. Hartman
and Sharan have shown that this also holds for transpositions [HS06], and the proof
can easily be adjusted to block interchanges. For inverted transpositions, this only
holds if the inverted segment does not contain the boundary element. Otherwise, the
operation is equivalent to an operation called revrev, which consists of two reversals of
consecutive segments [HS05]. In other words, the transformation works as long as we
only use reversals, transpositions, and block interchanges. If also inverted transpositions
are allowed, we also have to allow revrevs in the linear problem.
Note that, due to the use of circular genomes, the distance formulas in the following
chapters may vary by 1 from the distance formulas from the original papers, i.e., we
always provide the distance formulas for circular genomes.

1.2.4 The breakpoint graph

Most genome rearrangement algorithms rely on the breakpoint graph, which has first been
introduced by Bafna and Pevzner [BP93]1 for genome rearrangement problems between
two permutations π and ρ (i.e., both genomes contain each element in Σn = {1, . . . , n}
exactly once). We will use a presentation similar to the one proposed in [SM97], which
is more convenient for circular genomes. The breakpoint graph BG(π, ρ) = (V,Eπ ∪Eρ)
is an edge-colored multigraph (i.e., it may contain parallel edges) which visualizes the
neighborhood relations of the elements in both π and ρ, and is defined as follows.

1. The set of nodes consists of all extremities of the genomes, i.e., V = {1t, 1h, . . . ,
nt, nh}. The ordering of the elements in π defines an ordering of the nodes, i.e.,
we can compare two nodes by the < operator. If we say that a node u is left (or
right) of another node v, we mean that u < v (or v < u). The position of a node
v (denoted by pos(v)) is its position in this ordering, beginning with 0. When
visualizing the breakpoint graph, its nodes are normally written counterclockwise
ordered on a circle.

2. The set of black edges Eπ consists of the neighborhood relation in π, i.e.,

Eπ = {(u, v) | u, v are adjacent in π and are not co-elements}.

3. Analogously, the set of gray edges Eρ consists of the neighborhood relation in ρ,
i.e.,

Eρ = {(u, v) | u, v are adjacent in ρ and are not co-elements}.

An example of a breakpoint graph can be seen in Fig. 1.2. Two edges (u, v) and (x, y)

1A more comprehensive version of this paper appeared as [BP96].

8

1.2 Preliminaries

7t 7h

3t 3h

1h

1t

6t

6h

5h

5t

2h

2t

4t

4h 8h

01

2

3

4

5

6

7

8t
14

15

98

10

11

12

13

Figure 1.2: The breakpoint graph of π = (
←−
7
←−
4
−→
2
−→
5
−→
3
←−
1
←−
6
−→
8) and

ρ = (
−→
1
−→
2
−→
3
−→
4
−→
5
−→
6
−→
7
−→
8). The black labels are the node labels, the gray

numbers are the positions of the nodes.

(with u < v and x < y) are intersecting if u < x < v < y or x < u < y < v. Note that,
due to the ordering of the nodes, only gray edges can intersect. As each node is incident
to exactly one black and one gray edge, the breakpoint graph decomposes into cycles.
Two cycles c1 and c2 intersect if there is a gray edge in c1 which intersects with a gray
edge in c2. The length of a cycle `(c) is the number of its black edges (or equivalently,
gray edges). A cycle of length k is called a k-cycle. If k ≤ 2, the cycle is a short cycle,
otherwise it is a long cycle. If k is odd, the cycle is an odd cycle, otherwise it is an
even cycle. The number of odd cycles in BG(π, ρ) is denoted by codd(π, ρ), the number
of even cycles is denoted by ceven(π, ρ). The overall number of cycles in BG(π, ρ) is
denoted by c(π, ρ). It is often convenient to describe an operation by its effects on
the breakpoint graph. As operations change the neighborhood relations in π, its main
effect on the breakpoint graph is that some black edges are cut, and some new black
edges may be inserted. We say that the operation acts on these edges.
Sometimes, it is advantageous to just consider a subgraph of the breakpoint graph
(e.g., a single cycle). Such a subgraph is called a configuration of the breakpoint graph.
To distinguish a configuration from the whole breakpoint graph, we draw its nodes on
a straight line instead of on a circle.

9

1 Introduction

1.3 Genome rearrangement problems and distance measures

The following distance measures and genome rearrangement problems have been
extensively studied during the last decades. Note that all these problems were originally
stated for genomes without duplicates (i.e., permutations), and cannot easily be
extended to genomes with duplicates (except for the breakpoint distance).

• The breakpoint distance dbp(π, ρ) is the number of breakpoints of π w.r.t. ρ. It is
trivial to compute, and therefore has been proposed by Sankoff and Blanchette
to be used in the multiple genome rearrangement problem [SB98].

• The problem sorting by reversals (short SBR) is a genome rearrangement problem
where the only allowed operations are reversals, all weighted equally. That is, one
searches for a sorting sequence of a permutation π w.r.t. another permutation ρ,
such that the sequence consists solely of reversals and has minimal length. The
length of such a sequence is called the reversal distance drev(π, ρ). In other words,
drev(π, ρ) is the minimum number of reversals that is required to transform π
into ρ. The currently best algorithm for sorting by reversals has a running time
of O(n1.5) [TBS07, Han06], and the reversal distance can be computed in linear
time [BMY01, BMS04].

• The problem sorting by transpositions (short SBT) is a genome rearrangement
problem where the only allowed operations are transpositions, all weighted equally.
The corresponding distance measure is called the transposition distance dtp(π, ρ).
It is still unknown whether these problems can be solved in polynomial time, and
the currently best algorithm provides an approximation guarantee of 1.375 [EH06].

• In the problem sorting by weighted reversals and transpositions (short SBwRT),
the set of operations consists of reversals, transpositions, and inverted transposi-
tions. Reversals are weighted by wr, transpositions and inverted transpositions
are weighted by wt, where both values are fixed user-defined parameters. The
corresponding distance measure is called the weighted reversal and transposition
distance dwrt(π, ρ). SBwRT has been examined for different weight ratios wr : wt.
As each transposition can be replaced by 3 reversals, and each inverted transpo-
sition can be replaced by 2 reversals, SBwRT is equivalent to SBR if 3wr ≤ wt.
For other weight ratios, the complexity of the problem is still open, and only
approximation algorithms exist. For the weight ratio 1 : 2, Eriksen provided a
(1 + ε) approximation algorithm [Eri02]. Hartman and Sharan provided a 1.5-
approximation algorithm for the weight ratio 1 : 1 [HS05]. Bader and Ohlebusch
devised an algorithm that can guarantee an approximation ratio of 1.5 for any
weight ratio with wr ≤ wt ≤ 2wr [BO07]. For a more restricted version of the
problem, where inverted transpositions are excluded, Walter et al. [WDM98] as

10

1.4 Simple permutations

well as Lin and Xue [LX01] provided a 2-approximation algorithm for the weight
ratio 1 : 1.
The question of which weight ratio results in the biologically most realistic results
has been discussed in several works (see e.g. [BKS96, Eri03, Ber10, JA11]). How-
ever, the results also depend on the chosen algorithm (in [BKS96] and [Eri03],
the parameters are optimized for the software tool DERANGE II), and all works
consider only pairwise distances and not the effects on the multiple genome
rearrangement problem.
Because transpositions and inverted transpositions can remove more breakpoints
and create more cycles than reversals, a single transposition or inverted transpo-
sition can contribute more to the sorting scenario than a single reversal, therefore
these operations are generally favored if all operations are weighted equally. On
the other hand, if the weight ratio is 1 : 2 (wr : wt) and one uses Eriksen’s (1 + ε)-
approximation algorithm [Eri02], then the resulting sorting sequence consists
solely of reversals in most cases (note that transpositions are only required if the
breakpoint graph contains a hurdle, which is a rare event [Cap99]). In our opinion,
as reversals are observed more frequently in biology than transpositions, a weight
ratio that results in biologically meaningful sorting scenarios must therefore be
somewhere between 1 : 1 and 1 : 2 (wr : wt).

• The problem sorting by double cut and join (short SBDCJ) is a genome rear-
rangement problem where the only allowed operations are DCJs, all weighted
equally. The corresponding distance measure is called the double cut and join
distance ddcj(π, ρ). Both problems can be solved in linear time [YAF05, BMS06].

1.4 Simple permutations

One of the most important and best studied problems in comparative genomics is
SBR, where one searches for a minimum sequence of reversals that transforms a per-
mutation π into another permutation ρ. The first polynomial time algorithm for this
problem was presented by Hannenhalli and Pevzner in 1995 [HP95]2. The algorithm
was simplified several times [BH96, KST99], and the reversal distance problem (in
which one is only interested in the number of required reversals) can be solved in
linear time [BMY01, BMS04]. In 2004, Tannier and Sagot presented an algorithm
for SBR that has subquadratic time complexity [TS04] (the algorithm was later im-
proved by Tannier et al. [TBS07] and Han [Han06]). The algorithm of Hannenhalli
and Pevzner [HP99] as well as the original algorithm of Tannier and Sagot [TS04] first
transform π and ρ into equivalent simple permutations πsimple and ρsimple, such that
drev(πsimple, ρsimple) = drev(π, ρ) and BG(πsimple, ρsimple) only contains short cycles.

2A more comprehensive version of this paper appeared as [HP99].

11

1 Introduction

Then, they compute a sorting sequence of πsimple w.r.t. ρsimple. As final step, this sorting
sequence is transformed back into a sorting sequence of π w.r.t. ρ. In literature, there
are several algorithms for the transformation into simple permutations [HP99, BH96],
but all of them have at least quadratic time complexity (there is an unpublished
linear time algorithm by Tannier and Sagot which uses another technique than our
algorithm [TS07]). For the back transformation to get the sorting sequence of π w.r.t.
ρ, there is no algorithm that performs better than the naive approach, which has
a quadratic running time. Although Tannier et al. improved their algorithm such
that it does no longer require simple permutations [TBS07], a fast algorithm for the
transformation could be crucial for further investigations on genome rearrangements.
In Chapter 2, we show how two permutations can be transformed into their equiva-
lent simple permutations in linear time. Furthermore, we provide an O(n log n) time
algorithm to transform a sorting sequence on the simple permutations into a sorting
sequence on the original permutations. While the first algorithm is specific for SBR, the
second can be easily adjusted to any genome rearrangement algorithm that works on
simple permutations with padded elements, like the current state-of-the-art algorithms
for SBT [HS06, EH06] and SBwRT [HS05, BO07].

1.5 On median problems

Due to the increasing amount of sequenced genomes, the problem of reconstructing
phylogenetic trees based on these data is of great interest in computational biology. In
the so-called multiple genome rearrangement problem, one searches for a phylogenetic
tree describing the most “plausible” rearrangement scenario for multiple genomes.
Formally, given k genomes (the input genomes) and a distance measure d, find a tree
T with the k genomes as leaf nodes and assign ancestral genomes to internal nodes
of T such that the tree is optimal w.r.t. d, i.e., the sum of rearrangement distances
over all edges of the tree is minimal. If k = 3, i.e., one searches for a genome σ such
that the sum of the distances from σ to three given genomes is minimized, we speak
of the median problem, and an algorithm that tackles this problem (either exactly or
approximatively) is called a median solver. The median problem is the simplest form
of the multiple genome rearrangement problem, and median solvers are used in all
current state-of-the-art algorithms for the multiple genome rearrangement problem as
a subroutine. However, even this problem has been proven to be NP-complete for most
distance measures. In the context of comparative genomics, the median problem has
been intensively studied during the last decades for the following distance measures.

Breakpoint distance: The use of the breakpoint distance in the multiple genome
rearrangement problem was first proposed by Sankoff and Blanchette [SB98].
They showed that the breakpoint median problem (short BMP) is a special case of
the well-known traveling salesman problem (short TSP), and solved instances of

12

1.5 On median problems

the BMP by using an algorithm for the TSP. Because the breakpoint distance is
much easier to compute than the reversal distance, their software tool BPAnalysis
could solve much larger instances than other approaches which tried to solve the
RMP at that time. However, despite of the fact that most instances of the BMP
can be solved very fast in practice, it was shown by Pe’er and Shamir that the
BMP is NP-complete [PS98].

Reversal distance: Although the reversal distance can be computed in linear time
[BMY01], its structure is more complex than the one of the breakpoint dis-
tance, making it much harder to find convenient algorithms for the reversal
median problem (short RMP). The first attempt to solve the RMP was done
by Hannenhalli et al. [HCKP95]. Their approach used an exhaustive search
over a bounded search space, and therefore was limited to relatively close re-
lated genomes. Sankoff et al. [SSK96] used a heuristic algorithm, which allowed
them to compute the median of more distant genomes. Still, this approach
was very limited, and both approaches mentioned above “have been little used
because of the computational difficulty in generalizing measures of genomic
distance to more than two genomes” [SB98]. The breakthrough of the reversal
median versus the breakpoint median was due to the exact algorithms by Siepel
and Moret [SM01] and Caprara [Cap03], although it could be proven that the
RMP is NP-complete [Cap03]. Today, almost all state-of-the-art algorithms for
phylogenetic reconstruction based on the reversal distance use either Siepel’s
algorithm [MSTL02] or Caprara’s algorithm [MSTL02, BAO08, BMM07] as a
subroutine, where GRAPPA (which provides both algorithms) recommends the use
of Caprara’s algorithm [MT04]. An exception is MGR [BP02], which uses its own
heuristic reversal median solver. There exist several speed improvements for this
algorithm [AT07, STTM09], however all at the cost of accuracy.

Transposition distance: As the complexity of the transposition distance is still open,
only few attempts to solve the transposition median problem (short TMP) can be
found in literature. Sankoff et al. [SSK96] used a heuristic algorithm that is based
on pairwise sorting scenarios, which were created by a greedy heuristic. A more
recent approach is implemented in GRAPPA-TP [YZT08], which uses an extension
of Siepel’s median solver [SM01] and solves pairwise distances by a fast heuristic.
Although it suggests itself from the results about the RMP that also the TMP is
NP-complete, no attempts to prove this conjecture can be found in literature.

Weighted reversal and transposition distance: To the best of our knowledge, the only
attempt to solve the weighted reversal and transposition median problem (short
wRTMP) was due to Hannenhalli et al. [HCKP95], who weighted both operations
equally. They used the same approach as for the RMP, but, due to the lack of an
exact algorithm for the pairwise distance, they had to use an exhaustive search

13

1 Introduction

to determine the bounds. Naturally, also this attempt was limited to very closely
related genomes. From a theoretical view, the NP-completeness of the problem
follows immediately from [Cap03] for the weight ratio wr : wt = 1 : 2. For other
weight ratios, the problem has not been examined so far.

DCJ distance: Due to the similar properties of the reversal distance and the DCJ
distance, Caprara’s proof of the NP-completeness of the RMP [Cap03] is still
valid for the DCJ median problem (this holds even for multichromosomal genomes,
see [TZS08]), and his reversal median solver can easily be transformed into a DCJ
median solver. Nowadays, almost all DCJ median solvers are based on Caprara’s
reversal median solver (an exception is [AS08]), and recent research has brought
up speed-ups for unichromosomal genomes [XS08, Xu09b] as well as extensions
to multichromosomal genomes [Xu09a, ZAT09].

In Chapter 3, we focus on median problems. The main results are a proof of the NP-
completeness of the TMP and an exact branch-and-bound algorithm for the wRTMP
and the TMP. Both results are an extension of Caprara’s work on the RMP in [Cap03].
As a byproduct, we also improve Christie’s exact algorithm for SBT [Chr98].

1.6 Phylogenetic reconstruction

The reconstruction of phylogenetic trees based on genome rearrangement motivated
distance measures is an important field of research in comparative genomics. The
algorithmic challenge is to find fast and accurate heuristics for the multiple genome
rearrangement problem, as stated in the last section, for an arbitrary number of input
genomes. During the last two decades, several approaches have been proposed, which
can be classified into two main strategies.

Strategy 1: First create a tree topology, then assign ancestral genomes to
internal nodes.
The first algorithm following this strategy was BPAnalysis [SB98], which iterated
over all possible tree topologies, used a heuristic for initially assigning ancestral
genomes to internal nodes, and then iteratively improved these genomes by using
a median algorithm for the breakpoint distance. Mainly due to the iteration over
all tree topologies, the algorithm was rather slow, therefore Cosner et al. replaced
this iteration by a heuristic called MPBE [CJM+00a, CJM+00b]. Moret et al.
provided a reimplementation of the original BPAnalysis algorithm called GRAPPA,
which, combined with a bounding strategy for selecting the tree topology, resulted
in a speed improvement of several orders of magnitude [MWB+01]. The algorithm
has been further improved [MTWW02, MSTL02, LTM05], the current version
GRAPPA 2.0 [MT] is using a reversal median solver instead of a breakpoint median
solver, and can easily be adapted to other distance measures [TMCd04, YZT07].

14

1.7 Genome rearrangements with duplications

However, the heuristic to create the tree topology is still based on the breakpoint
distance, and only a very recent paper provides a scoring method for tree topologies
which is based on the DCJ distance [XM10].

Strategy 2: Start with an empty tree, iteratively add the input genomes. In
each iteration step, immediately label any new internal node.
This strategy was first implemented in a software tool called MGR [BP02]. The
heuristic for adding a genome to the tree is based on a solver for the RMP, but
using other distances, like the reversal and translocation distance [BP02] or the
DCJ distance [AS08], is also possible. Bernt et al. improved MGR by making use of
the fact that the median of three genomes is not unique in most cases. By using a
heuristic for selecting one of the medians, their software tool amGRP outperforms
MGR in both accuracy and running time [BMM07].

In Chapter 4, we present a new algorithm for the multiple genome rearrangement
problem that tries to construct an optimal phylogenetic tree under the weighted
reversal and transposition distance. It consists of two phases, the construction and the
improvement phase. The construction phase follows Strategy 2. In contrast to previous
algorithms, no median solver is used in this phase, as solving instances of the wRTMP
takes much longer than solving instances of the RMP. In the improvement phase, we
use a median solver to improve the labelling of the internal nodes, as well as a new
algorithm that improves the tree topology.

1.7 Genome rearrangements with duplications

In the classical approach to genome rearrangement problems, each gene appears exactly
once in each genome, and operations cannot change the content of a genome. We call
these operations (like reversals, transpositions, or DCJs) classical operations. While
this approach leads to efficient algorithms, restricting the genes to be unique in each
genome does not reflect the biological reality very well. In most genomes that have
been studied, there are some genes that are present in two or more copies. This holds
especially for the genomes of plants, and one of the most prominent genomes is the
one of the flowering plant Arabidopsis thaliana, where large segments of the genome
have been duplicated (see e.g. [BBG+00]). There are various evolutionary events that
can change the content of the genome, like duplications of single genes, horizontal gene
transfer, or tandem duplications. For a nice overview in the context of comparative
genomics, see [San01].
In a pioneering work, Sankoff tackled the challenge of genomes with duplicated genes
with his “exemplar model” [San99], where the following problem was examined. Given
two genomes with duplicated genes, identify in both genomes the “true exemplars”
of each gene and remove all other genes, such that the rearrangement distance be-

15

1 Introduction

tween these modified genomes is minimized. This approach was later extended to the
“matching model”, where one searches for a maximum matching between the copies of
each gene such that the genome rearrangement distance according to this matching is
minimized [BCF04]. However, both approaches have been proven to be NP-hard for
the breakpoint distance and the reversal distance [Bry00, BCF04, CZF+05]. Note that
these approaches do not construct the evolutionary events that changed the genome
contents, i.e., the set of operations is still restricted to the set of classical operations. The
first approach that explicitly constructed duplication events was done by El-Mabrouk
[EM02], where one searches for a hypothetical ancestor with unique gene content, such
that the reversal and duplication distance from this ancestor to a given descendant
(with duplicated genes) is minimized. This work has been further extended during
the last years (see e.g. [BLEMG06, CZF+05, FCV+06]). Still, the duplications were
technically limited to have the length of one element, and therefore the algorithms
can only be applied if no large segmental duplication happened during evolution. One
idea to overcome this problem was to simulate duplications by insertions, as it has
been done in [EM01, MSM04, SMEDM08]. Recently, two new mathematical models
for a genome rearrangement based distance measure were proposed [YF08, LRSM10].
Both take classical operations as well as duplications of arbitrary length into account
([YF08] weights duplications by length, while [LRSM10] uses a threshold for the length
of a duplication). However, both models only provide a distance measure, and it is not
possible to efficiently calculate a corresponding sorting scenario. To the best of our
knowledge, the first work that allowed duplications of arbitrary segments was done by
Ozery-Flato and Shamir [OFS07], who demonstrated that a simple greedy algorithm
can find biologically realistic sorting scenarios for most karyotypes in the Mitelman
Database of Chromosome Abberations and Gene Fusions in Cancer [MJM10]. Further
simplifications of the model led to an algorithm with provable approximation ratio of 3
[OFS08] (note that the algorithm performs much better in practice).
In Chapter 5, we provide a heuristic algorithm for the following problem. Given an
ancestral genome ρ with unique gene content and the genome of a descendant π with
arbitrary gene content, find a shortest sorting sequence of ρ w.r.t. π. We first focus
on the unichromosomal case, where the set of operations consists of reversals, block
interchanges, tandem duplications, and deletions. Then, the approach is extended
to multichromosomal genomes. This extends the set of operations by translocations,
fusions, fissions, chromosome duplications, and chromosome deletions.

16

2 Simple Permutations

In this Chapter, we examine how we can transform forth and back between two
permutations and their equivalent simple permutations, which are important steps in
some algorithms from the literature (e.g. [HP99, TS04]).
The chapter is organized as follows. In Section 2.1, some fundamental definitions and
results from the literature are given. In Section 2.2, we provide a linear time algorithm
to transform two permutations π and ρ into their equivalent simple permutations
πsimple and ρsimple by padding elements to them. In Section 2.3, we show how a sorting
sequence of πsimple w.r.t. ρsimple can be transformed back into a sorting sequence of π
w.r.t. ρ, the running time of our algorithm is O(n log n). While the former algorithm is
specific for sorting by reversals, the latter can be adjusted to any genome rearrangement
algorithm that works with padded elements, like e.g. [HS06, EH06, HS05, BO07].

2.1 Fundamental definitions and results

Let (π, ρ) be an instance of a sorting by reversals problem, i.e., both π and ρ are
permutations of size n. The permutations π′ and ρ′ are called extended permutations
of π and ρ if they were obtained by padding k elements n+ 1, . . . , n+ k at arbitrary
positions in both π and ρ. In the extended permutations, the elements 1, . . . , n are called
original elements, whereas the elements n+ 1, . . . , n+ k are called padded elements.
If the breakpoint graph BG(π′, ρ′) contains only short cycles, π′ and ρ′ are called
simple permutations. If it further holds that drev(π

′, ρ′) = drev(π, ρ), we say that π′

and ρ′ are equivalent simple permutations of π and ρ. We also denote equivalent simple
permutations of π and ρ by πsimple and ρsimple. For an example, see Fig. 2.1(a).
In order to understand equivalent simple permutations, we need to know some details

about the reversal distance. A gray edge (u, v) in a breakpoint graph is oriented if
pos(v)− pos(u) is an even number, otherwise the edge is unoriented. A cycle is oriented

17

2 Simple Permutations

IG(πsimple, ρsimple)IG(π, ρ)

c1

c7

c1 c2

c2

c3

(b)

8h

8t

7t

7h

BG(πsimple, ρsimple)BG(π, ρ)

(a)

3h

4t

2h 2t

6h

4h

1t 3t

6t

5h 5t

1h

5h

2t

5t

4t

4h
1t 1h

2h

3t

3h

6t

6h

Figure 2.1: (a) The breakpoint graph of π = (
−→
5
−→
4
−→
1
←−
2
←−
3
−→
6) and

ρ = (
−→
1
−→
2
−→
3
−→
4
−→
5
−→
6), and the one of their equivalent simple permu-

tations πsimple = (
−→
5
←−
8
−→
7
−→
4
−→
1
←−
2
←−
3
−→
6) and ρsimple = (

−→
1
−→
7
−→
2
−→
8
−→
3
−→
4
−→
5
−→
6).

(b) The corresponding interleaving graphs. In the interleaving graphs,
cx denotes the cycle containing the node xt. According to Theorem 2.1,
drev(π, ρ) = drev(πsimple, ρsimple) = 4.

18

2.2 Transforming a permutation into its equivalent simple permutation

if it contains at least one oriented gray edge, or if its length is 1. Otherwise, the cycle
is unoriented. The interleaving graph IG(π, ρ) is a graph (V,E) with set of nodes

V = {c | c is a cycle in BG(π, ρ)}

and set of edges

E = {(ci, cj) | ci and cj are intersecting in BG(π, ρ)}.

Examples of interleaving graphs are depicted in Fig 2.1 (b).
In the context of sorting by reversals, a component is a connected component in IG(π, ρ)
in the graph theoretical manner, i.e., it is a set of nodes which are pairwise connected
by paths in IG(π, ρ). A component is oriented if it contains at least one oriented cycle,
otherwise it is unoriented. Hannenhalli and Pevzner defined some special structures that
depend on unoriented components, called hurdles and fortress (for details, see [HP99]).
With these structures, they were able to prove the following theorem.

Theorem 2.1. [HP99] The distance formula for the reversal distance is

drev(π, ρ) = n− c(π, ρ) + h(π, ρ) + f(π, ρ)

where h(π, ρ) is the number of hurdles in IG(π, ρ), and f(π, ρ) is the fortress indicator.

2.2 Transforming a permutation into its equivalent simple
permutation

Before we describe our algorithm, we have to introduce a canonical labeling of the
nodes and edges of the breakpoint graph, similar to the one in [Chr98]. Furthermore,
we review the definition and results about (b, g)-splits from [HP99]. Then, we are ready
to describe the data structures used for our algorithm, and the algorithm itself.

2.2.1 The canonical labeling of cycles

The algorithm performs several scanlines over the breakpoint graph which must start at
the left node of a black edge. As the original ordering of the nodes starts with the right
node of a black edge, we change the position of this node from 0 to 2n. That is, this
node is now the rightmost node and the node with position 1 is now the leftmost node
of the breakpoint graph. Note that this can be done without creating any conflicts,
because the “starting point” in a circular ordering can be chosen arbitrarily.
The canonical labeling of the nodes and edges of a cycle in the breakpoint graph is now
defined as follows. The leftmost node of a cycle (i.e., the one with the least position)
is labelled with v1. Then, we follow the black edge to node v2, then the gray edge to
node v3, and so on. The black edge from node v2i−1 to v2i is labelled by bi, the gray
edge from node v2i to node v2i+1 is labelled by gi. An example of such a labeling is
depicted in Fig. 2.2.

19

2 Simple Permutations

v1

v3

v6

v5

v9

v2

v4

b1

g1 g2
g3

b2 b3

v7 v8b4

g4 b5
g5

(10)

(11)

(6)

(8)

(9)

(1) (14)

(12)

v10

(2)

(4)

(7)

(13)

(3)

(5)

Figure 2.2: The canonical labeling of a cycle. The numbers in brackets are the node
positions.

2.2.2 (b, g)-splits

We first focus on the creation of simple permutations before we discuss the creation
of equivalent simple permutations. If BG0 := BG(π, ρ) contains a long cycle, it is
transformed into a new breakpoint graph BG1 by “breaking” this cycle into two smaller
ones. This step is repeated until the resulting breakpoint graph contains only short
cycles, i.e., we get a breakpoint graph BGk = BG(πk, ρk) such that πk and ρk are
simple permutations.
On the breakpoint graph, the “breaking of a cycle” can be described as follows. Let
b = (vb1, vb2) be a black edge and let g = (vg1, vg2) be a gray edge which belongs to
a cycle c = (. . . , vb1, vb2, . . . , vg1, vg2, . . .) in a breakpoint graph BGi−1. A (b, g)-split
produces a new breakpoint graph BGi which is obtained from BGi−1 as follows.

1. Remove the edges b and g.

2. Add two new nodes vxt with label (n+ i)t and vxh with label (n+ i)h.

3. Add two new black edges (vb1, vxt) and (vxh, vb2).

4. Add two new gray edges (vg1, vxh) and (vxt, vg2).

Two examples of such splits are illustrated in Fig. 2.3. As a result of the split the cycles
(. . . , vb1, vxt, vg2, . . .) and (. . . , vb2, vxh, vg1, . . .) are created.
In order to examine the effect of a (b, g)-split on the permutations, let πi−1 and ρi−1

be permutations of size n + i − 1 with BG(πi−1, ρi−1) = BGi−1. The permutations

20

2.2 Transforming a permutation into its equivalent simple permutation

2t

2h

1t

1h

3t3h

1h

5h 6h

6t

4h

4t

7t

7h2t

2h

1t

5t

3h

6t

3t

8t

8h
5t 5h

6h

4t

4h

7t

7h

(a)

2t

2h

1t

1h

3t3h

1h

5h 6h

6t

4h

4t

7t

7h2t

2h

1t

5t

3h

8h

3t

5t

5h
6h 6t

8t

4t

4h

7t

7h

(b)

Figure 2.3: Two (b, g)-splits on the permutations π = (
−→
3
−→
2
−→
1
−→
5
←−
6
←−
4
−→
7) and

ρ = (
−→
1
−→
2
−→
3
−→
4
−→
5
−→
6
−→
7). (a) The first split uses the edges b = (1h, 5t) and

g = (4t, 3h). In π, the element
−→
8 is placed between

−→
1 and

−→
5 . In ρ, the

element
−→
8 is placed between

−→
3 and

−→
4 . The split is unsafe, because it

creates a new hurdle. (b) The second split uses the edges b = (6t, 4h) and

g = (1h, 2t). In π, the element
−→
8 is placed between

←−
6 and

←−
4 . In ρ, the

element
←−
8 is placed between

−→
1 and

−→
2 . The split is safe, and does not

create any new components.

21

2 Simple Permutations

πi and ρi with BG(πi, ρi) = BGi are obtained by padding the element (n + i) into
πi−1 and ρi−1. In πi−1, the element is padded between the elements which induced the
black edge b in BGi−1, the orientation is chosen such that it induces the black edges
(vb1, vxt) and (vxh, vb2) in BGi. In ρi−1, the element is padded between the elements
that induced the gray edge g in BGi−1, the orientation is chosen such that it induces
the gray edges (vg1, vxh) and (vxt, vg2) in BGi.
A (b, g)-split is safe if b and g are non-incident, and the split does not create a new
hurdle, i.e., h(πi−1, ρi−1) = h(πi, ρi). The first condition ensures that we do not produce
a 1-cycle and a cycle with the same size as the old cycle. Because a split is acting on a
long cycle, the first condition is easy to achieve. The second condition ensures that the
distances drev(π

i−1, ρi−1) and drev(π
i, ρi) are equal (note that a split increases both

the size of the permutations and the number of cycles by one, and the fortress indicator
cannot be changed without changing the number of hurdles). The following lemma and
corollary show that to fulfill the second condition, it is sufficient to ensure that the
resulting cycles belong to the same component.

Lemma 2.2. [HP99] Let a (b, g)-split break a cycle c in BG(πi−1, ρi−1) into cycles c1
and c2 in BG(πi, ρi). Then c is oriented if and only if c1 or c2 is oriented.

In other words, if we do not split a component into two components, the orientation of
the component is not changed.

Corollary 2.3. Let a (b, g)-split break a cycle c in BG(πi−1, ρi−1) into cycles c1 and c2
in BG(πi, ρi), such that c1 and c2 belong to the same component. Then, h(πi−1, ρi−1) =
h(πi, ρi).

For a constructive proof of the existence of safe splits we need the following lemma.

Lemma 2.4. [HP99] For every gray edge g that does not belong to a 1-cycle, there
exists a gray edge f intersecting with g in BG(π, ρ). If c is a cycle in BG(π, ρ) and
f 6∈ c then f intersects with an even number of gray edges in c.

And for the linear time algorithm we need the following corollary.

Corollary 2.5. Let c be a cycle of length `(c) in BG(π, ρ) with gray edges g1 to g`(c).
If these gray edges are pairwise non-intersecting, then there exists an index j with
1 ≤ j < `(c) and a cycle c′ 6= c with a gray edge f , such that f intersects both gj
and g`(c).

Proof. As c has no pairwise intersecting gray edges, g`(c) does not intersect with another
gray edge of c. So Lemma 2.4 implies that g`(c) intersects with a gray edge f of another
cycle c′. Because f is not in c, it intersects with an even number of gray edges in c.
It follows that f intersects with at least one more gray edge gj (with 1 ≤ j < `(c))
of c.

22

2.2 Transforming a permutation into its equivalent simple permutation

Algorithm 2.1 (b, g)-split

1: function bg-split(b = (vb1, vb2), g = (vg1, vg2))
2: create new nodes (n+ 1)t, (n+ 1)h
3: vb1.black = (n+ 1)t; vb2.black = (n+ 1)h {adjust black and gray edges}
4: (n+ 1)t.black = vb1; (n+ 1)h.black = vb2
5: vg1.gray = (n+ 1)h; vg2.gray = (n+ 1)t
6: (n+ 1)t.gray = vg1; (n+ 1)h.gray = vg2
7: (n+ 1)t.position = vb2.position; (n+ 1)h.position = vb1 {write positions}
8: numCycles = numCycles+ 1 {update cycle information}
9: for all vx in new short cycle do

10: vx.cycle = numCycles

Theorem 2.6. [HP99] If c is a long cycle in BG(π, ρ), then there exists a safe (b, g)-
split acting on a black and a gray edge of c.

The proof given in [HP99] is constructive. However, the construction cannot trans-
form the whole permutation into a simple permutation in linear time. Therefore, in
Section 2.2.4, we provide an algorithm that achieves this goal.

2.2.3 The data structure

We represent the breakpoint graph as a linked list of 2n nodes. The data structure node
for each node v consists of the three pointers black (pointing to the node connected
with v by a black edge), gray (pointing to the node connected with v by a gray edge),
and co element (pointing to the co-element of v), and the two variables position (the
position of the node in the breakpoint graph) and cycle (the index of the cycle where
the node belongs to; the cycle indices can be arbitrary but must be consistent, i.e.,
the value of cycle of two nodes is equal if and only if they belong to the same cycle).
We can initialize this data structure for every permutation in linear time. First, the
initialization of black, co element, and position can be done with a scan through
the permutation. Second, for the initialization of gray we need the inverse permutation
(mapping the nodes ordered by their label to their position) which can also be generated
in linear time. Finally, we can initialize cycle by following the black and gray edges
which also takes linear time.
Given a black edge b = (vb1, vb2) and a gray edge g = (vg1, vg2), a (b, g)-split can

be performed in constant time (see Algorithm 2.1) if we assume that the split cycle
contains a constant number of nodes, and disregard the problem that we have to update
position for the new nodes and for all nodes that lie to the right of vb2. Since our
algorithm only uses (b, g)-splits to split 2-cycles from long cycles, the first condition is
fulfilled. Furthermore, position is only required to determine if two edges of the same
cycle intersect, thus it is sufficient if the relative positions of the nodes of each cycle

23

2 Simple Permutations

are correct, i.e., it must only hold that v.position < w.position if v < w and both
nodes belong to the same cycle. This information can be maintained in linear time if
we set the positions of the new nodes vxt and vxh to the positions of the old nodes
vb1 and vb2 which are now non-incident to vxt or vxh. After performing all splits, the
breakpoint graph can easily be transformed into the simple permutations by following
co-element pointers and black edges (for πsimple) or gray edges (for ρsimple).

2.2.4 The algorithm

We now tackle the problem of transforming two permutations π and ρ into their
equivalent simple permutations πsimple and ρsimple in linear time. The algorithm has
two processing phases.

Phase 1

Our goal in the first phase is to create short cycles or cycles that have no intersecting
gray edges. We achieve this goal with a scanline algorithm. The algorithm requires
two additional arrays: left[j] stores the leftmost node of each cycle cj (i.e., the one
with the least position), and next[j] stores the right node of the gray edge of cycle cj
which is currently checked for intersections. In both arrays, all variables are initialized
with UNDEF. In the following, vs denotes the current position of the scanline. Before we
describe the algorithm, we first provide an invariant for the scanline.

Invariant: If gi = (vg1, vg2) is a gray edge of the long cycle c with i < `(c), and both
nodes of gi lie to the left of vs (i.e., vg1 < vs and vg2 < vs), then gi does not intersect
with any other gray edge of c.

It is clear that a cycle c has no intersecting edges if the invariant holds and the scanline
passed the rightmost node of cj , because g`(c) does also not intersect with a gray edge
of c as the intersection relation is symmetric. Since vs is initialized with the leftmost
node of BG(π, ρ), the invariant holds in the beginning. While the scanline has not
reached the rightmost node, we repeat to analyze the following cases.

Case 1.1 vs is part of a short cycle.
We move the scanline to the left node of the next black edge. As the invariant
only considers long cycles, the invariant is certainly preserved.

Case 1.2 vs is part of a long cycle cj and next[j] = UNDEF.
That is, vs is the leftmost node of cycle cj . So we set left[j] = vs. To check
whether g1 = (v2, v3) intersects with another gray edge, we store the right node
of g1 (i.e., v3) in next[j] and move vs to the left node of the next black edge.
Both nodes passed by the scanline (i.e., v1 and v2) are the left nodes of a gray

24

2.2 Transforming a permutation into its equivalent simple permutation

edge, so the set of gray edges which are located completely to the left of vs is not
changed and the invariant is preserved.

Case 1.3 vs is part of a long cycle cj and next[j] 6= vs.
Let next[j] be the node v2k+1, i.e., we check for a gray edge that intersects with
gk (going from node v2k to node v2k+1). Since v1 < v2k < vs < v2k+1, there must
be a gray edge gm belonging to cj that intersects with gk. We now distinguish
three cases:

(a) gk is not g1 (see Fig. 2.4).
We perform a (b, g)-split with b = bk+1 and g = gk−1. That is, we split the
2-cycle (v2k, v2k+1, vxt, v2k−1) from cj . This split is safe since gk now lies
in the 2-cycle that still intersects with gm, which belongs to cj , i.e., the
component has not been split. The right node of the new edge gk−1 in cj is
vxh, so we adjust next[j] to vxh.

(b) gk is g1 and gk intersects with g`(cj) (see Fig. 2.5).
We perform a (b, g)-split with b = b1 and g = g2. That is, we split the
2-cycle (v2, v3, v4, vxh) from cj . This split is safe since g1 now lies in the
2-cycle that still intersects with g`(cj), which belongs to cj . After the split,
g1 = (vxt, v5), so we set next[j] = v5. Note that v5 cannot be left of vs, as
vs is the leftmost node that belongs to cj and has an index ≥ 4.

(c) gk is g1 and gk does not intersect with g`(cj) (see Fig. 2.6).
It follows that gm 6= g`(cj). We perform a (b, g)-split with b = b2 and
g = g`(cj). That is, we split the 2-cycle (v2, v3, vxt, v1) from cj . This split
is safe since g1 now lies in the 2-cycle that still intersects with gm. As the
old leftmost node and black edge of cj lie in the 2-cycle we set next[j] =

UNDEF which forces the re-initialization of left[j] with vs.

In all of these cases, we do not create a gray edge that is located completely to
the left of vs, so the invariant is preserved.

Case 1.4 vs is part of a long cycle cj and next[j] = vs.
That is, we reach the right node of a gray edge gk. It follows that gk does not
intersect with any other gray edge of cj since we have not detected a node of cj
between the left and right node of gk. Thus moving vs to the right preserves the
invariant. The next gray edge to check is gk+1 = (v2(k+1), v2(k+1)+1), so we set
next[j] to the right node of bk+1 and move vs to the left node of the next black
edge.

25

2 Simple Permutations

v1 v3 v5

g1 g2

b3

v2 v4 v6 v1 v3v2 v4

gmgm

v6vxhvxtvs vs v5

(a)

v1 v3 v5

g1

b3

v2 v4 v6 v1 v3 v5v2 v4

gmgm

v6vxtvxh

g2

vs vs

(b)

Figure 2.4: The (b, g)-split of Case 1.3(a) where gk = g2 intersects with gm and (a) is
unoriented or (b) is oriented.

v1 vs v3v2 v`(cj) v4 v1

g1

v2vxhvxt v3 v4

g`(cj)
g`(cj)

g2

vs v`(cj)

g1

b1

(a)

v1 vs v4v2 v`(cj) v3 v1 v2vxhvxt v4 v3

g`(cj)
g`(cj)

vs v`(cj)

g1
g2

g1

b1

(b)

Figure 2.5: The (b, g)-split of Case 1.3(b) where gk = g1 intersects with gm = g`(cj) and

(a) is unoriented or (b) is oriented.

26

2.2 Transforming a permutation into its equivalent simple permutation

v1 vsv2 v1 v2

g`(cj)

v3 vxt

g1 gm

v3 v4

g1

v4vxhvs

g`(cj)

gm
b2

(a)

v1 vsv2 v1 v2 v4 vxhv4 v3 v3vxtvs

g`(cj) g1
gmgm

g1

b2

(b)

Figure 2.6: The (b, g)-split of Case 1.3(c) where gk = g1 intersects with gm 6= g`(cj) and

(a) is unoriented or (b) is oriented.

Phase 2

After Phase 1 we can assure that there remain only short cycles and long cycles with
pairwise non-intersecting gray edges. These long cycles have a special structure. The
positions of the nodes v1, . . . , v2`(c) of a cycle c are strictly increasing and so the first
`(c)−1 gray edges gi lie one after another, and g`(c) connects the rightmost and leftmost
node of c. As we know from Corollary 2.5 there exists a gray edge f of a cycle c′ 6= c
that intersects with g`(c) and another gray edge gk of c. In order to find for all cycles
cj such an edge fj in linear time, we use a stack based algorithm. For each cycle cj ,
Icj is the interval from the leftmost node to the rightmost node in cj (in this phase
of the algorithm, this is equivalent to the nodes of its edge g`(cj)). In each step of the
algorithm, we maintain a stack of these intervals, such that each interval is contained in
all other intervals that are below it on the stack (i.e., the topmost interval is contained
in all other intervals on the stack). We scan the breakpoint graph from left to right.
For each node v, we check whether its gray edge f = (v, w) intersects with the topmost
interval Icj of the stack. If so, we report the intersecting edges f and g`(cj), pop Icj
from the stack, check whether f intersects with the new top interval, and so on, until
f does not intersect with the top interval. As the top interval is contained in all other
intervals of the stack and Lemma 2.4 ensures that we find an intersecting edge before
we reach the right end of the interval, f cannot intersect with any other interval on
the stack. If v is the leftmost node of a cycle cj , we push Icj on the stack (note that

27

2 Simple Permutations

this interval is equivalent to the gray edge g`(cj), so it does not intersect with the
topmost interval and is therefore contained in it). In all cases, we continue by moving
the scanline one node to the right. The algorithm stops when we have reached the
rightmost node. During the algorithm, we push the interval Icj of each cycle cj on the
stack, and pop this cycle when we reach a node v in Ij such that the gray edge (u, v)
intersects with Icj . As this node must exist for each cycle, we find for each cycle cj an
edge that interleaves with g`(cj).
Once we have found an edge fj that intersects with the edge g`(cj) of cycle cj , we have
to find another edge gk of cycle cj that intersects with fj . This can be done by a scan
over all gray edges of cj . After determining these edges for all cycles, we distinguish
two cases for a safe (b, g)-split:

Case 2.1 gk 6= g`(cj)−1 (see Fig. 2.7(a)).
We perform the (b, g)-split on cj with b = b1 and g = g`(cj)−1. This splits cj into
c1 = (v1, vxt, v2`(cj)−1, v2`(cj)) and c2 = (vxh, v2, . . . , v2`(cj)−2). As fj intersects
with g`(cj), which is now part of c1, and gk, which is now part of c2, the component
structure remains the same.

Case 2.2 gk = g`(cj)−1 (see Fig. 2.7(b)).
We perform the (b, g)-split on cj with b = b`(cj) and g = g1. This splits cj into
c1 = (v1, v2, vxh, v2`(cj)) and c2 = (vxt, v3, v4, . . . , v2`(cj)−1). As fj intersects with
g`(cj), which is now part of c1, and gk, which is now part of c2, the component
structure remains the same.

In both cases, gk is in cycle c2 after the split, and fj intersects with both gk and the
new gray edge g`(c2). Thus we do not have to recalculate the edge gk, and can repeat
this step on c2 until the remaining cycles are all 2-cycles.

Time complexity

In Phase 1, each step either moves the scanline further to the right (Cases 1.1, 1.2,
and 1.4) or performs a (b, g)-split (Case 1.3). As at most n splits are required, and the
resulting breakpoint graph has at most 2n black edges, we have to perform at most 3n
steps. Each step can be performed in constant time, thus Phase 1 has linear running
time. In Phase 2, the stack based algorithm to find the edges fj pushes and pops
each interval Icj exactly once on the stack, so these are O(n) operations. Additionally,
there are n gray edges checked for intersections, so this can also be done in linear

time. Finding the edges gk which intersect with the fj takes
∑c(π,ρ)

j=1 `(cj) = O(n) time.
Again, at most n (b, g)-splits must be performed, so the overall running time of Phase 2
is O(n), and therefore the whole algorithm has a linear running time.

28

2.3 Transforming back the simple permutation

v1 v2 v1

g`(cj)g`(cj)

g1 g`(cj)−1

f f

v2vxt vxh v2`(cj)v2`(cj)

b1

g`(c2)

(a)

v1 v2 v1

g`(cj)g`(cj)

g1

f

v2`(cj)v2`(cj)

f

vxt vxhv2

b`(cj)

g`(c2)

(b)

Figure 2.7: The (b, g)-split of (a) Case 2.1 and (b) Case 2.2.

2.3 Transforming back the simple permutation

In the previous section, we have shown how permutations π and ρ can be transformed
into equivalent simple permutations πsimple and ρsimple. After a sorting sequence of
πsimple w.r.t. ρsimple has been found, the remaining step is to transform it into a
sorting sequence of π w.r.t. ρ. If one implements the algorithm of Hannenhalli and
Pevzner [HP99] or Tannier and Sagot [TS04], the easiest way to specify a reversal is by
its boundary elements. Thus, in the following, we assume that the reversals on πsimple
are specified by their boundary elements and not by their positions. At the end of this
section, we show that calculating the position of an element and vice versa can be
done in logarithmic time with our data structure, which is fast enough to maintain
the overall time complexity O(n log n) of the algorithm. In fact, we can simplify our
data structure if the reversals on the simple permutations are specified by positions on
πsimple.
In the naive approach, if we have a reversal rev(x, y) on πsimple (where x and y are
the boundary elements), we would scan πsimple beginning at x and y up to the next
elements that are original elements. Then we must determine the position of these
elements in π. As each of these operations requires O(n) steps and n+ 1 reversals must
be performed in the worst case (i.e., the reversal diameter for circular permutations
is n + 1, see [MWD00]), the whole algorithm would have quadratic running time.
Thus, we now describe a data structure that supports the following two operations in
logarithmic time. (1) Transform a reversal on πsimple into the corresponding reversal

29

2 Simple Permutations

on π in O(log n) time, and (2) update the data structure after a reversal. This allows
us to transform a sorting sequence of πsimple w.r.t. ρsimple into a sorting sequence of π
w.r.t. ρ in O(n log n) time.

2.3.1 The data structure

The data structure is based on balanced binary search trees (short BBS trees), like splay
trees, 2-3 trees, AVL trees, and red-black trees. The height of these trees is logarithmic
in the number of their nodes, and they support concatenation of two trees and split
into two trees in logarithmic time (for details on these algorithms, see [Cra72, Knu98]).
In our examples, we use red-black trees (see e.g. [CLRS01]).
Let π̃1, . . . , π̃n be the elements in πsimple that correspond to the elements in π, i.e.,
the original elements. For 1 ≤ i < n, let Ii be the interval of padded elements that lie
between π̃i and π̃i+1 in πsimple. In is the interval of padded elements that lie between π̃n
and π̃1. Thus we can write πsimple = (π̃1 I1 π̃2 I2 . . . π̃n−1 In−1 π̃n In). Note that each
of these intervals may also be empty. During the algorithm, the positions of original
elements and intervals will change, but original elements and intervals will always be
alternating.
For each interval Ii, the order of its elements is stored in a BBS tree Ti. Each element
in Ii is linked to a node in Ti. Additionally, each node in the tree has an orientation
flag that indicates whether the subtree is inverted (i.e., we first have to read the right
subtree in inverted order, then the element of the current node as inverted element,
then the left subtree in inverted order) or not. This allows us to make a reversal of a
whole subtree by just changing one flag. The real orientation of a node depends on
its own orientation flag and the orientation flags of all its ancestors, i.e., if both the
root node and its child node have a negative orientation flag, then the child node has a
positive orientation.
The alternating order of intervals and original elements is stored in a further tree
Tπ, i.e., the nodes of this tree are either an original element or an interval of padded
elements Ii. Each root node of a tree Ti is linked to the node Ii in Tπ (see Fig. 2.8 for
an example). For Tπ, we use an order-statistics tree, which is a BBS tree where each
node also stores the number of elements in its left and right subtree. Thus one can get
the position of an element by a bottom-up traversal in logarithmic time. As original
elements and intervals of padded elements are alternating in this tree, we can easily
calculate the position of an original element in π if we know its position in Tπ. Also in
this tree, each node has the orientation flag, as described for the trees Ti.
The tree Tπ is very similar to the tree proposed by Kaplan and Verbin for maintaining
a permutation [KV03], with the difference that in their tree, each node corresponds to
one element in the permutation, whereas the nodes in our tree either correspond to an
original element or to an interval of padded elements. We will now show how we can
efficiently perform the two operations on the data structure.

30

2.3 Transforming back the simple permutation

7,−

1,+ 3,+

T1

4,−

Tπ

5,+

6,+

I1,− I3,+

2,+

I4,+I2,−

Figure 2.8: The data structure for πsimple = (
−→
5
←−
3
←−
7
←−
1
←−
4
−→
6
−→
2), where 3, 7, and 1

are padded elements. The orientation of the nodes is indicated by the sign
after its label. All interval trees except for T1 are empty. Note that the
negation of all elements in T1 is done by an odd number of minus signs
(namely 3) on the path from the nodes to the root of Tπ.

2.3.2 Transforming a reversal on πsimple into a reversal on π

If there is a reversal on πsimple that is bounded by the elements x and y (lying in Ix
and Iy), we traverse the corresponding trees Tx and Ty bottom-up, beginning at the
corresponding nodes. This leads to two nodes in Tπ, and we can also traverse this tree
bottom-up to get the positions of the nodes in Tπ (of course, if one of x and y is an
original element, we start the tree traversal for this element directly in Tπ). Having
these positions, it is easy to transform them into the corresponding positions in π. As
the depth of the trees is logarithmic in their size and therefore in n, this task can be
done in O(log n) time.

31

2 Simple Permutations

2.3.3 Update of the data structure

Let us assume that there is a reversal bounded by the two padded elements x and
y, where x lies in Ix, and y lies in Iy. W.l.o.g. Ix comes before Iy in the current
permutation (otherwise the same effect can be achieved by inverting the segment from
y to x and changing the sign of the root node of Tπ). The reversal causes the following
changes on the interval trees. If an interval Iz lies between Ix and Iy, the whole interval
is inverted, i.e., the orientation flag on the root node of Tz must be changed. We cannot
do this directly for each tree Tz as there are O(n) trees in the worst case, but we can
manage this by inverting the appropriate nodes in Tπ, as we will show later (i.e., the
orientation of interval Iz does not only depend on the orientation flag at the root node
of Tz but also on the orientation flags on the path from Iz to the root node in Tπ).
Next, we split Tx into two trees T ′x and T̂x. Tree T ′x contains the elements of Ix that are
not involved in the reversal, whereas T̂x contains those that are involved. Analogously,
we split Ty into the trees T̂y (containing the elements of Iy that are involved in the
reversal) and T ′y (containing the elements that are not involved). Now, we invert the

orientation flag of the root nodes of T̂x and T̂y (this means an inversion of all elements
in these trees), and concatenate T ′x and T̂y (resulting in the updated tree Tx) as well
as T̂x and T ′y (resulting in the updated tree Ty). Note that the split and concatenation
operations require only logarithmic time. Updating Tπ works analogously, except that
we have to split the tree into three trees Tl (left of inverted region), Tc (inverted region),
and Tr (right of inverted region). Again, we invert the orientation flag at the root node
of Tc, and merge the trees into the updated tree Tπ. Note that this also affects the
orientation of all intervals Iz that lie completely in the inverted region, as mentioned
above.
We have described the algorithm for reversals that are bounded by two padded elements.
If one of the bounding elements is an original element, the algorithm becomes even
easier - we do not have to split the corresponding interval tree, everything else remains
the same. For an example, see Fig. 2.9.
As mentioned above, we assumed that reversals on πsimple are specified by their
boundary elements, because this is the most convenient way to implement the algorithm
devised in [TS04]. If the reversals are specified in the usual way (i.e., by their positions),
our algorithm still works, as we can get the corresponding elements with a top-down
traversal of Tπ. In fact, in this case we even do not need the interval trees Ti, it is
sufficient to store the size of the intervals, which simplifies the algorithm.

32

2.3 Transforming back the simple permutation

I3,+

Tr

7,+

7,+

(a)

(b)

6,+

I2,−

Tc

T̂1
1,−

I3,−

Tπ

1,+
T3

3,−
T1

T ′1
3,−

Tl
2,+

I4,+

4,−

Î1,−

I2,−

I1,−

6,−4,+ 2,+ 5,+

I4,+

5,+

I ′1,+

Figure 2.9: The effect of inverting the segment
←−
1
←−
4
−→
6 in the example permutation of

Fig. 2.8. (a) Tπ is split into three trees Tl, Tc, and Tr. (b) The orientation
flag of the root node of Tc is switched and the trees are merged, resulting in
the updated tree Tπ. Note that the orientation of a node depends on its own
sign as well as on the signs of all its ancestors, e.g., the element 7 is inverted
in the resulting permutation, as there are an odd number (namely 3) of
minus signs on the path from the root node of Tπ to node 7 in T1. Also
the ordering of the children depends on the sign of a node, e.g., I1 comes
before I3 in the resulting permutation, as the root node I2 has negative
orientation.

33

3 On Median Problems

In this chapter, we prove the NP-completeness of the transposition median problem
and the weighted reversal and transposition median problem for the weight ratios 1 : 1
and 1 : 2 (wr : wt). Furthermore, we describe a branch-and-bound algorithm to solve
these problems exactly.
The chapter is organized as follows. In Section 3.1, some fundamental definitions and
results from the literature are given. In Section 3.2, we prove the NP-completeness of
the TMP. The proof is an extension of Caprara’s proof of the NP-completeness of the
RMP [Cap03]. The NP-completeness of the wRTMP follows directly from Caprara’s
proof for the weight ratio 1 : 2, and from our proof for the weight ratio 1 : 1. In
Section 3.3, we provide an exact branch-and-bound algorithm for the TMP and the
wRTMP that is fast enough to be used in practice. As a byproduct, this also includes
an improved exact algorithm for the corresponding pairwise distances. In Section 3.4,
possible extensions and open problems related to the results are discussed.

3.1 Fundamental definitions and results

In the weighted reversal and transposition median problem (short wRTMP), the input
consists of three permutations π1, π2, and π3. For an arbitrary permutation ρ, the
value γwrt(ρ) =

∑3
i=1 dwrt(ρ, π

i) is called its solution value. The wRTMP now asks for
a permutation τ such that its solution value γwrt(τ) is minimized. The transposition
median problem (short TMP) is defined analogously, with the difference that the
solution value is defined by γtp(ρ) =

∑3
i=1 dtp(ρ, π

i). Furthermore, as a transposition
can never change the orientation of an element, the given permutations as well as τ
must consist solely of elements with positive orientation.
In order to examine the TMP and the wRTMP, strong bounds for the corresponding
pairwise distances are required. These bounds are provided by the following lemmata.

35

3 On Median Problems

Lemma 3.1. [BP98, BO07] A lower bound lbtp(ρ, π) for the transposition distance
dtp(ρ, π) can be defined as follows.

dtp(ρ, π) ≥ lbtp(ρ, π), where lbtp(ρ, π) :=
n− codd(ρ, π)

2

A lower bound lbwrt(ρ, π) for the weighted reversal and transposition distance dwrt(ρ, π)
can be defined as follows.

dwrt(ρ, π) ≥ lbwrt(ρ, π), where lbwrt(ρ, π) := (n−(codd(ρ, π)+(2− 2wr
wt

)ceven(ρ, π)))
wt
2

Lemma 3.2. [BP98, BO07] An upper bound ubtp(ρ, π) for the transposition distance
dtp(ρ, π) can be defined as follows.

dtp(ρ, π) ≤ ubtp(ρ, π), where ubtp(ρ, π) := 1.5 · lbtp(ρ, π)

An upper bound ubwrt(ρ, π) for the weighted reversal and transposition distance dwrt(ρ, π)
can be defined as follows.

dwrt(ρ, π) ≤ ubwrt(ρ, π), where lbwrt(ρ, π) := 1.5 · lbwrt(ρ, π)

In practice, the lower bounds are very tight in the majority of cases. This motivates
the definition of the weighted cycle median problem (short wCMP) and the odd cycle
median problem (short oCMP). Given three permutations π1, π2, and π3, and two
weights wodd and weven, the wCMP asks for a permutation τ such that its solution
value γwc(τ) =

∑3
i=1(woddcodd(τ, π

i) +wevenceven(τ, πi)) is maximized. It is easy to see
that τ minimizes

∑3
i=1 lbwrt(τ, π

i) if wodd = 1 and weven = 2 − 2wr
wt

. For the reasons
given in Section 1.3, we assume that wodd = 1 and 0 ≤ weven ≤ 1, which results in
wr ≤ wt ≤ 2wr. Analogously, the oCMP asks for a permutation τ that maximizes the
solution value γoc(τ) =

∑3
i=1 codd(τ, π

i). As the orientation of an element can never
change in SBT, we further demand in the oCMP that all elements in π1, π2, π3 as well
as in τ have a positive orientation.
An input triple (π1, π2, π3) is also called an instance of the corresponding problem, and
a permutation τ that minimizes (or maximizes) the solution value is called a solution
of the instance.
For the proof of the NP-completeness of the TMP, it is crucial to find permutations
ρ and π such that dtp(ρ, π) = lbtp(ρ, π). If this equation holds, we also say that ρ is
hurdle-free w.r.t. π. Although there is currently no efficient algorithm known to decide
whether a permutation ρ is hurdle-free w.r.t another permutation π in general, there
are some special cases that can easily be decided.

Lemma 3.3. Let ρ and π be two permutations. If there is a transposition tp(i, j, k)
such that codd(tp(i, j, k) · ρ, π)− codd(ρ, π) = 2 and tp(i, j, k) · ρ is hurdle-free w.r.t. π,
then also ρ is hurdle-free w.r.t. π.

36

3.1 Fundamental definitions and results

Proof.

lbtp(ρ, π) ≤ dtp(ρ, π)

≤ dtp(tp(i, j, k) · ρ, π) + 1

=
n− codd(tp(i, j, k) · ρ, π)

2
+ 1

=
n− codd(ρ, π)

2
= lbtp(ρ, π)

⇒ dtp(ρ, π) = lbtp(ρ, π)

Lemma 3.4. If the breakpoint graph of ρ and π contains only short cycles, then ρ is
hurdle-free w.r.t. π.

Proof. We prove this lemma by induction on the number of 2-cycles in the breakpoint
graph. If it contains only 1-cycles, then dtp(ρ, π) = 0, and ρ is clearly hurdle-free
w.r.t. π. Otherwise, according to [BP96], there are two consecutive transpositions that
transform two 2-cycles into four 1-cycles (note that the number of even cycles is always
even, see [Chr98]), i.e., both transpositions increase the number of odd cycles by 2.
As the resulting permutation is hurdle-free by induction hypothesis, the proposition
follows by applying Lemma 3.3 twice.

3.1.1 The multiple breakpoint graph

The key tool to examine median problems is the multiple breakpoint graph (short
MB graph), due to [Cap03]. It is an extension of the classical breakpoint graph, as
described in Section 1.2.4. Intuitively spoken, this graph represents the neighborhood
relations of an arbitrary number of permutations. Before we give a mathematical
definition of the MB graph, we first need some further definitions. Given a set of nodes
V = {1t, 1h, . . . , nt, nh}, a matching M of V is a set of edges such that each node in
V is endpoint of at most one edge in M . If each node in V is endpoint of exactly one
edge in M , the matching is called a perfect matching. The perfect matching associated
with a permutation π is defined by

M(π) = {(x, y) | x, y are adjacent in π and are not co-elements}

If a perfect matching M is associated with a permutation, i.e., M = M(π) for a
permutation π, then M is called a permutation matching. Given permutations π1, . . . , πq,
the MB graph MBG(π1, . . . , πq) = (V,E) is an edge colored multigraph (i.e., it can
contain parallel edges with common endpoints) with set of nodes V = {1t, 1h, . . . , nt, nh}

37

3 On Median Problems

1h 1t

3h

2t

2h

3t

4t

4h

Figure 3.1: The MB graph for π1 = (
−→
1
−→
2
−→
3
−→
4), π2 = (

−→
1
−→
2
−→
4
−→
3), and π3 = (

−→
1
−→
4
−→
3
−→
2).

The graph contains 2 odd red/green cycles, 2 odd green/blue cycles, and 2
even red/blue cycles.

and set of edges E = M(π1)∪· · ·∪M(πq), where the edges of M(πi) have color i. In the
following, let color 1 be red, let color 2 be green, and let color 3 be blue. For an example,
see Fig. 3.1. The edges of two permutation matchings M(πi) and M(πj) decompose the
MB graph into cycles, corresponding to the cycles in the breakpoint graph of πi and πj .
Thus, in order to solve the oCMP or wCMP, we draw the MB graph MBG(π1, π2, π3)
and search for a permutation matching M(τ) such that the corresponding weighted
sum of cycles is maximized. Analogous to our previous definition, if M i and M j are
perfect matchings, codd(M

i,M j) and ceven(M i,M j) is the number of odd and even
cycles in (V,M i ∪M j). Note that this definition does not only apply to permutation
matchings, but to any perfect matching.
In order to decide whether a given matching is a permutation matching, consider the
perfect matching H = {(it, ih) | 1 ≤ i ≤ n}, called the base matching of the MB graph.

Lemma 3.5. [Cap03] A perfect matching M is a permutation matching if and only if
M ∪H defines a Hamiltonian cycle on the nodes of the MB graph (i.e., a cycle that
visits every node of the graph exactly once).

For a further examination of the MB graph, we need another important notion,
introduced in [Cap03]. Given a perfect matching M of a set of nodes V and an edge e =
(u, v), M/e is defined as follows. If e ∈M,M/e = M \{e}. Otherwise, letting (a, u), (b, v)
be the two edges in M incident to u and v, M/e = M \ {(a, u), (b, v)} ∪ {(a, b)}. Given
an MB graph G = (V,M(π1) ∪ · · · ∪M(πq)), the contraction of an edge e = (u, v)
yields the graph G/e = (V \ {u, v},M(π1)/e ∪ · · · ∪M(πq)/e). For an example, see
Fig. 3.2.

Lemma 3.6. [Cap03] Given two perfect matchings M,L of V and an edge e = (u, v) ∈
M with e 6∈ L, M ∪ L defines a Hamiltonian cycle of V if and only if (M/e) ∪ (L/e)
defines a Hamiltonian cycle of V \ {u, v}.

38

3.1 Fundamental definitions and results

1h

3h

2t

2h

3t

4t

1h 1t

3h

2t

2h

3t

4t

4h

Figure 3.2: The contraction of the edge (4h, 1t) in the left graph (dotted edge) yields
the right graph.

In the proof of the NP-completeness of the TMP in Section 3.2, we construct a graph
G and claim that this graph is isomorphic to an MB graph, i.e., the nodes of the graph
can be labeled such that there are permutations π1, . . . , πq with MBG(π1, . . . , πq) = G.
In order to prove this claim, the following lemmata are required. The first of them has
already been proven in [Cap03], except for the splitting of the set of nodes into V t and
V h, which is not required in the RMP.

Lemma 3.7. Let V t and V h be two disjoint sets of nodes, and let G = (V t∪V h,M1∪
M2∪· · ·∪M q) be an edge-colored graph, where each M i is a perfect matching, each edge
in M i has color i, and each edge connects a node in V t with a node in V h. Furthermore,
let H be a perfect matching such that each edge in H connects a node in V t with
a node in V h, and H ∪M i defines a Hamiltonian cycle of V t ∪ V h for 1 ≤ i ≤ q.
Then, there are permutations π1, . . . , πq such that G is isomorphic to the MB graph
MBG(π1, . . . , πq), and all elements in π1, . . . , πq have a positive orientation.

Proof. We give a constructive proof on how to create the permutations π1, . . . , πq

such that G is isomorphic to the MB graph MBG(π1, . . . , πq). For this, set n = |V t|.
Now, arbitrarily label the nodes in V t with 1t, . . . , nt. Label the nodes in V h such that
H = {(it, ih) | 1 ≤ i ≤ n}. Let j1t, j1h, j2t, . . . , jnh, j1t be the Hamiltonian cycle defined

by H ∪M j , starting at an arbitrary node j1t ∈ Vt. Set πj = (
−→
j1 . . .

−→
jn). It is clear to

see that πj is a valid permutation, and the perfect matching associated with πj is M j .
Therefore, with the given node labeling, MBG(π1, . . . , πq) = G, and H is the base
matching of the MB graph.

To simplify our argumentation, a perfect matching H that fulfills the conditions of
Lemma 3.7 is called a base matching of G.

Lemma 3.8. Let V t and V h be two disjoint sets of nodes, and let G = (V = V t ∪
V h,M1 ∪M2) be an edge-colored graph, where M1 (M2) is a perfect matching with

39

3 On Median Problems

red (green) edges, and each edge connects a node in V t with a node in V h. If M1 ∪M2

defines an even number of even cycles on V , then G has a base matching H.

Proof. We prove this lemma by an induction on the size of V t. If |V t| = 1, then the
graph consists of just one parallel red and green edge, and there trivially exists a base
matching H. For |V t| > 1, we must distinguish two cases. If M1 ∪M2 defines at least
two cycles on V , then there are nodes u ∈ V t and v ∈ V h such that these nodes are in
different cycles. The contraction of e = (u, v) merges these two cycles, and the resulting
cycle is even if and only if exactly one of the merged cycles was even. In other words,
the contraction of e reduces |V t| by 1 and does not change the parity of the number of
even cycles. Due to the induction hypothesis, G/e has a base matching H ′. According
to Lemma 3.6, H := H ′ ∪ {e} is a base matching of G. The case where M1 ∪M2

defines just one cycle can be proven similarly. This cycle must be odd, and has at least
length 3. Therefore, there are nodes u ∈ V t and v ∈ V h such that the edge e = (u, v)
is neither in M1 nor in M2. The contraction of e splits the cycle, and again the parity
of the number of even cycles cannot be changed. With the same argumentation as
above, it follows that the base matching H ′ of G/e can be extended to a base matching
H := H ′ ∪ {e} of G.

3.2 The transposition median problem is NP-complete

In order to prove the NP-completeness of the TMP, it is more convenient to formulate the
TMP and the oCMP as decision problems. For this, let π1, π2, and π3 be permutations,
and let k be an integer. Then, (π1, π2, π3, k) ∈ TMP if and only if there is a permutation
τ such that

∑3
i=1 dtp(τ, π

i) ≤ k. Equivalently, (π1, π2, π3, k) ∈ oCMP if and only if
there is a permutation τ such that

∑3
i=1 codd(τ, π

i) ≥ k.
As transpositions cannot change the orientation of an element, we will only consider
permutations where all elements have a positive orientation. This slightly changes
the definition of a permutation matching. That is, in this section, a matching M is a
permutation matching if and only if there is a permutation π with M = M(π), and all
elements of π have a positive orientation.

Lemma 3.9. TMP ∈ NP .

Proof. The membership of TMP in NP can be shown by a simple “guess and check”
argument. First, we nondeterministically “guess” a permutation τ and three sequences
of transpositions tp11 . . . tp

1
k1

, tp21 . . . tp
2
k2

, and tp31 . . . tp
3
k3

with
∑3

i=1 ki ≤ k. Then, we

check whether applying tpi1 . . . tp
i
ki

on πi yields τ for i ∈ {1, 2, 3}. Naturally, this can

hold only if (π1, π2, π3, k) ∈ TMP . On the other hand, if (π1, π2, π3, k) ∈ TMP , a
nondeterministical machine will correctly “guess” the median τ and the sequences of
transpositions. As the whole algorithm can be performed in polynomial time, it follows
that TMP ∈ NP .

40

3.2 The transposition median problem is NP-complete

Figure 3.3: A cycle decomposition of a graph in mdECD. The marked edges are drawn
dotted, the different cycles are drawn in different colors.

The proof of the NP-hardness of the TMP consists of several polynomial reductions,
beginning at the well-known 3SAT problem. More precisely, we prove that 3SAT ≤p
mdECD ≤p oCMP ≤p TMP , where mdECD is the marked directed Eulerian cycle
decomposition problem, which is defined as follows. Let k be an integer, let G = (V,E)
be a directed graph, and let Ek ⊆ E be a subset of its edges with |Ek| = k. The edges in
Ek are called the marked edges of G. Then, (G,Ek) ∈ mdECD if and only if G can be
partitioned into edge-disjoint cycles such that each marked edge is in a different cycle.
Note that the decomposition may contain cycles that do not contain a marked edge
(see Fig. 3.3). This problem is a slight modification of the Eulerian cycle decomposition
problem (short ECD), which has been proven to be NP-hard by Holyer [Hol81].

Lemma 3.10. mdECD is NP-hard.

Proof. By following the proof for ECD in [Hol81] and simply directing the edges in the
graph construction, one can prove that partitioning a directed graph into edge-disjoint
cycles of length 3 is NP-hard (see also [AHK+07]). Furthermore, the edges of the graph
can be partitioned into 3 groups such that each cycle of length 3 must contain one edge
of each group, and this partitioning can be found in polynomial time. While Holyer
used this fact to extend his proof to cycles of arbitrary length, we mark all edges of
one group, i.e., each possible cycle of length 3 contains exactly one marked edge. This
completes the proof for k = |E|/3.

In the following, we will assume that for an mdECD instance (G,Ek), each node has
the same in- and out-degree, and G is connected.

3.2.1 Reduction from mdECD to oCMP

In order to prove the NP-hardness of the oCMP, we first have to show that mdECD
is NP-hard even when the in- and out-degree of all nodes is bounded by 2. Next,
we provide a transformation from a directed graph G with bounded degree to an

41

3 On Median Problems

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

Y ′4

Y4

Figure 3.4: Transformation of a node v with degree 8 into a Y ′4 .

MB graph MBG(π1, π2, π3) such that (G,Ek) ∈ mdECD ⇔ (π1, π2, π3, f(G,Ek))
∈ oCMP (where f(G,Ek) is a function that can be evaluated in polynomial time).
A permutation network is a directed graph Yd where 2d of the nodes are labelled by
i1, . . . , id, o1, . . . , od (the input and output nodes). Furthermore, for each permutation
σ in the symmetric group Sd, there are edge-disjoint paths p1, . . . , pd in Yd such that
path pj goes from ij to oσ(j).

Lemma 3.11. [Wak68] For each d, a permutation network Yd of size O(d log d) can
be constructed in polynomial time. Furthermore, for each node v in Yd, the following
proposition holds.

• degin(v) = 0, degout(v) = 2 if v is an input node.

• degout(v) = 0, degin(v) = 2 if v is an output node.

• degin(v) = degout(v) = 2 if v is an inner node.

By adding edges from the output nodes to the input nodes, it is possible to obtain
a permutation network Y ′d where degout(i) − degin(i) = 1 for all input nodes i, and
degin(o)− degout(o) = 1 for all output nodes o.
Let G be a directed graph with k marked edges. We obtain the graph G′ by replacing
each node v in G with degree d > 4 by a Y ′d/2. The incoming edges in v are arbitrarily

connected to the input nodes of the corresponding Y ′d/2, and the outgoing edges in v

are arbitrarily connected to its output nodes (see Fig. 3.4). Note that in G′, all nodes
v satisfy degin(v) = degout(v) ≤ 2.

42

3.2 The transposition median problem is NP-complete

v2

v1

v2

vxv1

G′ G̃

Figure 3.5: Transformation of G′ = (V,E) into G̃ = (Ṽ , Ẽ), such that |Ṽ |+ |Ẽ|−(k+1)
is odd. Marked edges are dotted.

Lemma 3.12. (G,Ek) ∈ mdECD if and only if (G′, Ek) ∈ mdECD.

Proof. If (G,Ek) ∈ mdECD, we can map the cycles in G to cycles in G′ by adding
the corresponding paths through the permutation network for each node in a cycle. As
the paths through the permutation network are edge-disjoint, the cycles in G′ also are
edge-disjoint. Because all nodes v satisfy degin(v) = degout(v), the remaining edges in
the permutation network can be partitioned into edge-disjoint cycles. Thus, G′ can be
partitioned into edge-disjoint cycles and each marked edge is in a different cycle, i.e.,
(G′, Ek) ∈ mdECD. On the other hand, if (G′, Ek) ∈ mdECD, then we can remove
the paths in the permutation networks from each cycle to obtain a cycle decomposition
of G, i.e., (G,Ek) ∈ mdECD.

The transformation from G to G′ can be computed in polynomial time, i.e., the
construction of G′ describes a polynomial reduction from mdECD to mdECD with
bounded node degrees.

Theorem 3.13. mdECD is NP-hard even when the degree of all nodes is bounded by
4. Furthermore, the claim still holds for graphs where |V |+ |E| − k is odd.

Proof. The first proposition directly follows from Lemmata 3.11 and 3.12. Now, assume
that our transformation resulted in a graph G′ = (V,E) where |V |+ |E|−k is even. We
further transform G′ into G̃ = (Ṽ , Ẽ) as follows (see also Fig. 3.5). Let v1 and v2 be two
nodes of degree 2 that are not connected by an edge (if no such nodes exist, they can
be created by splitting a non-marked edge without changing the parity of |V |+ |E|−k).
Create a new node vx and set Ṽ = V ∪{vx}, Ẽ = E ∪{(v1, v2), (v2, vx), (vx, v1)}, where
(vx, v1) is a marked edge. As we added a cycle with one marked edge, it is clear to see
that if (G′, Ek) ∈ mdECD, then (G̃, Ek ∪ {(vx, v1)}) ∈ mdECD . On the other hand,
each cycle decomposition of G̃ can be modified such that the added edges form one
cycle. This leads to a cycle decomposition of G′, i.e., (G̃, Ek ∪ {(vx, v1)}) ∈ mdECD
implies (G′, Ek) ∈ mdECD. Together with the fact that |Ṽ |+ |Ẽ| − (k+ 1) is odd, the
second proposition follows.

43

3 On Median Problems

Now, let G = (V,E) be a directed graph with a set of k marked edges Ek, degin(v) =
degout(v) ≤ 2 ∀v ∈ V , and |V | + |E| − k odd. Let V2 be the nodes with deg(v) = 2,
and let V4 be the nodes with deg(v) = 4. Let E be an Eulerian cycle in G (which
clearly exists and can be computed in polynomial time, since a connected directed
graph has an Eulerian cycle if and only if every vertex has an in-degree equals to its
out-degree). We will now describe a polynomial transformation from G into a graph
G′ = (V ′, E′ = M1 ∪M2 ∪M3), such that G′ is isomorphic to an MB graph. The
intuition behind this transformation is that many edges of the odd cycle median of
G′ are predetermined by this construction: each of its edges (in the following with
color black) is parallel to a red or a green edge, thus the number of red/black and
green/black cycles is fixed. The blue/black cycles correspond to cycles in G, and a
blue/black cycle can only be odd if the corresponding cycle in G contains a marked
edge. For a graphical representation of the transformation, see Fig. 3.6.

1. For each node v ∈ V2, G′ contains a subgraph W2 with set of nodes {vt, vh}, and
a parallel red and green edge (vt, vh). The node vt is called the input node of W2,
and vh is called the output node.

2. For each node v ∈ V4, G′ contains a subgraph W4 with set of nodes {v1t, v1h, . . . ,
v4t, v4h}, red edges {(v1t, v3h), (v2t, v2h), (v3t, v1h), (v4t, v4h)}, green edges
{(v1t, v2h), (v2t, v1h), (v3t, v3h), (v4t, v4h)}, and blue edges {(v3t, v4h), (v4t, v3h)}.
The nodes v1t and v2t are called the input nodes of W4, and v1h and v2h are
called the output nodes.

3. For each edge (u, v) ∈ Ek (i.e., the marked edges), there is a blue edge (u′, v′) in
G′ which connects the corresponding subgraphs of u and v. u′ is always an output
node of the corresponding subgraph, and v′ is an input node of the corresponding
subgraph.

4. For each edge (u, v) ∈ E \ Ek (i.e., the non-marked edges), G′ contains two
nodes vt, vh, a parallel red and green edge (vt, vh), and two blue edges (u′, vt)
and (vh, v

′), where u′ is an output node of the subgraph corresponding to u, and
v′ is an input node of the subgraph corresponding to v.

5. The endpoints of a blue edge are always chosen such that each node is incident to
exactly one blue edge. Furthermore, if v ∈ V4 and E contains two consecutive edges
(u, v), (v, w), the corresponding blue edges are either of the form (u′, v1t), (v2h, w

′)
or (u′, v2t), (v1h, w

′). Thus, the Eulerian cycle E is transformed into a cycle of
alternating green and blue edges that passes each V2 and V4. This cycle contains
one green edge for each V2 and for each non-marked edge, and two green edges
for each V4.

44

3.2 The transposition median problem is NP-complete

vh

v4h

vt v4t

v1h

v1t v2t

v2h v′

u′

(b)(a) (c)

v3h

v3t vh

vt

Figure 3.6: Transformation steps from a graph G to a graph G′, such that G′ is
isomorphic to a MB graph. (a) a W2 (b) a W4 (c) transformation of a
non-marked edge.

Lemma 3.14. G′ is isomorphic to an MB graph, and a base matching H of G′ can be
calculated in polynomial time.

Proof. The set of nodes V ′ can be divided into V t and V h such that V t contains
all nodes vt, v1t, v2t, v3t, v4t, and V h contains all nodes vh, v1h, v2h, v3h, v4h. Thus, all
red, green, and blue edges connect a node in V t with a node in V h, and the edges
of each color are a perfect matching of V ′. Therefore, according to Lemma 3.7, it
remains to show that there is a base matching H. This base matching can be built
iteratively as follows. For each W4 in G′, we add the edges (v2t, v3h), (v3t, v2h), and
(v4t, v1h) to H. Then, we contract these edges. Let (u, v1t), (v, v2t), (w, v1h), (x, v2h) be
the incoming/outgoing blue edges of a W4. Then, after the contraction, we have the
blue edges (u, v1t), (x, v4h), (v, w) and a parallel red and green edge (v1t, v4h). If we
would now merge v1t and v4h, we would restore the Eulerian cycle E . Therefore, we
have now an Eulerian cycle of alternating blue and red/green edges. This cycle contains
one green edge for each V2, for each V4, and for each non-marked edge (the second
green edge of each V4 has been absorbed by the contraction). This is equivalent to the
number of vertices plus the number of non-marked edges in G. Because we assumed
that in G, |V |+ |E| − k is odd, this cycle is also odd. Therefore, the preconditions of
Lemma 3.8 are fulfilled, and we can continue with the algorithm devised there.

For simplification, we assume that G′ = MBG(π1, π2, π3), i.e., we ignore the incorrect
labeling of the nodes and say that G′ is an MB graph. We will now look at several
perfect matchings M and examine whether they are permutation matchings and how
much odd cycles are defined by M i ∪M for 1 ≤ i ≤ 3. In the following, let the color of

45

3 On Median Problems

these matchings be black. That is, if we speak of red/black odd cycles, we mean the
odd cycles defined by M1 ∪M .

Lemma 3.15. Let G′ be an MB graph with base matching H that has been constructed
as described above. Then, every perfect matching M containing only edges parallel to
red or green edges is a permutation matching.

Proof. If we divide V ′ into V t and V h as described above, every edge of M connects a
node in V t with a node in V h. From the proof of Lemma 3.7, it follows that if M is
a permutation matching, the corresponding elements all have a positive orientation.
According to Lemma 3.5, it remains to show that H ∪M defines a Hamiltonian cycle
on V ′. For every W4 in the MB graph, M must be parallel either to all green edges
or to all red edges. Therefore, we can successively contract all edges of H that are
in a W4, and the contracted edges are never parallel to an edge in M (otherwise,
according to Lemma 3.6, H ∪M1 or H ∪M2 would not define a Hamiltonian cycle).
After contracting these edges, M1, M2, and M are identical. Because H ∪M1 and
H ∪M2 define Hamiltonian cycles, also H ∪M must define a Hamiltonian cycle.

We call a perfect matching M canonical if, whenever there are two parallel edges in
M1 ∪M2 ∪M3, these edges are also parallel to an edge in M .

Lemma 3.16. Given a perfect matching M on G′, it is always possible to find a
canonical matching M c with

∑3
i=1 codd(M

c,M i) ≥
∑3

i=1 codd(M,M i).

Proof. Due to the construction of G′, only red and green edges can be parallel. Let M
be a perfect matching, and let u and v be two nodes that are connected by a red and a
green edge, but not by a black edge. Assume that there are black edges (x, u) and (y, v).
We replace these edges with the black edges (x, y) and (u, v). This transformation has
the following three effects.

1. An even red/black cycle is split into two odd red/black cycles (1a), or an odd
red/black cycle is split into an odd and an even red/black cycle (1b).

2. An even green/black cycle is split into two odd green/black cycles (2a), or an
odd green/black cycle is split into an odd and an even green/black cycle (2b).

3. a blue/black cycle is split into two cycles (3a), the set of blue/black cycles remains
unchanged (3b), two blue/black cycles are merged and at least one of the cycles
was even (3c), or two odd blue/black cycles are merged into an even cycle (3d).

Effects 1a and 2a increase the number of odd cycles by 2. Effect 3d decreases the number
of odd cycles by 2, all other effects do not decrease the number of odd cycles. Therefore,
the transformation decreases the number of odd cycles if and only if effects 1b, 2b, and
3d occur simultaneously. In this case, the number of odd cycles is decreased by 2, and

46

3.2 The transposition median problem is NP-complete

the red/black, green/black, and blue/black cycle containing the black edge (x, y) are
even cycles. Therefore, exchanging the endpoints of (x, y) with those of another black
edge cannot remove any further odd cycle. However, such an exchange is possible such
that the red/black cycle is split into two odd cycles, i.e., this operation increases the
number of odd cycles by at least 2. Both operations together do not decrease the overall
number of odd cycles. These steps can be repeated until M is a canonical matching.

Lemma 3.17. For every canonical matching M c on G′, codd(M
c,M3) ≤ k.

Proof. By construction, G′ contains pairs of blue edges that are separated by a parallel
red and green edge. These pairs contain all blue edges, except some of those that
correspond to a marked edge in G. Thus, every odd blue/black cycle must contain at
least one blue edge corresponding to a marked edge in G. As there are only k marked
edges in G, there can be at most k odd blue/black cycles if the black edges are a
canonical matching.

Lemma 3.18. For every perfect matching M , codd(M,M1) + codd(M,M2) ≤ 2|V2|+
6|V4|+ 2|E| − 2k. The equality holds if and only if all black edges are parallel to a red
or green edge.

Proof. If e is a black edge in a red/black k-cycle, then let the red score of e be 1/k if
k is odd, 0 otherwise. The green score is defined analogously for green/black cycles.
The score of a black edge is the sum of its red and green score. Clearly, the number
of red/black and green/black odd cycles is the sum of the scores of all black edges.
If a red edge, a green edge, and a black edge are parallel, then the score of the
black edge is 2, which maximizes this value. This score can be achieved by at most
|V2|+ |V4|+ |E| − k black edges, because this is the number of parallel red and green
edges. The second best possible score is 4/3, and it is achieved if and only if a black
edge is in a red/black 1-cycle and a green/black 3-cycle or vice versa. If all edges in a
perfect matching are parallel to a red or green edge, the black edges in each W4 are
parallel to edges of the same color, forming four 1-cycles with this color and a 1-cycle
and a 3-cycle with the edges of the other color. Thus, the number of black edges with
score 2 is maximized, all other black edges have score 4/3, leading to an overall score
of 2 ·#W2 + 2 ·#W4 + 2 ·#non-marked edges + 4 ·#W4 = 2|V2|+ 6|V4|+ 2|E| − 2k.
If the matching contains a black edge that is neither parallel to a red nor to a green
edge, then the score of this edge is < 4/3, and the sum of all scores can no longer be
maximal.

Theorem 3.19. There is a permutation matching M(τ) with
∑3

i=1 codd(τ, π
i) ≥ 2|V2|+

6|V4|+ 2|E| − k if and only if (G,Ek) ∈ mdECD.

Proof. According to Lemma 3.16, it is sufficient to consider canonical matchings.
Together with Lemmata 3.17 and 3.18, it follows that the maximum number of odd

47

3 On Median Problems

cycles is 2|V2|+ 6|V4|+ 2|E| − k, and this can only be achieved if each black edge is
parallel to a red or green edge. Then, all black edges in one W4 must be parallel to
edges of the same color. Depending on whether they are parallel to the red or the
green edges, we get blue/black paths from v1t to v1h and from v2t to v2h, or from
v1t to v2h and from v2t to v1h. Thus, there is a one-to-one correspondence between
black/blue cycles in G′ and cycles in G (except for possible even black/blue cycles that
are completely within a W4). A black/blue cycle in G′ is odd if the corresponding cycle
in G contains an odd number of marked edges. Therefore, if there is a permutation
matching M(τ) with

∑3
i=1 codd(τ, π

i) = 2|V2|+ 6|V4|+ 2|E| − k, it defines k blue/black
odd cycles in G′. These cycles describe the partitioning of G into k edge-disjoint cycles
such that each cycle contains a marked edge, i.e., (G,Ek) ∈ mdECD. On the other
hand, such a partitioning of G can be used to obtain a permutation matching M(τ)
with

∑3
i=1 codd(τ, π

i) = 2|V2|+ 6|V4|+ 2|E| − k.

Corollary 3.20. oCMP is NP-complete.

3.2.2 Reduction from oCMP to TMP

To prove the NP-hardness of the TMP, we describe a transformation from an MB
graph G = MBG(π1, π2, π3) into an MB graph G̃ = MBG(π̃1, π̃2, π̃3), such that
every permutation τ̃ that minimizes

∑3
i=1 d(τ̃ , π̃i) also maximizes

∑3
i=1 codd(τ̃ , π̃

i). Let
G = MBG(π1, π2, π3) = (V,M(π1) ∪M(π2) ∪M(π3)) be an arbitrary MB graph with
base matching H that satisfies the following condition.

Condition 3.1. There is a permutation τ such that for all perfect matchings M ,∑3
i=1 codd(M,M(πi)) ≤

∑3
i=1 codd(M(τ),M(πi)), and M(τ) is a canonical matching.

Note that in the last section, if the starting problem is in mdECD, the resulting MB
graph satisfies the condition.
First, we modify the MB graph such that τ is hurdle-free w.r.t. π1. Although we do
not know M(τ), we can presume that some edges of M(τ) are given due to the fact
that it is a canonical matching. With these edges, we already get some red/black
cycles and paths. Thus, there are red edges that are certainly not in a long red/black
cycle. Let (u, v) be a red edge that might be in a long red/black cycle, and let (x, u),
(v, y) be the adjacent edges of the base matching H. We transform the MB graph
G = (V,M1∪M2∪M3) into an MB graph G̈ = MBG(π̈1, π̈2, π̈3) = (V̈ , M̈1∪M̈2∪M̈3)
with base matching Ḧ as follows (for a graphical representation, see Fig. 3.7).

1. V̈ = V ∪ {a, b, c, d, e, f, g, h}.

2. Ḧ = H \ {(x, u), (v, y)} ∪ {(x, a), (b, c), (d, e), (f, u), (v, g), (h, y)}

3. M̈1 = M(π1) ∪ {(a, b), (c, d), (e, f), (g, h)}

48

3.2 The transposition median problem is NP-complete

a bx c v g h yd e f u

x u v y

Figure 3.7: Transformation of a configuration of G containing a red edge (u, v) that
might belong to a long red/black cycle. The base matching H is drawn as
dashed lines.

4. Add green and blue edges (a, f), (b, e), (c, h), and (d, g), i.e.,
M̈2 = M(π2) ∪ {(a, f), (b, e), (c, h), (d, g)} and
M̈3 = M(π3) ∪ {(a, f), (b, e), (c, h), (d, g)}.

Lemma 3.21. G̈ is a valid MB graph with base matching Ḧ.

Proof. Let V t and V h be two disjoint sets of nodes with V = V t ∪ V h such that every
edge in M(π1)∪M(π2)∪M(π3)∪H connects a node in V t with a node in V h. W.l.o.g.,
assume that u ∈ V t. If we set V̈ t = V t ∪ {a, c, e, g} and V̈ h = V h ∪ {b, d, f, h}, then
every edge in M̈1∪M̈2∪M̈3∪Ḧ connects a node in V̈ t with a node in V̈ h. If we contract
the red edges (a, b), (c, d), (e, f), (g, h), we get the Hamiltonian cycle M(π1) ∪H on
V . According to Lemma 3.6, M̈1 ∪ Ḧ defines a Hamiltonian cycle on V̈ . The proof
that also M̈2 ∪ Ḧ and M̈3 ∪ Ḧ define Hamiltonian cycles on V̈ is analogous, but with
contracting the edges (a, f), (b, e), (c, h), (d, g). Thus, all preconditions of Lemma 3.7
are fulfilled, G̈ is a valid MB graph, and Ḧ is a base matching of G̈.

Lemma 3.22. There is a one-to-one correspondence between canonical matchings
M(ρ) of G with

∑3
i=1 codd(M(ρ),M(πi)) = k and canonical matchings M(ρ̈) of G̈ with∑3

i=1 codd(M(ρ̈),M(π̈i)) = k + 8.

Proof. M(ρ̈) must contain the edges (a, f), (b, e), (c, h), and (d, g) because it is canonical.
These edges define 2 red/black 2-cycles, 4 green/black 1-cycles, and 4 blue/black 1-
cycles (overall 8 odd and 2 even cycles). By contracting the edges (a, b), (c, d), (e, f),
and (g, h), these cycles are removed, and the resulting graph is equivalent to G, thus
each canonical matching M(ρ) of G with

∑3
i=1 codd(M(ρ),M(πi)) = k corresponds to

a canonical matching M(ρ̈) of G̈ with
∑3

i=1 codd(M(ρ̈),M(π̈i)) = k + 8.

49

3 On Median Problems

u by a v xu v x y a b

Figure 3.8: The effect of the transposition described in Lemma 3.24. The dashed line
is a path of alternating gray and black edges. The operation splits the two
1-cycles with edges (u, y) and (x, b) from an l-cycle.

Lemma 3.23. If ρ is hurdle-free w.r.t. π2, then the corresponding permutation ρ̈ is
also hurdle-free w.r.t. π̈2.

Proof. If one compares the breakpoint graph of ρ and π2 with the one of ρ̈ and π̈2, one
can see that the transformation just added 4 1-cycles without changing the structure
of any other cycle. Thus, for each sorting sequence that sorts ρ into π2, there is an
equivalent sorting sequence from ρ̈ to π̈2.

Of course, this lemma also holds for π3. To make τ hurdle-free w.r.t. π1, we repeat
the transformation step for every red edge that might belong to a red/black l-cycle
with l ≥ 3. Let the resulting graph be Ĝ = MBG(π̂1, π̂2, π̂3). Before we can prove that
every permutation that induces a canonical matching of Ĝ is hurdle-free w.r.t. π1, we
need one more lemma.

Lemma 3.24. If a breakpoint graph contains black edges (u, v), (x, y), (a, b) (with
u < v, x < y, and a < b) and intersecting gray edges (u, y), (x, b), then a transposition
acting on these black edges splits an l-cycle into an (l − 2)-cycle and two 1-cycles with
edges (u, y) and (x, b).

Proof. As the gray edges are intersecting, the ordering of the nodes must be u < v <
x < y < a < b or a < b < u < v < x < y or x < y < a < b < u < v. In all cases,
the transposition creates black edges (u, y), (x, b), and (a, v). The gray edges remain
unchanged, thus the two 1-cycles with edges (u, y) and (x, b) are split from the l-cycle.
For an illustration, see Fig. 3.8

Lemma 3.25. Let M(ρ̂) be a canonical matching of Ĝ. Then, ρ̂ is hurdle-free w.r.t.
π̂1.

Proof. Due to the construction rules, ρ̂ and π̂1 have certain properties which can be
best shown by their breakpoint graph. To keep the mapping from edges to permutations
simple, we preserve the colors of the permutation matchings (black for M(ρ) and red
for M(π1)) instead of using the colors of the original definition of the breakpoint graph
(i.e., gray and black).

50

3.2 The transposition median problem is NP-complete

e

cc′

Figure 3.9: The configuration of the companion c of a red edge e. The black edges
adjacent to e may also intersect. By construction, c intersects with another
2-cycle c′. However, c′ is not a companion of a red edge.

For each red edge e that belongs to a long cycle, the adjacent black edges intersect with
the black edges of a 2-cycle c. We call c the companion of e. The black edges of c neither
intersect with a black edge of another long cycle, nor with a black edge of another
companion. The configuration of an edge with its companion is illustrated in Fig. 3.9.
We will now describe a sequence of transpositions that transforms π̂1 into ρ̂ such that
each transposition increases the number of odd cycles by 2. We start the sorting with
an arbitrary red edge e of a long cycle. If the black edges adjacent to e intersect, we
apply the transposition described in Lemma 3.24. This might destroy the companion
of e, i.e., the intersection condition of the companion is no longer fulfilled. However,
all other red edges in a long cycle still have a valid companion. Now, assume that the
black edges adjacent to e do not intersect. Let f and g be the red edges connected
to e by a black edge. Fig. 3.10 describes a sequence of three transpositions where
each transposition increases the number of odd cycles by 2. The sequence uses the
companions of f and g. Note that the sequence also works if the black edges adjacent
to f or g intersect. After the sequence, all edges in a long cycle except e still have a
companion. Thus, we can repeat this step (always starting with edge e) until e is in a
short cycle, and then continue with another long cycle. When no long cycle remains,
the resulting permutation is hurdle-free due to Lemma 3.4.

We continue the transformation by performing equivalent steps for green and blue
edges. Let G̃ = MBG(π̃1, π̃2, π̃3) be the resulting MB graph.

Theorem 3.26. Let π1, π2, π3 be permutations of size n, and let G = MBG(π1, π2, π3)
be their MB graph satisfying Condition 3.1. Let G̃ = MBG(π̃1, π̃2, π̃3) be the MB
graph obtained by transforming G as described above, and let m be the number of
performed steps during the transformation. Then, (π1, π2, π3, k) ∈ oCMP if and only
if (π̃1, π̃2, π̃3, 3n+4m−k

2) ∈ TMP .

Proof. As we have shown in Lemma 3.22, (π1, π2, π3, k) ∈ oCMP if and only if
(π̃1, π̃2, π̃3, k + 8m) ∈ oCMP . The size of the permutations π̃1, π̃2, and π̃3 is n+ 4m.

51

3 On Median Problems

f ge

f g e

Figure 3.10: A sequence of 3 transpositions that can be applied when the black edges
adjacent to e do not intersect. The 2-cycles belong to the companions of f
and g. The dashed line is a path of alternating black and red edges. The
vertical black lines indicate the red edges where the next transposition
acts on. Note that the sequence also works if the black edges adjacent to
f or g intersect.

52

3.2 The transposition median problem is NP-complete

Assume that there is a permutation matchingM(τ̃) of G̃ with
∑3

i=1 codd(M(τ̃),M(π̃i)) ≥
k+ 8m. W.l.o.g. M(τ̃) is a canonical matching, and due to Lemma 3.25, we can assume
that τ̃ is hurdle-free w.r.t. π̃1, π̃2, and π̃3. Thus,

3∑
i=1

dtp(τ̃ , π̃
i) =

3∑
i=1

n+ 4m− codd(τ̃ , π̃i)
2

=
3n+ 12m−

∑3
i=1 codd(τ̃ , π̃

i)

2

≤ 3n+ 4m− k
2

.

On the other hand, let there be a permutation τ̃ with
∑3

i=1 dtp(τ̃ , π̃
i) ≤ 3n+4m−k

2 . Then,
we get (with Lemma 3.1)

3∑
i=1

n+ 4m− codd(τ̃ , π̃i)
2

=
3n+ 12m−

∑3
i=1 codd(τ̃ , π̃

i)

2

≤
3∑
i=1

dtp(τ̃ , π̃
i)

≤ 3n+ 4m− k
2

,

and therefore
3∑
i=1

codd(τ̃ , π̃
i) ≥ k + 8m.

In other words, (π̃1, π̃2, π̃3, k + 8m) ∈ oCMP if and only if (π̃1, π̃2, π̃3, 3n+4m−k
2) ∈

TMP .

Theorem 3.27. TMP is NP-complete.

Proof. Let (G, k) be an instance of an mdECD problem, let (π1, π2, π3, k′) be the
instance of an oCMP problem that we get after the reduction in Section 3.2.1, and let
(π̃1, π̃2, π̃3, k̃) be the instance of a TMP problem that we get after the final reduction.
If (G, k) ∈ mdECD, then (π1, π2, π3, k′) ∈ oCMP and MBG(π1, π2, π3) satisfies
Condition 3.1. Therefore, (π̃1, π̃2, π̃3, k̃) ∈ TMP .
If (G, k) 6∈ mdECD, then there is no perfect matching M on MBG(π1, π2, π3) with∑3

i=1 codd(M,M(πi)) ≥ k′. Although MBG(π1, π2, π3) does not necessarily satisfy
Condition 3.1, we can continue with the reduction as described above. From the proof
of Theorem 3.26, it follows that if there is a permutation τ̃ with

∑3
i=1 dtp(τ̃ , π

1) ≤ k̃,
then

∑3
i=1 codd(τ̃ , π̃

i) ≥ k + 8m, and due to Lemma 3.22, there is a permutation
matching M(τ) with

∑3
i=1 codd(M(τ),M(πi)) ≥ k′, which is a contradiction. Therefore,

(π̃1, π̃2, π̃3, k̃) 6∈ TMP .

53

3 On Median Problems

3.3 A branch and bound algorithm

Despite the NP-hardness of the TMP, it is possible to solve many instances of the TMP
and the wRTMP exactly by using a branch and bound algorithm. We will describe the
algorithm for the wRTMP in Section 3.3.2, and discuss its adaption to the TMP in
Section 3.3.3.
The algorithm is an extension of Caprara’s median solver for the RMP [Cap03]. Its
main idea is first to find a solution τ of the wCMP, and then to calculate its solution
value γwrt(τ). For the calculation of the solution value, an algorithm for the pairwise
distance dwrt is required. This can either be done by the approximation algorithm
devised in [BO07] (leading to a median solver with guaranteed approximation ratio of
1.5), or exactly by using another branch and bound algorithm.

3.3.1 Exact calculation of pairwise distances

Before we focus on the median solver, we first describe the exact algorithm for the
pairwise distance dwrt(π, ρ). W.l.o.g., let ρ be the identity permutation, i.e., the task
is to compute dwrt(π, id). The algorithm maintains a set S that contains triples
(π̃, d′wrt(π, π̃), lbwrt(π̃, id)), where π̃ is a permutation, d′wrt(π, π̃) is the weight of a
sorting sequence of π w.r.t. π̃, and lbwrt(π̃, id) is the lower bound for the remaining
distance towards id according to Lemma 3.1. Initially, S is set to {(π, 0, lbwrt(π, id))}.
In each step, one selects the triple (π̃, d′wrt(π, π̃), lbwrt(π̃, id)) from S where d′wrt(π, π̃) +
lbwrt(π̃, id) is minimized, and removes it from S. If lbwrt(π̃, id) > 0, the triples (op ·
π̃, d′wrt(π, π̃) +w(op), lbwrt(op · π̃, id)) are added to S for each possible operation op. In
other words, we add all permutations that can be reached from π̃ by a single operation,
and maintain the information about the weight of the performed sequence and the
lower bound towards id. We call this step expanding π̃. If lbwrt(π̃, id) = 0, then the
algorithm returns d′wrt(π, π̃) and aborts.

Lemma 3.28. If the algorithm selects a triple (π̃, d′wrt(π, π̃), lbwrt(π̃, id)) with
lbwrt(π̃, id) = 0, then d′wrt(π, π̃) = dwrt(π, id).

Proof. If lbwrt(π̃, id) = 0, then dwrt(π̃, id) = 0 due to the upper bound (see Lemma 3.2),
i.e., π̃ = id. The algorithm creates any possible sequence of operations, ordered by their
weight. As the selected triple is the first one with π̃ = id, the corresponding sequence
of operations is a sorting sequence of minimal weight of π w.r.t. id, and therefore
d′wrt(π, π̃) = dwrt(π, id).

If one is not only interested in the distance but also in the sorting sequence, it can
easily be reconstructed by a traceback.
So far, the algorithm is just an ordinary branch and bound algorithm, and does not
perform very well in practice. Thus, the algorithm is improved by a duplicate elimina-
tion. Because there are usually different optimal sequences to reach an intermediate

54

3.3 A branch and bound algorithm

permutation, this permutation would be stored several times, and in the worst case
the number of duplicates of a permutation can be exponential in the distance to the
origin permutation. Therefore, it is first checked whether a permutation already has
been reached on another sequence of operations before a new triple containing this
permutation is created. Searching for a possible duplicate can be done quite efficiently
by hashing techniques. The number of elements in S can be further decreased by
working on the minimal permutations, which have been defined in [Chr98] as follows.
Given a permutation π, the minimal permutation gl(π) is obtained by “gluing” all
adjacencies of π and id together, i.e., each segment of elements that is identical in π and

id is replaced by a single element. For example, the permutations π = (
−→
1
−→
2
−→
4
−→
3) and

π̂ = (
−→
1
−→
3
−→
4
−→
2) have both the same minimal permutation (

−→
1
−→
3
−→
2). The following

lemma ensures that it is sufficient to search for an optimal sorting sequence between
gl(π) and id′ to obtain an optimal sorting sequence between π and id, where id′ is the
identity permutation of same size as gl(π).

Lemma 3.29. [Chr98] Let π be a permutation and let gl(π) be its minimal permuta-
tion. Let id be the identity permutation of same size as π, and let id′ be the identity
permutation of same size as gl(π). Then, an optimal sorting sequence between gl(π)
and id′ can easily be transformed into an optimal sorting sequence between π and id.
Both sorting sequences have the same weight, i.e., dwrt(gl(π), id′) = dwrt(π, id).

Note that the original lemma in [Chr98] only considered the transposition distance.
However, the proof for the weighted reversal and transposition distance works analo-
gously, thus this lemma holds for both distance measures. While Christie only used
this proof to show that one never has to split adjacencies, we also use it for dupli-
cate elimination. After performing an operation op on a permutation π̃, we store the
triple (gl(op · π̃), d′wrt(π, π̃) + w(op), lbwrt(gl(op · π̃), id′)) instead of (op · π̃, d′wrt(π, π̃) +
w(op), lbwrt(op · π̃, id)). Thus, two permutations that have the same minimal permu-
tations are considered to be duplicates. The algorithm in pseudocode can be seen in
Algorithm 3.1.

3.3.2 The median solver

We now describe an algorithm for the wCMP, and then extend it to the wRTMP.
The formulation of the algorithm for the wCMP requires the extension of the MB
graph to the weighted MB graph, that is a MB graph where each edge e has a weight
w(e), which is an odd integer (restricting the weights to be odd will simplify later
proofs). Analogously, the matchings in the weighted MB graph are weighted matchings.
The edges of two weighted matchings decompose the weighted MB graph into paths
and cycles. The length of a path or a cycle is the sum of the weights of its edges.
As a slight modification to the definition given in Section 3.1, a cycle is even if its
length divided by 2 is an even number, otherwise it is odd. Note that a cycle always

55

3 On Median Problems

Algorithm 3.1 An exact algorithm for the weighted reversal and transposition distance.

1: function dwrt(π, id)
2: π′ = gl(π)
3: S = {(π′, 0, lbwrt(π′, id′))}
4: while true do
5: (π̃, d′, lb) = S.selectMinimum()
6: S = S \ {(π̃, d′, lb)}
7: if lb == 0 then
8: return d′

9: for all operations op do
10: π′ = gl(op · π̃)
11: {insert with duplicate elimination}
12: if S contains a triple (x, y, z) with x == π′ then
13: if y > d′ + w(op) then
14: update (x, y, z) to (x, d′ + w(op), z)
15: else
16: S = S ∪ {(π′, d′ + w(op), lb(π′, id′))}

consists of an even number of edges and each edge has an odd weight by definition,
thus the length of the cycle is always an even number and dividing by 2 yields an
integer value. Analogous to the previous definition, ceven(M i,M j) and codd(M

i,M j)
are the number of even and odd cycles defined by two matchings M i and M j . The
score of two matchings M i and M j (which are not necessarily perfect) is defined by
σ(M i,M j) = codd(M

i,M j) + (2− 2wr
wt

)ceven(M i,M j). For perfect matchings M i and

M j , the weighted cycle distance is defined by dwc(M
i,M j) = n− σ(M i,M j). Due to

the weights, also the definition of M/e must be modified. Let G = (V,E) be a weighted
MB graph, let M be a perfect matching of V , and let e = (u, v) be an edge on V . If
e ∈ M , then M/e = M \ {e}. Otherwise, letting (a, u), (b, v) be the two edges in M
incident to u and v, M/e = M \ {(a, u), (b, v)} ∪ {(a, b)}, and the weight of the new
edge (a, b) can be calculated by w((a, b)) = w((a, u)) +w((b, v)) + 1. Note that w((a, b))
is odd, because both w((a, u)) and w((b, v)) are odd.

Lemma 3.30. Let V be a set of nodes and let M i,M j ,Mk, and M l be perfect match-
ings of V . Then, codd(M

i,Mk) − codd(M i,M l) is odd if and only if codd(M
j ,Mk) −

codd(M
j ,M l) is odd.

Proof. Let w(M) denote the sum of the weights of the edges of a perfect matching M .
The parity of the number of odd cycles between two perfect matchings must be the
same as the overall weight of the edges divided by 2, i.e., for two perfect matchings M

and M ′, codd(M,M ′) is odd if and only if w(M)+w(M ′)
2 is odd. Therefore,

56

3.3 A branch and bound algorithm

codd(M
i,Mk)− codd(M i,M l) is odd

⇔ w(M i) + w(Mk)

2
− w(M i) + w(M l)

2
is odd

⇔ w(Mk)− w(M l)

2
is odd

⇔ w(M j) + w(Mk)

2
− w(M j) + w(M l)

2
is odd

⇔ codd(M
j ,Mk)− codd(M j ,M l) is odd

Lemma 3.31. The weighted cycle distance n− σ(M i,M j) on perfect matchings is a
metric.

Proof.

1. Positive definiteness: n − σ(M i,M i) = 0, because the graph decomposes into
n odd cycles. For perfect matchings M i,M j with M i 6= M j , there must be at
least one cycle with at least four edges, thus the overall number of cycles is
less than n. As each cycle adds at most 1 to σ(M i,M j), σ(M i,M j) < n and
n− σ(M i,M j) > 0.

2. Symmetry: This follows directly from the symmetry of σ(M i,M j).

3. Triangle inequation: Let V be a set of nodes, and let M i, M j , and Mk be
three perfect matchings of V . We show that n− σ(M i,Mk) + n− σ(Mk,M j) ≥
n− σ(M i,M j). For this, Mk is modified successively by the following rules.
(a) If (V,M i∪Mk) contains an even cycle with only two edges, change the weight
of the corresponding edge in Mk such that the cycle becomes odd. This increases
σ(M i,Mk) by 2wr

wt
− 1. In (V,Mk ∪M j), this either changes an even cycle into

an odd cycle, or an odd cycle into an even cycle. Thus, σ(M i,Mk) + σ(Mk,M j)
does not decrease.
(b) If (V,M i ∪Mk) contains a cycle with at least four edges, remove two of the
edges of Mk and rejoin the endpoints such that the cycle is split into two cycles.
Weight the new edges such that both cycles are odd cycles. If the original cycle
was even, σ(M i,Mk) increases by 2wr

wt
. As the operation can effect at most two

cycles in (V,Mk ∪M j), the worst possible effect on σ(Mk,M j) is that two odd
cycles are merged into an even cycle. Thus, σ(M i,Mk) + σ(Mk,M j) does not
decrease. If the original cycle was odd, σ(M i,Mk) increases by 1, and the overall

57

3 On Median Problems

number of odd cycles changes by 1. Due to Lemma 3.30, the parity of the number
of odd cycles in (V,Mk ∪M j) must be changed by this modification, therefore
the worst possible effect on σ(Mk,M j) is that two odd cycles are merged into
one odd cycle. Thus, σ(M i,Mk) + σ(Mk,M j) does not decrease.
(c) If none of the two rules above can be applied, M i and Mk contain the same
edges, but maybe with different weights. Change the weights of the edges of
Mk such that they have the same weights as the edges in M i. This step has no
effect on the cycles, because all cycles in (V,M i ∪Mk) are already odd. Thus,
σ(M i,Mk) + σ(Mk,M j) remains unchanged.
The whole transformation transformed Mk into M i without decreasing σ(M i,Mk)
+σ(Mk,M j). Therefore, n − σ(M i,Mk) + n − σ(Mk,M j) ≥ n − σ(M i,M i) +
n− σ(M i,M j) = n− σ(M i,M j).

The following lemma gives us a lower bound for the solution value of an instance of
the wCMP.

Lemma 3.32. Given four perfect matchings M1,M2,M3, and M τ , the following
inequation holds.

3∑
i=1

(n− σ(M τ ,M i)) ≥ 3n

2
−

2∑
i=1

3∑
j=i+1

σ(M i,M j)

2

Proof. Using the triangle inequality given in Lemma 3.31, we get

3n

2
−

2∑
i=1

3∑
j=i+1

σ(M i,M j)

2

=
1

2

2∑
i=1

3∑
j=i+1

(n− σ(M i,M j))

≤
3∑
i=1

(n− σ(M τ ,M i))

The following lemma gives us an even stronger lower bound if some of the edges in the
solution Mρ are already known. The idea is to contract these edges, and to calculate
the lower bound for the remaining problem according to Lemma 3.32.

58

3.3 A branch and bound algorithm

Lemma 3.33. Let M1,M2,M3, and M τ be perfect matchings, let each edge in M τ

have weight 1, and let e ∈M τ be an edge. Then,

3∑
i=1

(n− σ(M τ ,M i))

= 3−
3∑
i=1

σ(M i, {e}) +

3∑
i=1

(n− 1− σ(M τ/e,M i/e))

Proof. A cycle in M τ ∪M i is either absorbed by the contraction step, or it corresponds
to a cycle in M τ/e ∪M i/e of the same length. In the first case, the absorbed cycle is
equivalent to the cycle in M i ∪ {e}, and the sum of the scores of the absorbed cycles is∑3

i=1 σ(M i, {e}). As there are no new cycles in M τ/e ∪M i/e, we get

3∑
i=1

(n− σ(M τ ,M i))

= −
3∑
i=1

σ(M i, {e}) +
3∑
i=1

(n− σ(M τ/e,M i/e))

= 3−
3∑
i=1

σ(M i, {e}) +
3∑
i=1

(n− 1− σ(M τ/e,M i/e)).

By combining Lemmata 3.32 and 3.33, we get the following corollary.

Corollary 3.34. Let M1,M2,M3, and M τ be perfect matchings, and let M =
{e1, . . . , ek} be a subset of M τ . Then,

3∑
i=1

(n−σ(M τ ,M i)) ≥ 3|M |−
3∑
i=1

σ(M i,M)+
3(n− |M |)

2
−

2∑
i=1

3∑
j=i+1

σ(M i/M,M j/M)

2

with M i/M = (. . . ((M i/e1)/e2) . . .)/ek, and M j/M analogously.

We are now ready to describe our branch and bound algorithm for the wCMP. A partial
solution consists of a matching M that is not necessarily perfect, and the lower bound
of M which can be calculated by the formula given in Corollary 3.34. The algorithm
maintains a set S of partial solutions, consisting initially only of the empty partial

solution (∅, 3n2 −
∑2

i=1

∑3
j=i+1

σ(M i,Mj)
2). In each step, the partial solution (M, lb) with

the currently least lower bound is selected, removed from S, and expanded as follows.
Let V ′ be the nodes of V such that no edge in M is incident to a node in V ′, and

59

3 On Median Problems

let va be a fixed node in V ′. Then, new partial solutions M ′ are created by setting
M ′ = M ∪(va, vb) for all vb ∈ V ′, vb 6= va. Partial solutions M ′ that cannot be expanded
to a permutation matching (i.e., M ′ ∪H contains a cycle that is not a Hamiltonian
cycle) are discarded. For all other partial solutions, the lower bounds are calculated,
which can be done very efficiently by calculating the difference to the lower bound of
M . In this calculation, only cycles that change due to the contraction of (va, vb) have
to be considered, which is much faster than to calculate the lower bound from scratch.
The selection of the node va ∈ V ′ can be done arbitrarily, and in fact Caprara uses
always the node with the least index in his algorithm [Cap03]. However, a clever
selection of va may reduce the number of partial solutions to examine, and thus also the
running time and memory requirements of the algorithm. To keep the number of partial
solutions small, we must increase the lower bounds of the partial solutions as fast as
possible (remember that a partial solution with a lower bound greater than the true
median will never be expanded). Therefore, a good strategy would be to select the node
va such that the sum of the lower bounds of the new solutions is maximized (a similar
strategy was proposed by Little et al. for the Traveling Salesman Problem [LMSK63]).
Unfortunately, calculating these values in every extension step is too costly. Therefore,
we calculate these values only before the first expansion step, and sort the nodes by
these values. Then, in each expansion step, we select the first node in V ′ according to
this ordering. As this ordering normally does not change very much if recalculated in
each expansion step, we still get a good choice (even if not the optimal) for the node va
in each step. In fact, experiments have show that using this strategy brings a speedup
of factor 5− 10 against the naive approach.
The algorithm has found an optimal solution for the wCMP when the partial solution
with the least lower bound is a perfect matching. It can easily be extended such that it
can solve the wRTMP by adding the following step. Whenever the matching M τ of
the best partial solution is a perfect matching, create the corresponding permutation
πτ and test if

∑3
i=1 dwrt(π

τ , πi) is equal to the lower bound. In this case, an optimal
solution is found. Otherwise, the lower bound for M τ is increased, and the partial
solution is reinserted into S. A further speed-up of the pairwise distance algorithm can
be obtained by providing an upper bound (remember that we only want to test if the
sum of the pairwise distances is equal to the lower bound, thus the pairwise distance
algorithms can be aborted if the currently best results are above this bound). The
algorithm in pseudocode can be seen in Algorithm 3.2.

3.3.3 Adaption to the TMP

The algorithm can easily be adapted to the TMP. If we set wr = wt, we get n −
σ(M i,M j) = n − codd(M i,M j), i.e., the weighted cycle distance matches the lower
bound of the transposition distance. Therefore, all lemmata still hold. The only modifi-
cation that has to be done is due to the fact that all elements must have a positive

60

3.3 A branch and bound algorithm

Algorithm 3.2 An exact algorithm for the weighted reversal and transposition median.

1: function median(π1, π2, π3)
2: M = ∅
3: S = {(M, lower bound(M(π1),M(π2),M(π3),M))}
4: {calculate node order}
5: for all nodes vi do
6: score[i] = 0
7: for all nodes vj 6= vi do
8: if M ′ ∪H contains no cycle then
9: score[i] += lower bound(M(π1),M(π2),M(π3), {(vi, vj)})

10: order nodes by score
11: {perform branch and bound}
12: while true do
13: (M, lb) = S.selectMinimum()
14: S = S \ {(M, lb)}
15: if M == M(τ) for a permutation τ then
16: if

∑3
i=1 dwrt(τ, π

i) == lb then
17: return τ
18: else
19: S = S ∪ (M, lb+ 1)
20: a = argmax{score[x] |6 ∃y with (vx, vy) ∈M} {select va}
21: for all b 6= a with 6 ∃y with (vb, vy) ∈M do
22: M ′ = M ∪ {(va, vb)} {expand}
23: if M ′ ∪H contains no non-Hamiltonian cycle then
24: S = S ∪ {(M ′, lower bound(M(π1),M(π2),M(π3),M ′))}

orientation. Thus, when expanding a partial solution, we only consider edges of the
form (xt, yh), because all other edges correspond to a change of the orientation of two
adjacent elements in the corresponding permutation.

3.3.4 Experimental results

The algorithm was tested on artificial data. Tests were performed with different datasets
to assess the performance under use of the transposition distance, and the weighted
reversal and transposition distance with weight ratios 1 : 1, 1 : 1.5, and 1 : 2 (wr : wt).
Finally, we adjusted the algorithm such that it can solve the RMP, and created a
corresponding dataset.
Each test case was generated as follows. First, we set π1 = π2 = π3 = id, where

id is the identity genome (
−→
1 . . .

−→
n), with n ∈ {37, 100}. This reflects the sizes of

mitochondrial and chloroplast genomes. Then, we created l operations, where l was

61

3 On Median Problems

varied from 10 to 100 in steps of 10. For each operation, it was randomly decided
from an independent uniform distribution whether it should be applied to π1, π2,
of π3. In other words, the input genomes π1, π2, and π3 were created out of id by
three sequences of operations, the overall number of applied operations was l. For each
operation, we first randomly decided the type of the operation, where reversals had the
probability prev, transpositions had the probability ptp, and inverted transpositions had
the probability pitp. Once the type of the operation was determined, the operation was
drawn from a uniform distribution of all operations of this type. The probabilities prev,
ptp, and pitp were chosen such that the expected frequency of the different operations
reflect the parameters wr and wt when applying our median solver, i.e., it must hold
that prev = 1

wr
/(1
wr

+ 1
wt

) = wt
wr+wt

and ptp + pitp = 1
wt
/(1
wr

+ 1
wt

) = wr
wr+wt

. Thus,
different datasets were created with ptp = 1, prev = pitp = 0 (corresponding to the
transposition distance), prev = 0.5, ptp = pitp = 0.25 (corresponding to the weight
ratio wr : wt = 1 : 1), prev = 0.6, ptp = pitp = 0.2 (corresponding to the weight
ratio wr : wt = 1 : 1.5), prev = 2

3 , ptp = pitp = 1
6 (corresponding to the weight ratio

wr : wt = 1 : 2), and prev = 1, ptp = pitp = 0 (corresponding to the reversal distance).
For all combinations of the parameters n, l, and the probabilities prev, ptp, and pitp,
ten different test cases were created. All tests were performed on a standard PC (Intel
3.16 GHz Core2 Duo CPU with 4 GB RAM), the running time for each test case was
limited to one hour.

An overview of the results is given in Tables 3.1 to 3.10 at the end of the chapter. In
the tables, we list the number of solved test cases (out of 10) and average running time
of the approximation algorithm (i.e., we used the approximation algorithms devised
in [HS06, BO07] for recalculating the weights of the exact weighted cycle medians)
and the exact algorithm for each combination of parameters, as well as the average
gap and the maximum gap between the solution of the approximation algorithm and
the exact algorithm. Of course, the gaps can only be computed for test cases which
have been solved by both algorithms. Test cases where the time limit of 1 hour was
exceeded were omitted when calculating the gaps, but taken into account and set to 1
hour when calculating the average running times. In some cases, the heap had to be
pruned due to the memory limit of 4 GB. Although we only prune the currently worst
solutions, there is the possibility that we miss the optimal solution. The column “heap
pruned” indicates on how many test cases this heap pruning might have led to the loss
of the optimal solution.
The algorithm shows slightly different behavior for n = 37 and n = 100. If n is set to
37, the running time slowly increases with increasing values of l. All instances could
be solved within 1 hour, except for a few test cases where we used the transposition
distance and the exact median solver. The weight ratio has a strong influence on the
complexity of the problem, the running time decreases with increasing importance
of reversals. That is, solving instances of the TMP takes the most time, followed by

62

3.4 Conclusion and open problems

instances of the wRTMP with weight ratios 1 : 1, 1 : 1.5, and 1 : 2. Solving instances of
the RMP is even faster, all test cases could be solved within a few seconds. The same
holds for the memory consumption. A comparison between the approximation algorithm
and the exact algorithm shows that the approximation algorithm is significantly faster,
and has a very good accuracy.
If n is set to 100, the algorithm behaves similarly. However, instead of the slow
increment of the running time, there is a critical distance where running time and
memory consumption drastically increase. Again, this value depends on the weight
ratio, and varies from l ≈ 50 for the TMP to l ≈ 90 for the wRTMP at a weight ratio
of 1 : 2. When solving instances of the RMP, this critical value was not reached in our
experiments, i.e., all test cases could be solved within a few seconds.
A comparison with the software tool GRAPPA-TP [YZT07] on the instances of the TMP
shows that this program reaches its limit much faster than our program. GRAPPA-TP
needed in average more than 10 minutes for test cases with l = 20, and could not
solve any test case with l ≥ 40. Note that these problems could be solved in less than
1 minute by our approximation algorithm, which also had a higher accuracy than
GRAPPA-TP.

3.4 Conclusion and open problems

We have proven the NP-completeness of the TMP, and developed an algorithm for the
TMP and the wRTMP which is fast enough to be used in practice. Our implementation
outperforms existing median solvers for the TMP, and, to the best of our knowledge, is
the first program which can solve instances of the wRTMP exactly.

The proof of the NP-completeness of the TMP directly implies that also the wRTMP
is NP-complete if both operations are weighted equally, i.e., the proof still holds
if we replace the transposition distance by the weighted reversal and transposition
distance in each step. For a weight ratio of 1 : 2 (wr : wt), the NP-completeness follows
from [Cap03]. For all weight ratios in between, the complexity is still open.
A further open problem is whether the TMP is APX-hard or not. As the reversal
median problem is APX-hard [Cap03], the former is more likely. Indeed, a careful
examination of our proof shows that it also proves the APX-hardness of the TMP if
there is an APX-hardness proof of the mdECD that holds even if the mdECD instance
satisfies the following two conditions.

1. The degree of each node in the graph is bounded.

2. There is a constant α > 0 with k ≥ α · |V |

The first condition is required to keep the second condition valid when bounding the in-
and out-degree to 2. The second condition is necessary to preserve the APX-hardness in

63

3 On Median Problems

the reduction from oCMP to TMP. Unfortunately, Holyer’s NP-hardness proof for ECD
cannot be transformed into an APX-hardness proof by using an APX-hard variant of
SAT, like MAX-2-SAT-3 [ACG+99, BK99] (which would satisfy both conditions), as
suboptimal solutions of the ECD can correspond to inconsistent variable assignments
in the SAT formula. Also the APX-hardness proof for directed ECD in [SV05] does
not help, as the size of the cycles grows with the size of the input, and therefore the
second condition cannot be satisfied.
Another closely related problem is the transposition median problem on the symmetric

group Sn (short TMS), which has been extensively studied by Eriksen [Eri07, Eri09]
(note that in this problem, transpositions are defined differently than in our problem).
Although this problem is closely related to the DCJ median problem, its NP-hardness
could not be proven so far, mainly because one has to deal with directed graphs [Eri09].
As our proof extends some steps of Caprara’s proof to directed graphs, we hope that it
can also give new insights into TMS.
Although the algorithm devised in Section 3.3 allows to solve small instances of TMP
and wRTMP, there is still room for improvement. One possible speed improvement has
been demonstrated by Rajan et al. [RXL+10] for the RMP. They used a fast solver
for the DCJ median problem which splits the MB graph into adequate subgraphs (for
details, see [Xu08, Xu09b]). The solution value of the resulting median is reevaluated
using the reversal distance. While this technique does not return all DCJ medians and
may miss the true reversal median, it has proven itself as a good heuristic for the RMP.
It remains an open question how good this heuristic is if the algorithm is adapted to
the TMP or the wRTMP.

l solved
exactly

average
time

heap
pruned

10 10 0:00 0

20 10 0:00 0

30 10 0:00 0

40 10 0:00 0

50 10 0:00 0

60 10 0:01 1

70 10 0:02 0

80 10 0:03 2

90 10 0:05 5

100 10 0:07 4

l solved
exactly

average
time

heap
pruned

10 10 0:00 0

20 10 0:00 0

30 10 0:00 0

40 10 0:00 0

50 10 0:00 0

60 10 0:00 0

70 10 0:00 0

80 10 0:00 0

90 10 0:04 1

100 10 0:03 2

Table 3.1: reversal distance, n = 37 (left) and n = 100 (right).

64

3.4 Conclusion and open problems

l solved
approx.

average
gap

max.
gap

average
time

solved
exactly

average
time

heap
pruned

10 10 0 0 0:00 10 0:00 0

20 10 0 0 0:00 10 0:06 0

30 10 0 0 0:04 9 6:19 2

40 10 0.1 1 0:37 10 3:34 8

50 10 0.25 1 0:47 8 17:35 8

60 10 0.2 1 1:33 5 36:19 10

70 10 0.25 1 1:39 8 13:02 8

80 10 0 0 1:37 8 28:38 10

90 10 0.14 1 1:52 7 23:56 10

100 10 0 0 1:51 5 37:22 10

Table 3.2: n = 37, transposition distance

l solved
approx.

average
gap

max.
gap

average
time

solved
exactly

average
time

heap
pruned

10 10 0 0 0:00 10 0:00 0

20 10 0 0 0:00 10 0:00 0

30 10 0 0 0:00 10 0:00 0

40 10 0 0 0:22 8 12:29 6

50 7 0 0 23:16 2 48:17 9

60 4 0 0 48:43 1 56:07 9

Table 3.3: n = 100, transposition distance. No instance with l ≥ 70 could be solved.

l solved
approx.

average
gap

max.
gap

average
time

solved
exactly

average
time

heap
pruned

10 10 0 0 0:00 10 0:00 0

20 10 0 0 0:01 10 0:00 0

30 10 0.2 1 0:15 10 0:04 1

40 10 0.2 1 0:59 10 1:27 8

50 10 0.3 2 2:43 10 3:58 9

60 10 0.3 1 4:56 10 8:17 10

70 10 0.3 1 7:44 10 12:29 10

80 10 0.1 1 6:29 10 12:53 10

90 10 0.4 1 9:23 10 16:00 10

100 10 0.4 1 9:42 10 15:43 10

Table 3.4: n = 37, wr = 1, wt = 1

65

3 On Median Problems

l solved
approx.

average
gap

max.
gap

average
time

solved
exactly

average
time

heap
pruned

10 10 0 0 0:00 10 0:00 0

20 10 0 0 0:00 10 0:00 0

30 10 0 0 0:17 10 0:25 2

40 10 0 0 1:36 10 2:21 8

50 9 0.56 2 10:21 9 10:42 6

60 6 0.5 2 38:56 4 49:25 10

Table 3.5: n = 100, wr = 1, wt = 1. No instance with l ≥ 70 could be solved.

l solved
approx.

average
gap

max.
gap

average
time

solved
exactly

average
time

heap
pruned

10 10 0.05 0.5 0:00 10 0:00 0

20 10 0 0 0:00 10 0:00 0

30 10 0.1 1 0:03 10 0:01 0

40 10 0 0 0:40 10 1:02 9

50 10 0.25 1 2:43 10 3:34 10

60 10 0.5 1.5 3:09 10 3:59 10

70 10 0.15 1 4:09 10 6:06 10

80 10 0.2 1 4:59 10 7:32 10

90 10 0.15 0.5 5:04 10 7:09 10

100 10 0 0 5:45 10 8:14 10

Table 3.6: n = 37, wr = 1, wt = 1.5

l solved
approx.

average
gap

max.
gap

average
time

solved
exactly

average
time

heap
pruned

10 10 0 0 0:00 10 0:00 0

20 10 0.05 0.5 0:00 10 0:00 0

30 10 0.05 0.5 0:00 10 0:00 0

40 10 0.1 0.5 0:02 10 0:02 1

50 10 0.15 1.5 2:22 10 3:28 8

60 10 0.3 1 12:08 10 17:01 10

70 10 0.35 2 31:31 8 41:12 10

80 7 0 0 51:11 2 58:27 10

90 1 59:52 0

100 0 0

Table 3.7: n = 100, wr = 1, wt = 1.5

66

3.4 Conclusion and open problems

l solved
approx.

average
gap

max.
gap

average
time

solved
exactly

average
time

heap
pruned

10 10 0 0 0:00 10 0:00 0

20 10 0 0 0:00 10 0:00 0

30 10 0 0 0:00 10 0:00 0

40 10 0 0 0:00 10 0:00 0

50 10 0 0 0:02 10 0:03 2

60 10 0 0 0:05 10 0:07 4

70 10 0 0 0:04 10 0:05 2

80 10 0 0 0:08 10 0:10 6

90 10 0 0 0:05 10 0:05 4

100 10 0 0 0:08 10 0:12 4

Table 3.8: n = 37, wr = 1, wt = 2

l solved
approx.

average
gap

max.
gap

average
time

solved
exactly

average
time

heap
pruned

10 10 0 0 0:00 10 0:00 0

20 10 0 0 0:00 10 0:00 0

30 10 0 0 0:00 10 0:00 0

40 10 0 0 0:00 10 0:00 0

50 10 0 0 0:00 10 0:00 0

60 10 0 0 0:00 10 0:00 0

70 10 0 0 0:26 10 0:25 3

80 10 0.2 1 6:00 10 7:21 6

90 10 0 0 16:32 8 24:57 10

100 3 0 0 52:13 1 55:34 10

Table 3.9: n = 100, wr = 1, wt = 2

l solved average
gap

max.
gap

average
time

10 10 0 0 0:00

20 8 0.38 2 13:44

30 1 1 1 56:40

l solved average
gap

max.
gap

average
time

10 10 0.3 2 0:02

20 10 0 0 12:39

30 5 0 0 44:11

Table 3.10: GRAPPA-TP, n = 37 (left) and n = 100 (right). No instance with l ≥ 40
could be solved.

67

4 Phylogenetic Reconstruction

In this chapter, we present a heuristic algorithm that directly constructs a phylogenetic
tree w.r.t. the weighted reversal and transposition distance. Experimental results on
previously published datasets show that constructing phylogenetic trees in this way
results in better trees than constructing the trees w.r.t. the reversal distance, and
recalculating the weight with the weighted reversal and transposition distance.
The chapter is organized as follows. In Section 4.1, some fundamental definitions
are given. In Section 4.2, the algorithm is described. The experimental results and a
comparison to other available algorithms is given in Section 4.3. In Section 4.4, the
results of the algorithm are summarized and other possibilities to create phylogenetic
trees w.r.t. the weighted reversal and transposition distance are discussed.

4.1 Fundamental definitions

A phylogenetic tree of a set of genomes P = {π1, . . . , πk} (the input genomes) is a
tree T = (V,E), where V is the set of nodes and E is the set of edges of the tree.
Each node is labelled by a genome πi, and there is a bijection between the labels
of leaves and the input genomes (i.e., any element of P is the label of exactly one
leaf). The weight of an edge (πi, πj) is the distance d(πi, πj). The weight of a tree
w(T) is the sum of the weights of its edges. Note that these definitions hold for any
distance measure. In fact, our algorithm can be used for any distance measure as long
as certain conditions are satisfied. If we want to emphasize that a certain distance
measure is used, we write its indicator as subscript, e.g., wrev(T) is the weight of the
tree under the reversal distance, and wwrt(T) is its weight under the weighted reversal
and transposition distance. In the multiple genome rearrangement problem, given are a
set of genomes P and a distance measure d, and the task is to find a phylogenetic tree
of P with minimal weight under d.

69

4 Phylogenetic Reconstruction

4.2 The algorithm

The algorithm consists of two different phases. In the first phase, a fast heuristic is used
to create a phylogenetic tree. In contrast to previous algorithms, this heuristic does not
rely on a median solver. In the second phase, the tree is improved until it converges
to a local optimum. Two different improvement algorithms are used: one improves
the tree topology, while the other improves the labeling of internal nodes by using a
median solver. These two algorithms can be run alternatingly until the tree does not
improve any further. In practice, the topology of the tree created in the first phase is
already very good, so the algorithm for improving the topology has to be run only once.
The whole algorithm was designed for the weighted reversal and transposition distance,
however, it can also be used for other rearrangement distances as it only requires an
algorithm that finds an optimal sorting sequence between two permutations, or at least
a good approximation algorithm. Only the second improvement algorithm requires a
median solver.

4.2.1 Creating the tree

The tree T is created iteratively, beginning with a tree T1 whose node set consists only
of one arbitrary genome of the set of input genomes P , i.e., T1 = (V1, E1) = ({π}, ∅)
with π ∈ P . In each step, we create the tree Ti from the tree Ti−1 by choosing a genome
πp ∈ P \Vi−1 that is not yet a node in the tree, and add this genome as leaf node. This
includes an update of the set of edges, and can include the creation of a new internal
node. The algorithm terminates when all input genomes are in the tree, i.e., T = Tk.
Choosing the next genome πp ∈ P to be added to the tree Ti−1, as well as determining
its ancestor node, is done by a heuristic that minimizes the weight of the resulting tree
Ti. In contrast to previous algorithms, we do not use a median solver for this. Instead,
we maintain for each edge (πi, πj) ∈ Ei−1 a set of genomes, called a cloud of the edge.
These clouds can be seen as sets of candidate nodes for internal nodes. For a formal
definition of a cloud, we first have to define the δ-vicinity of an edge. Let (πi, πj) be
an edge in a phylogenetic tree, and let δ ∈ R. The δ-vicinity of (πi, πj) is defined by

vicδ(π
i, πj) = {πc ∈ Σ∗n | d(πi, πc) + d(πc, πj) ≤ d(πi, πj) + δ}

Intuitively, this means that the δ-vicinity of an edge (πi, πj) contains all genomes that
lie “in between” πi and πj . If πc ∈ vicδ(πi, πj), then splitting the edge into the two
edges (πi, πc) and (πc, πj), and adding the edge (πc, πp) will increase the weight of the
tree by at most d(πc, πp) + δ. Thus, searching for new internal nodes in the vicinity
of edges seems to be a good heuristic. However, even the 0-vicinity of an edge (πi, πj)
can be of exponential size w.r.t. d(πi, πj). Hence, it is not practicable to search the
whole vicinities of the edges, and we have to restrict the search space somehow. In the
following, we assume that δ is a small, fixed number. Then, any subset of vicδ(π

i, πj)

70

4.2 The algorithm

πi

πj

πp
πc

πp

πj

πi

πc

πi

πj

πi

πj

(a) (b)

Figure 4.1: A new node πp can either be added (a) to a node πi in the tree or (b)
to a node πc in a cloud of an edge (πi, πj). In the latter case, we have
to split the edge (πi, πj) into two edges (πi, πc) and (πc, πj). Clouds are
removed/generated accordingly.

is called a cloud of the edge (πi, πj). Of course, this definition is quite general and does
not reflect which cloud should be chosen. A heuristic for generating clouds is presented
in the next section. In the following, cloud(πi, πj) denotes the cloud which has been
assigned to the edge (πi, πj).
Creating the tree Ti from Ti−1 is done as follows. We choose an element πp ∈ P \ Vi−1
and either (a) a node πi ∈ Vi−1 or (b) an edge (πi, πj) ∈ Ei−1 and a genome πc ∈
cloud(πi, πj), such that the resulting tree Ti is of minimum weight. If (a) a node
πi ∈ Vi−1 is chosen, then the resulting tree is obtained by adding an edge from πi to πp,
i.e., Vi = Vi−1 ∪ {πp} and Ei = Ei−1 ∪ {(πi, πp)}. If (b) an edge (πi, πj) and a genome
πc ∈ cloud(πi, πj) is chosen, the resulting tree is obtained by replacing (πi, πj) with the
two edges (πi, πc) and (πc, πj) and adding a new edge (πc, πp), i.e., Vi = Vi−1∪{πc, πp}
and Ei = Ei−1∪{(πi, πc), (πc, πj), (πc, πp)}\{(πi, πj)}. An illustration can be found in
Fig. 4.1. The weight of Ti can be calculated in Case (a) by w(Ti) = w(Ti−1) + d(πi, πp)
and in Case (b) by w(Ti) = w(Ti−1)− d(πi, πj) + d(πi, πc) + d(πc, πj) + d(πc, πp). It
should be pointed out that whenever we add an edge to the tree we also generate its
cloud. Analogously, whenever we remove an edge from the tree we also delete its cloud.
The resulting tree does not necessarily fulfill the definition of a phylogenetic tree, as an
input genome may correspond to an internal node π instead of a leaf node. This can
easily be fixed by creating an exact copy π′ of π and adding the edge (π, π′), i.e., the
input genome corresponds now to the leaf π′.
The algorithm in pseudocode for creating the tree can be seen in Algorithm 4.1.

71

4 Phylogenetic Reconstruction

Algorithm 4.1 Creating a phylogenetic tree

1: function createTree(P)
2: select π ∈ P arbitrarily
3: V1 = {π}, E1 = ∅
4: for i = 2 to k do
5: {find best tree update}
6: bestWeight =∞
7: for all πp ∈ P \ Vi−1 do
8: for all πi ∈ Vi−1 do
9: if d(πi, πp) < bestWeight then

10: bestWeight = d(πi, πp)
11: bestInnerNode = πi

12: bestLeaf = πp

13: connectToCloud = false
14: for all (πi, πj) ∈ Ei−1 do
15: for all πc ∈ cloud(πi, πj) do
16: if d(πi, πc) + d(πc, πj) + d(πc, πp)− d(πi, πj) < bestWeight then
17: bestWeight = d(πi, πc) + d(πc, πj) + d(πc, πp)− d(πi, πj)
18: bestEdge = (πi, πj)
19: bestCloudNode = πc

20: bestLeaf = πp

21: connectToCloud = true
22: {perform tree update}
23: if connectToCloud then
24: (πi, πj) = bestEdge
25: Vi = Vi−1 ∪ {bestCloudNode, bestLeaf}
26: Ei = Ei ∪ {(πi, bestCloudNode), (bestCloudNode, πj),
27: (bestCloudNode, bestLeaf)} \ {(πi, πj)}
28: else
29: Vi = Vi−1 ∪ {bestLeaf}
30: Ei = Ei−1 ∪ {(bestInnerNode, bestLeaf)}
31: return (Vk, Ek)

4.2.2 Creating the clouds

Quality and size of the clouds are crucial for the quality of the resulting tree and the
running time of the algorithm. Let us consider the two extremes. If the clouds are
empty, the algorithm is reduced to the Prim-Jarnik algorithm that finds a minimum
spanning tree of P [Jar30, Pri57]. If the cloud of an edge (πi, πj) contains the whole
vicinity of the edge, the size of the cloud is exponential w.r.t. d(πi, πj). Our goal is to

72

4.2 The algorithm

Algorithm 4.2 Creating a cloud of the edge (πi, πj)

1: function createCloud(πi, πj)
2: C0 = {πi}
3: k = 1
4: while πj 6∈ Ck−1 do
5: {if distances cannot be calculated exactly, use the lower bound instead}
6: Ck = {op · πc | πc ∈ Ck−1 and d(op · πc, πj) < d(πc, πj)}
7: Reduce the size of Ck to a constant s
8: k = k + 1
9: return

⋃k−1
l=1 Cl

find, for each edge (πi, πj), a cloud of polynomial size w.r.t. d(πi, πj) that provides a
good coverage of vicδ(π

i, πj). The main idea of our heuristic is to generate different
optimal or near optimal sorting sequences of πi w.r.t. πj and to select a subset of
the genomes that lie on these sorting sequences as the cloud of the edge. To avoid
duplicates in the cloud, our algorithm proceeds as follows. First, we define the set
C0 = {πi}. Then, we iteratively generate the sets Ck out of the sets Ck−1 by applying
to each genome in Ck−1 each operation that decreases the distance to πj . For example,
the first step yields the set C1 = {op · πi | d(op · πi, πj) < d(πi, πj)}. Then, we reduce
the size of Ck by selecting a fixed number of disjoint genomes from Ck. As additional
heuristic, we select the genomes from Ck that minimize the distance to the closest
genome in the set of input genomes P that is not yet in the tree. These steps are
repeated until we reach the genome πj , i.e., Cm = {πj}. As cloud, we use the union of
the sets C1 to Cm−1. The algorithm in pseudocode can be seen in Algorithm 4.2.
Note that the resulting cloud is a subset of vic0(πi, πj). However, this technique works

only if we have a fast exact algorithm for the pairwise distance, thus it cannot be used
for the weighted reversal and transposition distance directly. In this case, we therefore
apply operations that decrease the lower bound instead of decreasing the real distance.
Thus, the parameter δ depends on the approximation quality of the algorithm for
generating the sorting sequence, and we cannot determine it exactly. However, the
approximation quality of the algorithm is very good in practice [Bad05], so we can
assume that δ is small.

4.2.3 Improving the topology

The construction phase may get trapped in a local minimum. To avoid this, it is
followed by an improvement phase, which iteratively tries to find edges that are better
than the existing ones. The input to the improvement algorithm is a tree T ′ = (V ′, E′)
for P in conjunction with the clouds of the edges. The algorithm works as follows. First,
we temporarily remove an edge e ∈ E′. This splits T ′ into two subtrees T1 = (V1, E1)

73

4 Phylogenetic Reconstruction

T1

T2

πi

πj

πi

πj

π1 π2
π1

π2

Figure 4.2: The subtrees T1 and T2 are reconnected by an edge (π1, π2), where π1 ∈
cloud(πi, πj) and π2 ∈ V2. The edge (πi, πj) must be split into two edges
(πi, π1) and (π1, πj) before the new edge (π1, π2) is added. Clouds are
removed/generated accordingly.

and T2 = (V2, E2). Then we search for a better edge (π1, π2) that reconnects these
two subtrees as follows. π1 is either a node in V1 or a genome in the cloud of an edge
(πi, πj) ∈ E1. In the latter case, we alter the tree T1 into a tree T̃1 = (Ṽ1, Ẽ1) by
replacing the edge (πi, πj) with the two edges (πi, π1) and (π1, πj), i.e., Ṽ1 = V1 ∪ {π1}
and Ẽ1 = E1 ∪ {(πi, π1), (π1, πj)} \ {(πi, πj)}. Otherwise, we set T̃1 = T1. The tree
T̃2 is defined analogously to T̃1 by distinguishing as to whether π2 is a node in V2 or
a permutation in a cloud of an edge in E2. The new tree T = (V ,E) is obtained by
connecting T̃1 and T̃2 by the edge (π1, π2), i.e., V = Ṽ1∪Ṽ2 and E = Ẽ1∪Ẽ2∪{(π1, π2)}.
For an example, see Fig. 4.2. If w(T) < w(T ′), these changes are accepted (i.e., T ′ := T),
otherwise they are discarded. When the changes are accepted, we generate the clouds
for the new edges and delete the clouds of removed edges. Note that searching for the
edge (π1, πj) is done by an exhaustive search for π1 in all nodes in V1 and all genomes
in the clouds of all edges in E1, and similarly for π2. The improvement step is repeated
until no further improvement is found.

4.2.4 Improving internal nodes

Due to the tree construction algorithm, usually some of the internal nodes are not
the median of their neighboring nodes, although they are very close to the median in
most cases. The second improvement algorithm improves the tree by relabeling internal
nodes until all internal nodes are the median of their neighbors. This algorithm has
already been described in [SCL76], but for the sake of completeness, we give another
description here.
In order to use a median solver to perform the improvement steps, we first have to
ensure that each internal node is of degree 3, since the median solver is designed to

74

4.2 The algorithm

find the median of three nodes. Thus, for each internal node π with a degree of k > 3,
we create a node π′ which is an exact copy of π. We reconnect these two nodes such
that π is connected to π′ and two of its former neighbors, while π′ is connected to π
and the rest of the former neighbors of π. Thus π has now a degree of 3, and π′ has a
degree of k − 1. We repeat this step until all internal nodes have a degree of 3.
Now, for each internal node π, we calculate a median τ of its three neighboring nodes.
If the sum of the distances of the neighboring nodes to τ is less than the sum of the
distances of the neighboring nodes to π (i.e., π is not a median of its neighboring
nodes), we replace π by τ . This improvement step is repeated until the tree does not
improve any further, i.e., each node is the median of its neighboring nodes.

4.2.5 Implementation details

We implemented the algorithm for the reversal distance as well as for the weighted
reversal and transposition distance. In the second improvement phase, we use our
own reimplementation of Caprara’s median solver [Cap03] for the reversal distance,
which has been improved by the same selection strategy as described in Section 3.3.2.
For the weighted reversal and transposition median, we use the algorithm devised
in Section 3.3, the pairwise distances are calculated by the approximation algorithm
devised in [BO07].
While the choice of the start node of the algorithm is arbitrary, the results may vary
depending on the chosen start node. Therefore, we create a phylogenetic tree for every
possible choice of a start node, and report the tree with the least weight.
Following exactly the description in the previous sections when implementing the
algorithm results in a rather slow algorithm. Thus, in our implementation, we use the
following two modifications which results in a severe speed improvement.

1. In the first phase, the exhaustive search can be accelerated by using a bounding
technique. Let (πi, πj) be an edge in Ei−1, let πc be a genome in cloud(πi, πj),
and let πp be a genome in P \ Vi−1. From the triangle inequation, it follows
that d(πi, πp) + d(πj , πp) ≤ d(πi, πj) + 2d(πc, πp), and therefore d(πc, πp) ≥
d(πi,πp)+d(πj ,πp)−d(πi,πj)

2 . Thus, connecting πp with a genome in cloud(πi, πj) will

increase the weight of the tree by at least d(πi,πp)+d(πj ,πp)−d(πi,πj)
2 . If this value

is greater than the so far best found increment in weight, we do not have to
search for connections from πp to a genome in cloud(πi, πj). A similar bounding
strategy can be used when improving the tree topology.

2. When creating the clouds, it has turned out that even for the reversal distance,
which is computable in linear time [BMY01], it is disadvantageous to use the real
distance. Instead, we use a lower bound lbrev, which is defined as follows.

lbrev(π
i, πj) = n− c(πi, πj)

75

4 Phylogenetic Reconstruction

In other words, when creating the set Ck out of the set Ck−1, we are looking for
all operations that increment the number of cycles c(πi, πj) in the breakpoint
graph. An efficient way to determine these operations, even for the weighted
reversal and transposition distance, can be found in [Mik03].

4.3 Experimental results

The accuracy and performance of our program, called phylo, has been evaluated on
three different biological datasets. We compared our algorithm with the three state-of-
the-art software tools GRAPPA, MGR, and amGRP. All tests were performed on a standard
PC (Intel 3.16 GHz Core2 Duo CPU with 4 GB RAM).

4.3.1 Data sets

We tested our algorithm on the following three biological datasets, which can be
considered as benchmarks for phylogenetic reconstruction algorithms based on genome
rearrangements.

Campanulaceae: This dataset contains 13 chloroplast DNAs of the flowering plant
family Campanulaceae, where each genome contains 105 elements. It was cre-
ated by Cosner et al. as test case for their new method MPBE [CJM+00a], and
at that time, it was ranked among the most challenging datasets for genome
rearrangement based phylogenetic reconstruction.

Metazoan: This dataset contains 11 metazoan mitochondrial DNAs with 36 different
elements. In the context of genome rearrangement algorithms, it was first used
in [BKS99]. In the year 2002, Bourque and Pevzner published a tree with 150
reversals, showing that MGR outperforms GRAPPA, as GRAPPA was only able to find
a tree with 175 reversals in more than 48 hours [BP02]. However, GRAPPA has
been improved ever since, and the current version is now able to find a tree with
159 reversals in 39 seconds (see Section 4.3.4).

Protostomes: This dataset contains 62 protostome mitochondrial DNAs with 36 differ-
ent elements. It was first published in [FSS06] and later adjusted in [BMM07] to
be used as test scenario for amGRP. The increased amount of data and the larger
genome distances make this dataset much more complicated than the Metazoan
dataset.

4.3.2 Weight ratios

From the discussion in Section 1.3, it follows that in order to obtain biologically
meaningful results, the weight ratio wr : wt must be chosen somewhere between 1 : 1

76

4.3 Experimental results

and 1 : 2. For other weight ratios, either transpositions are favored over reversals, or
the sorting scenarios will contain virtually no transpositions. To cover the whole range
of reasonable weightings, we performed tests using the weight ratios 1 : 1, 1 : 1.5, and
1 : 2. The weight wr for reversals was fixed to 1, while the weight wt for transpositions
was set to the corresponding values.
For a better comparison with other tools, we also performed tests using the reversal
distance.

4.3.3 Other tools using the reversal distance

We compared our results with the following three software tools, which are currently
considered to be the state-of-the-art algorithms for the multiple genome rearrangement
problem.

GRAPPA: We used the current version 2.0 [MT], which contains some serious improve-
ments above older versions, especially it includes a reversal median solver. The
best results were achieved with the parameters -t4 -T4 -n4 -e -m -a -C (for details
see the GRAPPA manual). Using DCM-GRAPPA [LTM05] only improved the running
times, but usually resulted in worse trees, so we do not provide the results from
DCM-GRAPPA here.

MGR: We used the current version 2.01. The best results were achieved with the triplet
resolution heuristic disabled. Note that the heuristics h3 and h5 are no longer
available, thus we could not reproduce some of the results given in [BP02] and
[BMM07].

amGRP: We used the version of April 2007. The best results were achieved with the
“skewest” heuristic. As amGRP relies on randomness, we performed 50 runs for
each data set, as suggested by the author [Ber07]. In Tables 4.1 to 4.3, the weight
of the best found tree and the overall running time of all runs is provided. For
more information about the variance of the output of amGRP, the reader is referred
to [BMM07].

As all of these tools only create phylogenetic trees w.r.t. the reversal distance, a
direct comparison is only possible for this distance measure. For the weighted reversal
and transposition distance, we constructed the trees w.r.t. the reversal distance, and
recalculated the weight of all edges with the weighted reversal and transposition
distance, using the exact algorithm we provided in Section 3.3.1. Note that the same
technique was used by Cosner et al. [CJM+00a], where a tree was created w.r.t. the
breakpoint distance, and the edge weights were recalculated using the software tool
DERANGE II [BKS96].
As we did not automatize the recalculation of the tree weights, no running times are
provided for these results.

77

4 Phylogenetic Reconstruction

4.3.4 Results

The results of our experiments are listed in Tables 4.1 to 4.3. An examination of the
results shows that the accuracy is similar for all algorithms on the Campanulaceae
dataset when using the reversal distance, and all algorithms were reasonable fast. In the
more complicated Metazoan and Protostomes dataset, phylo and amGRP outperformed
GRAPPA and MGR in terms of accuracy, in the latter dataset also in speed. While phylo

and amGRP could solve this dataset in about 2 hours, MGR needed almost 9 hours, and
GRAPPA did not terminate within 15 days before we aborted the program. The use
of the weighted reversal and transposition distance drastically increased the running
time, especially for the weight ratio 1 : 1, but the algorithm still could solve every test
case within one day. Despite of the increased running time, the results show that our
approach is superior to constructing trees w.r.t. the reversal distance and recalculating
the edge weights with the weighted reversal and transposition distance. While the
results are similar for a weight ratio of 1 : 2, our results are much better for other
weight ratios. For example, the trees found by our algorithm for the Metazoan and
Protostomes dataset at a weight ratio of 1 : 1 have only about 80% of the weight of
the trees found by amGRP.

4.4 Conclusion and discussion

We have developed a heuristic algorithm for the multiple genome rearrangement problem
that directly uses the weighted reversal and transposition distance. Median calculations,
which are the main bottleneck in other state-of-the-art algorithms, are avoided as
long as possible and only used in the second improvement phase. The experimental
results show that the approach is superior to the indirect approach, where trees are
first created w.r.t. the reversal distance and then edge weights are recalculated with
the weighted reversal and transposition distance.
Because of the very good accuracy and running time of amGRP, one might question
whether it would be possible to simply replace its median solver for the RMP by a
median solver for the wRTMP. However, in amGRP, almost the whole running time
is used to solve instances of the RMP. Due to the higher complexity of the wRTMP,
this technique would result in a significant increment of the running time of amGRP.
The results in Section 3.3.4 suggest that this might be feasible for the weight ratio
wr : wt = 1 : 2, where the wRTMP can be solved very fast. For any other weight ratio,
solving instances of the wRTMP is too costly, and amGRP would be most likely much
slower than our algorithm.

78

4.4 Conclusion and discussion

phylo GRAPPA MGR amGRP

dwrt, wr = 1, wt = 1 38 (40 / 0 / 2) 46 47 41
0:59 (0:27 / 0:28 / 0:04)

dwrt, wr = 1, wt = 1.5 50 (50.5 / 0.5 / 0) 55 56.5 52
0:32 (0:21 / 0:09 / 0:02)

dwrt, wr = 1, wt = 2 62 (62 / 0 / 0) 64 64 63
0:22 (0:16 / 0:03 / 0:03)

drev 64 (65 / 1 / 0) 64 66 65
0:09 (0:04 / 0:04 / 0:01) 12:23 0:20 0:16

Table 4.1: Results for the Campanulaceae dataset. The entries consist of the weight
of the best found tree (first line) and the running time in minutes of the
algorithm (second line). For our algorithm, phylo, the values in brackets in
the first line of each entry is the weight of the best tree after the construction
phase, the decrement of the weight by improving the tree topology, and the
decrement of weight by improving internal nodes. In the second line, the
values in brackets are the running time for the construction phase and for
the two improvement phases. For GRAPPA, MGR, and amGRP, running times
are only provided for the reversal distance.

phylo GRAPPA MGR amGRP

dwrt, wr = 1, wt = 1 85 (86 / 0 / 1) 114 108 106
159:35 (13:30 / 5:38 / 140:07)

dwrt, wr = 1, wt = 1.5 119.5 (123.5 / 0 / 4) 137 130 125
45:16 (9:36 / 7:52 / 27:48)

dwrt, wr = 1, wt = 2 146 (151 / 0 / 5) 159 151 144
12:55 (6:06 / 6:48 / 0:01)

drev 146 (148 / 0 / 2) 159 151 144
4:13 (1:39 / 2:09 / 0:25) 0:39 15:42 12:31

Table 4.2: Results for the Metazoan dataset. For details about the entries, see Table 4.1.

79

4 Phylogenetic Reconstruction

phylo MGR amGRP

dwrt, wr = 1, wt = 1 277 (283 / 1 / 5) 364 348
1404:23 (480:47 / 404:14 / 519:22)

dwrt, wr = 1, wt = 1.5 389.5 (400 / 2 / 8.5) 440 420.5
1208:25 (347:19 / 423:37 / 507:29)

dwrt, wr = 1, wt = 2 489 (499 / 5 / 5) 520 490
498:00 (256:34 / 233:22 / 8:04)

drev 503 (515 / 3 / 9) 528 500
123:24 (57:17 / 63:30 / 2:37) 536:15 108:33

Table 4.3: Results for the Protostomes dataset. For details about the entries, see
Table 4.1. GRAPPA did not terminate within 15 days.

80

5 Rearrangement Distances with
Duplications and Deletions

In this chapter, we focus on the following genome rearrangement problem. Given an
ancestral genome ρ with unique gene content and the genome of a descendant π with
arbitrary gene content, find a shortest sorting sequence of ρ w.r.t. π.
The chapter is organized as follows. In Section 5.1, we focus on the case where ρ
and π are unichromosomal genomes, and the set of operations consists of reversals,
block interchanges, tandem duplications, and deletions. We develop a lower bound for
the distance, and a heuristic greedy algorithm that is based on this lower bound. In
Section 5.2, the approach is extended to multichromosomal genomes. This extends
the set of operations by translocations, fusions, fissions, chromosome duplications,
and chromosome deletions. The accuracy of our approach is evaluated by experiments
in Section 5.3. The limitations and further possible extensions of the algorithm are
discussed in Section 5.4.

5.1 Sorting unichromosomal genomes

We now focus on a genome rearrangement problem for genomes with unequal gene
content, i.e., elements can be duplicated or deleted. The algorithm is designed for
unichromosomal genomes, i.e., ρ and π match our previous definition of a genome.

5.1.1 Problem definition

As the content of the ancestral genome ρ and the descendant π may differ, the set of
operations must be enhanced by operations that can change the genome content. In
addition to the classical operations, the following operations will be considered.

81

5 Rearrangement Distances with Duplications and Deletions

• A tandem duplication makes an exact copy of a segment of a genome, and inserts
this copy exactly after the segment.

• A transposition duplication makes an exact copy of a segment, and inserts this
copy at an arbitrary position in the genome. The copy may also be inverted.

• A deletion cuts a segment out of a genome.

We examine the following genome rearrangement problem. Given an ancestral genome
ρ and the genome of a descendant π, find a sorting sequence of ρ w.r.t. π of minimal
weight. The set of operations consists of reversals, tandem duplications, deletions (each
with weight 1), and block interchanges (with weight 2). Transposition duplications are
not explicitly allowed, but may be detected by our algorithm and simulated by a block
interchange with a subsequent tandem duplication. For simplification, the ancestral
genome ρ must contain each element of Σn exactly once (i.e., it is a permutation). The
corresponding distance is denoted by duch(ρ, π). Note that this distance is not a metric,
because there is no inverse operation to a deletion.
As reversals can be simulated by a single DCJ operation and block interchanges can be
simulated by two consecutive DCJs, our problem is equivalent to find a sorting sequence
of minimum weight consisting of DCJs, tandem duplications, and deletions (each with
weight 1), as long as we demand that if a DCJ creates a circular intermediate, it must
be absorbed in the next step by another DCJ.

5.1.2 Idea of the algorithm

The main idea of the algorithm is to define a lower bound for duch(ρ, π), and then to
use a greedy algorithm that reduces this lower bound with each performed operation.
The lower bound is based on the breakpoint graph, and uses the additional conditions
that ρ satisfies. As these conditions are no longer valid if we apply an operation to ρ,
we sort backwards, i.e., we create a sorting sequence of π w.r.t. ρ which consists of
inverse operations. Note that simply restricting π instead of ρ would not work, because
the operations are directed from the restricted ancestral genome to the unrestricted
descendant, i.e., we would nevertheless have to invert the operations. As reversals and
block interchanges can be simulated by DCJs, the task is to find a sorting sequence of
π w.r.t. ρ consisting of DCJs, inverse tandem duplications, and inverse deletions. Note
that the inverse of a DCJ is still a DCJ, while the inverse of a deletion is an insertion.
To keep our original problem in mind, we will use the term “inverse deletion” instead
of “insertion”.

5.1.3 The breakpoint graph revisited

Although the breakpoint graph has been designed for permutations, we still can follow
the instructions given in Section 1.2.4 for creating the breakpoint graph BG(ρ, π), i.e.,

82

5.1 Sorting unichromosomal genomes

5t

2t

3h

4t 4h

6h

2h

3t 5h

6t

1h 1t

Figure 5.1: The breakpoint graph of ρ = (
−→
1
−→
2
−→
3
−→
4
−→
5
−→
6) and

π = (
−→
1
−→
3
←−
3
←−
5
−→
4
←−
3
←−
5
←−
4
←−
3
−→
6). The edge (3t, 5h) has a multiplicity of 2, all

other edges have a multiplicity of 1. The edge (3h, 3h) is a loop. The graph
consists of 3 components, the edge (1h, 3t) is a 1-bridge, the pair of edges
{(3h, 4h), (4t, 5t)} is a 2-bridge.

the set of black edges is

Eρ = {(u, v) | u, v are adjacent in ρ and are not co-elements}

and the multiset of gray edges is

Eπ = {(u, v) | u, v are adjacent in π and are not co-elements}

An example can be seen in Fig. 5.1. Note that two different descendants can have

the same breakpoint graph. For example, if ρ = (
−→
1
−→
2
−→
3), πa = (

−→
1
−→
2
−→
3
−→
1
←−
3), and

πb = (
−→
1
−→
2
−→
3
←−
1
←−
3), then BG(ρ, πa) = BG(ρ, πb). As π can have multiple occurrences

of each element, also Eπ can have identical edges, i.e., it is a multiset. The multiplicity
of an edge (x, y) is the number of gray edges between x and y. An edge (x, x) is called
a loop, the number of nodes x which are the endpoint of a loop (x, x) in BG(ρ, π)
is denoted by L(ρ, π). The breakpoint graph does no longer decompose into cycles,
but into connected components. These components are not to be confused with the
components known from SBR and the Hannenhalli-Pezner Theory, but take on the
role of cycles in SBR. The number of components in BG(ρ, π) is denoted by C(ρ, π).
A gray edge is called a 1-bridge if the removal of this edge increases C(ρ, π). A pair of
gray edges is called a 2-bridge if none of them is a 1-bridge, and the removal of both
edges increases C(ρ, π).

83

5 Rearrangement Distances with Duplications and Deletions

5.1.4 A lower bound

We will now examine some properties of the breakpoint graph to derive a lower bound
for duch(ρ, π).

Lemma 5.1. If π = ρ, then the breakpoint graph BG(ρ, π) has n components and no
loops. There is no genome π with C(ρ, π) > n.

Proof. Each node is connected with another node by a black edge, therefore the
maximum possible number of components in the breakpoint graph is n. If π = ρ,
all gray edges are parallel to the black edges, therefore it has n components and no
loops.

The inverse operations can have the following effects on C(ρ, π) and L(ρ, π).

DCJ: A DCJ cuts the genome at two positions, and rejoins the cut ends. This has the
following effect on the breakpoint graph. Two gray edges (u, v) and (x, y) are
removed, and w.l.o.g. the gray edges (u, x) and (v, y) are added to the breakpoint
graph. This can increase the number of components by at most 1. If one of the
removed edges is a loop, all three vertices are in the same component after the
operation, i.e., the number of components is not increased by this operation. As
a DCJ removes only two edges, L(ρ, π) can be decreased by at most 2.

Inverse tandem duplication: An inverse tandem duplication deletes the following gray
edges. (a) Edges that are inside the duplicated segment. All these edges have a
multiplicity ≥ 2, thus deleting these edges neither changes C(ρ, π) nor L(ρ, π).
(b) The edge between the last node of the segment and the first node of the copy.
This can increase the number of components by 1, or decrease L(ρ, π) by 1 (but
not both).

Inverse deletion: An inverse deletion splits the genome at one position and adds
arbitrary elements. In the breakpoint graph, one gray edge is removed, and
several gray edges are added. An inverse deletion can increase the number of
components by 1, or remove one loop. As the number of components can only
be increased if the removed edge is a 1-bridge, it cannot simultaneously increase
C(ρ, π) and decrease L(ρ, π) by removing a loop.

These effects are also illustrated in Fig. 5.2.

Theorem 5.2. A lower bound lbuch(ρ, π) for duch(ρ, π) can be defined as follows.

duch(ρ, π) ≥ lbuch(ρ, π), where lbuch(ρ, π) := n− C(ρ, π) +
∑

Ci∈Components

⌈
Li
2

⌉
and Li is the number of nodes with a loop in component Ci.

84

5.1 Sorting unichromosomal genomes

DCJ

π = (
−→
1
−→
4
←−
6
←−
5
←−
4
←−
5) π = (

−→
1
−→
4
−→
5
−→
4
−→
5
−→
6)

5t

2t

3h

4t 4h

6h

2h

3t 5h

6t

1h 1t

5t

2t

3h

4t 4h

6h

2h

3t 5h

6t

1h 1t

duplication
tandem

π = (
−→
1
−→
4
−→
5
−→
4
−→
5
−→
6) π = (

−→
1
−→
4
−→
5
−→
6)

5t

2t

3h

4t 4h

6h

2h

3t 5h

6t

1h 1t

5t

2t

3h

4t 4h

6h

2h

3t 5h

6t

1h 1t

deletion

π = (
−→
1
−→
4
−→
5
−→
6) π = (

−→
1
−→
2
−→
3
−→
4
−→
5
−→
6)

5t

2t

3h

4t 4h

6h

2h

3t 5h

6t

1h 1t

5t

2t

3h

4t 4h

6h

2h

3t 5h

6t

1h 1t

Figure 5.2: The effects of the different operations on the breakpoint graph. In all cases,

ρ = (
−→
1
−→
2
−→
3
−→
4
−→
5
−→
6).

85

5 Rearrangement Distances with Duplications and Deletions

Proof. According to Lemma 5.1, n − C(ρ, π) components must be created and all
loops must be removed by the sorting sequence. There is no inverse operation that
simultaneously increases the number of components and decreases L(ρ, π). An inverse
operation can increase C(ρ, π) by at most 1, and therefore decrease lbuch(ρ, π) by
at most 1. For inverse operations that decrease L(ρ, π), there are three cases. (a) It
decreases L(ρ, π) by 1. (b) It decreases L(ρ, π) by 2, and both nodes where a loop
is removed belong to the same component. (c) It decreases L(ρ, π) by 2, and the
nodes where a loop is removed belong to different components. It is easy to see that
Cases (a) and (b) can decrease the lower bound by at most 1. Case (c) may decrease∑

Ci∈Components

⌈
Li
2

⌉
by 2. However, this is only possible if the inverse operation is a

DCJ that merges two components, i.e., also C(ρ, π) is decreased by 1.

Corollary 5.3. If π = ρ, then lbuch(ρ, π) = 0.

Unfortunately, there are genomes π 6= ρ with lbuch(ρ, π) = 0, e.g., ρ = (
−→
1
−→
2
−→
3) and

π = (
−→
1
−→
2
−→
3
−→
1
−→
2
−→
3). Therefore, it is not sufficient to sort until the lower bound reaches

0. To overcome this problem, we introduce the disruption measure τ(ρ, π), which is
based on the following two ideas.

1. π is similar to ρ if it has many adjacencies w.r.t. ρ.

2. π is similar to ρ if all elements have a similar multiplicity in π and ρ.

These ideas are reflected by the following definitions.

a(ρ, π) := number of adjacencies in π w.r.t. ρ

m(ρ, π) :=
∑

x∈{1,...,n}

|mult(x, π)− 1|

Removing one occurrence of a duplicated segment of length l (which intuitively brings
π closer to ρ) decreases m(ρ, π) by l, but may also decrease a(ρ, π) by up to l. Thus,
the disruption measure must weight the multiplicity of elements more than the number
of breakpoints, leading to the following definition.

τuch(ρ, π) = n− a(ρ, π) + 2 ·m(ρ, π)

Lemma 5.4. If π = ρ, then τuch(ρ, π) = 0. Otherwise, τuch(ρ, π) > 0.

Proof. For each adjacency (xh/t, yh/t), we can say that its contribution to a(ρ, π) is
shared between the two extremities. Thus, each occurrence of an element contributes
at most 1 to a(ρ, π). By adding the contribution of all occurrences of an element x, the
contribution of x to τuch(ρ, π) is ≥ 2 · |mult(x, π)− 1| −mult(x, π) which is minimized
if mult(x, π) = 1. Thus, τuch(ρ, π) = 0 if and only if all elements have a multiplicity
of 1, and there are no breakpoints. In this case, π and ρ are identical.

86

5.1 Sorting unichromosomal genomes

5.1.5 The algorithm

The algorithm uses a greedy strategy to sort the genome. In each step, it searches
for inverse operations that decrease the lower bound, i.e., they either increase C(ρ, π)
or decrease L(ρ, π), and check their effect on the lower bound. For selecting one
of these operations, we define the score of an inverse operation iop as the tuple
σuch(ρ, π) = (∆lbuch(ρ, π),∆τuch(ρ, π)), with ∆lbuch = lbuch(ρ, π)− lbuch(ρ, iop ·π) and
∆τuch = τuch(ρ, π) − τuch(ρ, iop · π). The comparison operator between two scores is
defined by σuch(iop1) > σuch(iop2) if ∆lbuch(iop1) > ∆lbuch(iop2) ∨ (∆lbuch(iop1) =
∆lbuch(iop2)∧∆τuch(iop1) > ∆τuch(iop2)). In each step, we select the inverse operation
with the greatest score from the set of inverse operations that decrease the lower bound.
If there is no such operation, we use additional heuristics to search for small sequences
of inverse operations that decrease τuch(ρ, π) without increasing lbuch(ρ, π).
For simplification of the presentation of the algorithm, we assume in this section that

ρ is the identity genome (
−→
1 . . .

−→
n).

Decreasing the lower bound

As a DCJ removes two gray edges and rejoins the endpoints with two new gray edges,
it can only increase C(ρ, π) if the removed edges are a 2-bridge, or two 1-bridges
in the same component. If the DCJ rejoins the endpoints such that we get a linear
genome and a circular intermediate, we need a lookahead to search for another DCJ
that absorbs this circular intermediate. Those two DCJs are directly merged into two
reversals or one block interchange with a weight of 2. Inverse tandem duplications can
only remove one gray edge with a multiplicity of 1 (the one between the duplicated
segments), thus an inverse tandem duplication increases C(ρ, π) if and only if this edge
is a 1-bridge. Inverse deletions remove only one gray edge, thus also an inverse deletion
can increase C(ρ, π) only if the removed edge is a 1-bridge. In summary, the main task
in finding inverse operations that increase C(ρ, π) is to find 1-bridges and 2-bridges in
the breakpoint graph. This can be done in linear time (see e.g. [NI92, Tsi09]). For all
1-bridges, we additionally have to check if we can apply an inverse tandem duplication
on it (i.e., check whether there are identical segments on both sides of the edge), and if
we can apply an inverse deletion on it (i.e., check whether there is a segment that can
be inserted such that no gray edge in the segment merges two components). For the
latter case, practical tests have shown that there is such a segment in most cases, but
it is better to only allow segments that contain no breakpoint w.r.t. ρ.
Finding inverse operations that decrease L(ρ, π) is rather straightforward, as we just
have to scan the breakpoint graph for loops with a multiplicity of 1 and find the
corresponding position in the genome. An operation that decreases L(ρ, π) can be an
inverse tandem duplication or an inverse deletion that removes this loop, or a DCJ that
removes two loops with a multiplicity of 1, or a DCJ that acts on a loop and another
gray edge of the same component.

87

5 Rearrangement Distances with Duplications and Deletions

Heuristics for the remaining cases

If there is no inverse operation that decreases the lower bound, we search for inverse
operations or small sequences of inverse operations that decrease τuch(ρ, π) without
increasing lbuch(ρ, π). As an exhaustive search would be too expensive, we will use the
following heuristics.
If there are two consecutive copies of the same segment, we can remove one of them by
an inverse tandem duplication. As an inverse tandem duplication only removes gray
edges, it can never increase the lower bound, but decreases τuch(ρ, π). This is different in
the general case of an inverse transposition duplication, where the duplicated segments
are separated by a non-empty segment in the genome. In this case, the removal of one of
these segments (which can be simulated by a block interchange and an inverse tandem
duplication) creates a new gray edge between the last element before the removed
segment and the first element after the removed segment. If the corresponding nodes in
the breakpoint graph are in the same component and not identical, we can safely apply
this operation. Otherwise, it would decrease the number of components or create a new
loop, i.e., there are inverse transposition duplications that increase the lower bound.
However, if we have at least three copies of the segment, the situation is different.

Lemma 5.5. If there are three identical copies of a segment that are maximal (i.e.,
they cannot be extended in any direction such that still all three copies are identical),
then there exists a sequence of inverse operations that removes two of these copies and
does not increase the lower bound.

Proof. Assume that the duplicated segment is of the form
−→
x . . .

−→
y , i.e., the segment

starts with xt and ends with yh. There are gray edges (v1, xt) and (yh, w1), (v2, xt)
and (yh, w2), and (v3, xt) and (yh, w3) (from the elements enclosing the first, second,
and third copy of the segment). Because the segment is maximal, we can assume
w.l.o.g. that w1 6= w2. As v1, v2, and v3 are all adjacent to xt, they must be in the
same component, as well as w1, w2, and w3. By deleting the first two segments, we
remove the gray edges (v1, xt), (yh, w1), (v2, xt), and (yh, w2), and get the new gray
edges (v1, w1) and (v2, w2). If this merges two components, the new gray edges are a
2-bridge, and we can apply a DCJ that replaces them by the gray edges (v1, v2) and
(w1, w2). If v1 = v2 this can create a new loop. This loop can be removed by another
DCJ between the edges (v1, v2) and (v3, xt) (note that v3 6= v1 because the segments
are maximal, and v1 6= xt because otherwise the loop was already there before the
operation). In fact, the operations of the sequence can be arranged such that all DCJs
are reversals, so we do not have to find appropriate follow-ups. An illustration of the
sequence is depicted in Fig. 5.3.

We now examine what we can do with elements with a multiplicity of at most 2. A
first strategy would be to create adjacencies wherever this is possible without creating

88

5.1 Sorting unichromosomal genomes

2-bridge?

If v1 = v2,
apply reversal

If merge of components,
apply reversal

w1

w2

w3

xt xh yt yh

v3

v2

v1

w1

w2

w3

xt xh yt yh

v3

v2

v1

w1

w2

w3

xt xh yt yh

v3

v2

v1

w1

w2

w3

xt xh yt yh

v3

v2

v1

. . .
−→
a1
−→
x
−→
y
−→
b1 . . .

−→
a2
−→
x
−→
y
−→
b2 . . .

−→
a3
−→
x
−→
y
−→
b3 . . .

. . .
−→
a1
←−
a3 . . .

←−
b2
−→
b1 . . .

−→
a2
−→
x
−→
y
−→
b3 . . .

Remove 2×
−→
x
−→
y by 2 block interchanges

+ 2 inverse tandem duplications

. . .
−→
a1
−→
b1 . . .

−→
a2
−→
b2 . . .

−→
a3
−→
x
−→
y
−→
b3 . . .

. . .
−→
a1
←−
a2 . . .

←−
b1
−→
b2 . . .

−→
a3
−→
x
−→
y
−→
b3 . . .

Figure 5.3: An example of a sequence that removes two of the segments
−→
x
−→
y without

increasing the lower bound. If some of the segments
−→
x
−→
y are inverted, a

similar sequence can be applied.

89

5 Rearrangement Distances with Duplications and Deletions

xt xh

vhut

(x+1)t (x+1)h

π = (. . .
−→
x
−→
u . . .

←−−−
(x+1)

←−
v . . .)

Figure 5.4: The configuration in which a DCJ can create an adjacency without creating
a loop.

loops (note that creating adjacencies cannot decrease the number of components). As
a precondition, there must be a black edge (xh, (x+ 1)t) and gray edges (xh, ut/h) and
((x+ 1)t, vt/h) with ut/h 6= vt/h (see Fig. 5.4).
If there are no further adjacencies to create, and all elements have a multiplicity of at

most 2, all possible cases for a black edge and its adjacent gray edges are depicted in
Fig. 5.5. For all of these cases, there are sequences of inverse operations that decrease
τuch(ρ, π) and do not increase lbuch(ρ, π). Some of these sequences require an inverse
transposition duplication. In our algorithm, this will be simulated by a block interchange
and an inverse tandem duplication.

Case (a): The genome is of the form π = (. . .
−→
u
−→
x . . .), the element x− 1 is missing.

Let y be the largest element < x that is not missing. We apply an inverse

deletion of the elements
−−−→
y + 1 to

−−−→
x− 1 between

−→
u and

−→
x , i.e., π becomes

(. . .
−→
u
−−−→
y + 1 . . .

−−−→
x− 1

−→
x . . .). The gray edge (xt, uh) is removed, the inserted gray

edges are the edge (uh, (y + 1)t) and some edges corresponding to adjacencies,
i.e., they are parallel to a black edge. The black edge ((x− 1)h, xt) is split from
the component, the edge (uh, (y+ 1)t) may merge two components, so the overall
number of components cannot be decreased. As the element y+ 1 was not present
in π before the operation, the edge (uh, (y+ 1)t) cannot be a loop, thus the lower
bound is not increased by this operation.

Case (b): x is in a duplicated segment, w.l.o.g. the segment is left-maximal. We extend
it to the right until it is also right-maximal, yielding the duplicated segment−→
x . . .

−→
y (of course, y may also have negative orientation). Thus, the genome is of

the form π = (. . .
−−−→
x− 1

−→
x . . .

−→
y
−→
u . . .

−→
v
−→
x . . .

−→
y
−→
w . . .). The duplicated segments

and the adjacent elements may also have a negative orientation. As the segment is
right-maximal, ut 6= wt or the segments have different orientation and touch each

90

5.1 Sorting unichromosomal genomes

(a) (b) (c) (d) (e)

xt xt xt xt xt

uh vh uh uh uhwh

xt

uh

xt xt

(f) (g) (h)

xt

(i)

xt

(j)

(x-1)h (x-1)h (x-1)h (x-1)h (x-1)h

(x-1)h (x-1)h (x-1)h (x-1)h (x-1)h

Figure 5.5: The different configurations in which each node is adjacent to at most 2
gray edges, and no adjacency can be created without creating a loop. In
all cases, the picture shows a black edge and all its adjacent gray edges.
Whether a node is the head or tail of an element may differ from the given
labeling.

other, i.e., π = (. . .
−−−→
x− 1

−→
x . . .

−→
y
←−
y . . .

←−
x
←−
v . . .). In the former case, we remove

the copy of the segment that is not adjacent to x− 1, i.e., we remove the gray
edges (vh, xt) and (yh, wt), and create the new gray edge (vh, wt). If vh = wt, the
loop can be removed by a DCJ that acts on this edge and the edge (yh, ut). In
the latter case, we remove the copy of x that is not adjacent to x − 1, i.e., we
remove the loop and the gray edge (vh, xt), and we create the gray edge (yh, vh).
In both cases, the black edge ((x − 1)h, xt) is split from the component, and
adding one new gray edge can merge only two components, so the overall number
of components does not decrease. Additionally, we do not create any loops, thus
the lower bound does not increase.

Case (c): The genome is of the form π = (. . .
−→
u
−→
x . . .

−→
y
−→
v . . .

−→
w
−→
x . . .

−→
y
−→
z . . .), where

−→
x . . .

−→
y is a duplicated segment that cannot be extended in any direction (of

course, the elements may also have a negative orientation). We remove the second
copy of the duplicated segment. This removes the gray edges (wh, xt) and (yh, zt)
and adds the gray edge (wh, zt). If this merges two components, then (uh, xt) and
(wh, zt) are 1-bridges with disjoint endpoints (remember that there is no gray
edge from node (x−1)h), so a DCJ on these two edges splits the component again.

91

5 Rearrangement Distances with Duplications and Deletions

If wh = zt, this sequence would create a loop, so we do not apply it. Instead, we
use the symmetrical case in which we remove the first copy of the duplicated
segment. If both wh = zt and uh = vt, we apply the first sequence, and remove
the loop (wh, zt) by applying a DCJ on it and the gray edge (uh, xt). Note that
there is the possibility that the first DCJ creates a circular intermediate that
cannot be absorbed in the next step. In this case, we can apply the sequence for
Case (a) twice, i.e., we add the same elements before both copies of x.

Case (d) and (e): If all elements have a multiplicity of at most 2, and there is no DCJ
that creates an adjacency, then the black edge incident to uh must correspond to
Case (c), thus we can apply the according sequence.

Case (f), (g), (h), and (i): If any of the Cases (a) to (e) occurs in the breakpoint
graph, apply the corresponding sequence. Now, assume that none of these cases
occurs in the breakpoint graph. The elements on both sides of the black edges
corresponding to Cases (f) to (i) have multiplicity 0 or 2. As the two gray edges
starting from one node always go to the same node, the genome consists solely

of two identical segments
−→
x . . .

−→
y , i.e., it is of the form π = (

−→
x . . .

−→
y
−→
x . . .

−→
y)

(if the breakpoint graph does not contain Case (g)) or π = (
−→
x . . .

−→
y
←−
y . . .

←−
x)

(if the breakpoint graph contains Case (g)). We remove one of the segments,
either by an inverse tandem duplication, or by a reversal and an inverse tandem
duplication. While in the first case gray edges are only removed, the second case
may merge two components with the new gray edge (yh, xt). However, as Case
(g) may only occur between the two duplicated segments, all remaining loops of
the breakpoint graph are removed, therefore the lower bound does not increase.

Case (j): If all black edges in the breakpoint graph correspond to Case (j), then π = ρ,
and the algorithm stops.

All these sequences decrease τuch(ρ, π), a summary of their effects is listed in Table 5.1.

Completeness of the algorithm

If there is no inverse operation that decreases the lower bound, the algorithm searches
for all inverse operations and sequences mentioned in the last paragraph, and again
performs the one with the greatest score. The whole algorithm in pseudocode can be
seen in Algorithm 5.1.

Theorem 5.6. The algorithm terminates after a finite number of steps. When the
algorithm terminates, π is transformed into ρ.

92

5.1 Sorting unichromosomal genomes

Sequence ∆m(ρ, π) ∆a(ρ, π) ∆τuch(ρ, π)

Inverse Tandem Duplication −l ≥ −l ≥ l
Segments with multiplicity ≥ 3 −2l ≥ −2l − 1 ≥ 2l − 1
Creating adjacencies 0 ≥ 1 ≥ 1
Case (a) −l l 2l
Case (b) −l ≥ −l ≥ l
Case (c) −l ≥ −l ≥ l
Case (c’) 0 2l 2l
Case (f) - (i) −l ≥ −l ≥ l

Table 5.1: Changes of m(ρ, π), a(ρ, π), and τuch(ρ, π) by applying the different se-
quences of operations described in this section. Case (c’) is the case where
we cannot solve Case (c) directly and have to apply the sequence for Case
(a) twice. l denotes the length of inserted or removed segments. Note that
for all sequences, ∆τuch > 0.

Algorithm 5.1 Heuristic algorithm for finding a sorting sequence of ρ w.r.t. π
(unichromosomal case)

1: function findSequence(ρ, π)
2: while (lbuch(ρ, π), τuch(ρ, π)) 6= (0, 0) do
3: find all inverse operations that decrease lbuch(ρ, π)
4: if inverse operation found then
5: apply inverse operation with maximal score
6: else
7: find inverse tandem duplications
8: find inverse transposition duplications
9: find sequences for segments with multiplicity ≥ 3

10: find DCJs that create adjacencies
11: find sequences for Cases (a) - (i)
12: apply sequence with maximal score
13: invert and output the sorting sequence

93

5 Rearrangement Distances with Duplications and Deletions

Proof. As long as τuch(ρ, π) > 0, the algorithm finds and performs an inverse opera-
tion. Thus, if the algorithm stops, τuch(ρ, π) = 0, and according to Lemma 5.4, π = ρ.
As none of the applied operations increases the lower bound, only lbuch(ρ, π) inverse
operations that decrease the lower bound can be applied. If there is no such oper-
ation, we apply sequences of inverse operations that decrease τuch(ρ, π). Because of
τuch(ρ, π) ≥ 0, only a finite number of these sequences can be applied between two in-
verse operations that decrease the lower bound. Thus, the overall number of performed
operations is finite.

5.2 Sorting multichromosomal genomes

We now extend the algorithm to multichromosomal genomes. As in most species with
a multichromosomal genome, the chromosomes are linear, also our model uses linear
chromosomes. This requires an extension of our former definition of a genome, as well
as the introduction of further operations.

5.2.1 Additional definitions

As the definition of a genome from Section 1.2 is not capable of modelling multichro-
mosomal genomes, we need to alter this definition. A chromosome πi = (πi1 . . . π

i
k)

is a string over the alphabet Σn = {1, . . . , n}, where each element has a positive or

negative orientation (indicated by
−→
x or

←−
x), i.e., a chromosome corresponds to the

former definition of a genome, except for the fact that it is not circular. The reflection of
a chromosome πi = (πi1 . . . π

i
n) is the chromosome −πi = (−πin . . .− πi1), i.e., the order

of the elements as well as the orientation of each element is inverted. πi and −πi are
considered to be equivalent. A genome π = {π1, . . . , πm} is a multiset of chromosomes.
The first and the last element of a chromosome written in extremities notation are
its telomeres, t(xt, π) and t(xh, π) denote how often xt and xh are telomeres in π. If a
telomere xt/h occurs in two genomes π and ρ, then xt/h is a telomere adjacency of π
and ρ. If it occurs solely in π, xt/h is a telomere breakpoint of π w.r.t. ρ. Analogously, an
unordered pair of extremities {xt/h, yt/h} that are not co-elements is an inner adjacency
of π and ρ if it occurs in both π and ρ, and an inner breakpoint of π w.r.t. ρ if it occurs
solely in π.
Additionally to the previously defined operations, we consider the following operations.

• A translocation splits two chromosomes πi and πj at two positions s and t
and rejoins the segments, yielding the chromosomes (πi1 . . . π

i
s−1π

j
t . . . π

j
l(j)) and

(πj1 . . . π
j
t−1π

i
s . . . π

i
l(i)), where l(i) is the length of chromosome πi and l(j) is the

length of chromosome πj .

• A fission cuts a chromosome into two chromosomes.

94

5.2 Sorting multichromosomal genomes

• A fusion concatenates two chromosomes.

• A chromosome duplication adds an exact copy of a chromosome to the genome.

• A chromosome deletion deletes a chromosome from a genome.

We now focus on the following genome rearrangement problem. Given an ancestral
genome ρ and the genome of a descendant π, find a sorting sequence of ρ w.r.t. π of
minimal weight. The set of operations consists of reversals, translocations, fissions,
fusions, tandem duplications, deletions, chromosome duplications, chromosome deletions
(each with weight 1), and transpositions (with weight 2). For simplification, the ancestral
genome ρ must satisfy the following conditions.

1. Two chromosomes in ρ are either disjoint or identical.

2. Each element in Σn occurs in at least one chromosome of ρ.

3. Each element in Σn occurs at most once in each chromosome of ρ.

The corresponding distance is denoted by dmch(ρ, π). As in the unichromosomal case,
also this distance is not a metric.
It has been shown in [YAF05] that reversals, translocations, fusions, and fissions can all
be simulated by a single DCJ operation, while transpositions can be simulated by two
consecutive DCJs. Therefore, it is sufficient to focus on DCJs and the operations that
change the genome content, and demand that DCJs that create a circular intermediate
are followed by another DCJ such that the combination of both DCJs corresponds to a
transposition.

5.2.2 A further extension of the breakpoint graph

The main idea of the algorithm is the same as in the algorithm for the unichromosomal
case: define a lower bound based on the breakpoint graph, and use a greedy heuristic to
sort backwards from π to ρ. Technically, it would be possible to use the same definition
of the breakpoint graph, but to obtain a strong lower bound, we need to modify it.
The definition remains basically the same, with the exception that gray edges connect
neighboring extremities in π only if none of these extremities is a telomere in ρ, i.e.,
BG(ρ, π) = (V,Eρ ∪ Eπ), with set of nodes V = {1t, 1h, . . . , nt, nh}, the multiset of
black edges is

Eρ = {(u, v) | u, v are adjacent in ρ and are not co-elements},

and the multiset of gray edges is

Eπ = {(u, v) | u, v are adjacent in π and are not co-elements,
and u and v are not telomeres in ρ}.

95

5 Rearrangement Distances with Duplications and Deletions

1t 2t 3t 4t 5t 6t1h 2h 3h 4h 5h 6h

Figure 5.6: The breakpoint graph of ρ = {(
−→
1
−→
2
−→
3), (
−→
1
−→
2
−→
3), (
−→
4
−→
5
−→
6)} and

π = {(
−→
1
−→
2
←−
2
−→
3), (
−→
4
←−
3
−→
2
←−
5
−→
6), (
−→
5
←−
1)}. There is no gray edge between 4h

and 3h because 3h is a telomere in ρ.

Components, loops, 1-bridges, and 2-bridges are defined as in Section 5.1. To emphasize
the fact that the chromosomes are linear and not circular, we draw the nodes of the
breakpoint graph on a straight line. An example of a breakpoint graph is depicted in
Fig. 5.6.

5.2.3 A lower bound

In the unichromosomal case, we were mainly interested in the properties of the break-
point graph. As the breakpoint graph does not contain edges for telomeres, we addi-
tionally have to consider the amount of incorrect telomeres (denoted by T (ρ, π)), which
is defined as follows.

T (ρ, π) =
∑

xt/h|t(xt/h,ρ)>0

max{t(xt/h, ρ)− t(xt/h, π), 0}+
∑

xt/h|t(xt/h,ρ)=0

t(xt/h, π)

This formula is inspired by the following consideration. We are seeking a sequence
of inverse operations that transforms π into ρ. If an extremity xt/h occurs k times
as a telomere in ρ, but only j < k times as a telomere in π, then this telomere must
be created k − j times in π (this results in the first summand of the formula). If
an extremity xt/h is a telomere in π, but not in ρ, this telomere must be removed
from π (this results in the second summand of the formula). For an illustration, see
Fig. 5.7. Although it is possible to count the exact amount of telomeres which have to
be removed or created (i.e., using the formula

∑
Extremities xt/h

|t(xt/h, ρ)− t(xt/h, π)|),
this is disadvantageous in practice, because if t(xt/h, π) > t(xt/h, ρ) > 0, the algorithm
cannot decide which of the telomeres in π correspond to those in ρ, and which have
to be removed. Therefore, extremities xt/h with t(xt/h, π) > t(xt/h, ρ) > 0 are not
considered in the formula.

96

5.2 Sorting multichromosomal genomes

ρ = (1t1h2t2h)(1t1h2t2h)(3t3h4t4h)

π = (1t1h2t2h3h3t)(3t3h4t4h)(4t4h)

Figure 5.7: Two genomes ρ and π written in extremities notation. Extremities account-
ing for T (ρ, π) are drawn in red. The telomere 1t in ρ accounts only once
for T (ρ, π), because there is one corresponding telomere in π for the other
occurence of this telomere in ρ. Both telomeres 4h in π do not account for
T (ρ, π), because 4h is also a telomere in ρ.

Lemma 5.7. If π = ρ, then C(ρ, π) = n+ ch(ρ), T (ρ, π) = 0, and L(ρ, π) = 0, where
ch(ρ) is the number of disjoint chromosomes in ρ. For all genomes π, it holds that
C(ρ, π) ≤ n+ ch(ρ), L(ρ, π) ≥ 0, and T (ρ, π) ≥ 0.

Proof. The breakpoint graph has 2ch(ρ) nodes that are a telomere in ρ, and 2(n−ch(ρ))
nodes that are not a telomere in ρ. The latter nodes are pairwise connected by black
edges. Therefore, the maximum possible number of components is 2ch(ρ)+ 2(n−ch(ρ))

2 =
n+ ch(ρ). It is easy to see that both L(ρ, π) and T (ρ, π) must always be ≥ 0. If π = ρ,
all gray edges are parallel to the black edges, therefore it has n + ch(ρ) components,
no loops, and no incorrect telomeres.

We now examine the effects of the inverse operations on C(ρ, π), L(ρ, π), and T (ρ, π).

Inverse reversal, translocation, transposition: These operations can be simulated by
one or two DCJs, thus it is sufficient to examine the effects of a DCJ (note that
transpositions, which require two DCJs, have weight 2). We have already shown
in the last section that a DCJ can increase the number of components by 1 and
remove at most 2 loops, but not both simultaneously. This still holds for the
modified breakpoint graph. A DCJ can only change T (ρ, π) if one cut is at the
end of a chromosome. Then, a telomere xt/h is removed and a new telomere yt/h
is created. This decreases T (ρ, π) by 1 or 2 if xt/h is not a telomere in ρ and yt/h
is a telomere in ρ, otherwise the operation does not decrease T (ρ, π). However,
in the former case, the DCJ does not remove any gray edge: the cutting point at
the telomere end does not correspond to any gray edge, and the inner breakpoint
at yt/h does not induce a gray edge because yt/h is a telomere in ρ. Therefore, if
a DCJ decreases T (ρ, π), it neither increases C(ρ, π) nor removes any loops.

Inverse fusion (fission): Splitting a chromosome can remove one gray edge, and there-
fore increase C(ρ, π) by 1 or decrease L(ρ, π) by 1. T (ρ, π) decreases only if both
new telomeres are also telomeres in ρ. In this case, no gray edge in the breakpoint

97

5 Rearrangement Distances with Duplications and Deletions

graph is removed, i.e., C(ρ, π) and L(ρ, π) remain unchanged. T (ρ, π) is decreased
by at most 2.

Inverse fission (fusion): Concatenating two chromosomes can decrease T (ρ, π) by at
most 2. This operation never removes a gray edge, thus C(ρ, π) cannot be increased
and L(ρ, π) cannot be decreased.

Inverse tandem duplication: The observation from the previous section still holds,
the operation can create one new component or remove one loop, but not both
simultaneously. An inverse tandem duplication never changes the set of telomeres
in π, and therefore cannot change T (ρ, π).

Inverse deletion (insertion): The observation from the previous section still holds,
the operation can create one new component or remove one loop, but not both
simultaneously. An inverse deletion can only change T (ρ, π) if the segment is
inserted at a chromosome end. In this case, no gray edge is removed, i.e., C(ρ, π)
cannot be increased and L(ρ, π) cannot be decreased. As the old chromosome
end is no longer a telomere and one new telomere is added, T (ρ, π) is decreased
by at most 2.

Inverse chromosome duplication: This operation can decrease T (ρ, π) by at most 2 (if
the telomeres of the removed chromosome are not telomeres in ρ). Only gray edges
with multiplicity ≥ 2 are removed, thus C(ρ, π) and L(ρ, π) remain unchanged.

Inverse chromosome deletion (chromosome insertion): This operation can decrease
T (ρ, π) by at most 2 (if the telomeres of the new chromosome are also telomeres
in ρ). In the breakpoint graph, no gray edges are removed, i.e., C(ρ, π) cannot
be increased and L(ρ, π) cannot be decreased.

Theorem 5.8. A lower bound lbmch(ρ, π) for dmch(ρ, π) can be defined as follows.

dmch(ρ, π) ≥ lbmch(ρ, π),

with lbmch(ρ, π) := n+ ch(ρ)− C(ρ, π) +

⌈
T (ρ, π)

2

⌉
+

∑
ComponentsCi

⌈
Li
2

⌉
where Li is the number of nodes with a loop in component Ci, and ch(ρ) is the number
of disjoint chromosomes in ρ.

Proof. An operation that decreases T (ρ, π) will neither increase C(ρ, π) nor decrease
L(ρ, π), therefore we can separate every sorting sequence into operations that decrease

CL(ρ, π) := n+ch(ρ)−C(ρ, π)+
∑

ComponentsCi

⌈
Li(ρ,π)

2

⌉
and operations that decrease

T (ρ, π). If ρ = π, then C(ρ, π) = n + ch(ρ) and L(ρ, π) = 0 (see Lemma 5.7), and
therefore CL(ρ, π) = 0. As each operation decreases CL(ρ, π) by at most one (the

98

5.2 Sorting multichromosomal genomes

proof from the previous section still holds), we need at least CL(ρ, π) operations of
the first kind. Furthermore, each operation decreases T (ρ, π) by at most 2, so we need

at least T (ρ,π)
2 operations of the second kind. Therefore, any sorting sequence must

have at least lbmch(ρ, π) operations.

Corollary 5.9. If π = ρ, then lbmch(ρ, π) = 0.

Unfortunately, also in the multichromosomal case there are genomes π 6= ρ with

lbmch(ρ, π) = 0, e.g., ρ = {(
−→
1
−→
2), (
−→
3
−→
4)} and π = {(

−→
1
−→
2
−→
3
−→
4), (
−→
1
−→
2)}. Therefore, it

is not sufficient to sort until the lower bound reaches 0, and again we have to define a
disruption measure τmch(ρ, π). The intuition behind this disruption measure is similar
to the one for the unichromosomal case. We use the following definitions.

ia(ρ, π) := 2 · number of inner adjacencies in π w.r.t. ρ

ta(ρ, π) := number of telomere adjacencies in π w.r.t. ρ

m(ρ, π) :=
∑

Element x

|mult(x, π)−mult(x, ρ)|

τmch(ρ, π) := ia(ρ, ρ) + ta(ρ, ρ)− ia(ρ, π)− ta(ρ, π) + 4 ·m(ρ, π)

Each inner adjacency (xt/h, yt/h) is weighted by 2, so both xt/h and yt/h can account 1
for ia(ρ, π). A telomere adjacency consists just of a single extremity, which accounts 1
for ta(ρ, π). ia(ρ, ρ) and ta(ρ, ρ) are a bias such that τmch(ρ, π) = 0 if π = ρ. Removing
a duplicated segment of length l can decrease τmch(ρ, π) by up to l ·m(ρ, π), but it
can also remove up to l inner adjacencies. To avoid the cancellation of the effects
on τmch(ρ, π) if a duplicated segment with no breakpoints is removed, elements with
incorrect multiplicity have twice the weight of an inner adjacency, which is analogous
to the weights in the unichromosomal case. Therefore m(ρ, π) is multiplied by 4. In
our example, ia(ρ, ρ) = 4, ta(ρ, ρ) = 4, ia(ρ, π) = 6, ta(ρ, π) = 4, m(ρ, π) = 2, and
therefore τmch(ρ, π) = 6.

Lemma 5.10. If ρ = π, then τmch(ρ, π) = 0. Otherwise, τmch(ρ, π) > 0.

Proof. From the discussion above, it follows that τmch(ρ, π) ≥ 0, and the equality holds
if ρ = π. In order to minimize τmch(ρ, π), it is necessary to minimize m(ρ, π) and to
maximize ia(ρ, π) and ta(ρ, π). ia(ρ, ρ) and ta(ρ, ρ) are independent of π and therefore
fixed. Each extremity can account 1 for ia(ρ, π) (if it is in an inner adjacency) or 1 for
ta(ρ, π) (if it is a telomere adjacency), therefore each element in π can account at most
2 for ia(ρ, π)+ ta(ρ, π), and this value is reached if and only if there is an adjacency on
both sides of the element. Thus, the contribution to τmch(ρ, π) of all occurrences of an
element x in π is minimized if mult(x, ρ) = mult(x, π) and no extremity of x is part
of any breakpoint. Every additional occurrence of x may increase ia(ρ, π) + ta(ρ, π)

99

5 Rearrangement Distances with Duplications and Deletions

by 2, but also increases m(ρ, π) by 4 and therefore increases τmch(ρ, π) by at least 2.
This means that τmch(ρ, π) is minimized if each element has the same multiplicity in
ρ and π, and π contains neither inner breakpoints nor telomere breakpoints w.r.t. ρ.
This is the case if and only if ρ and π are identical. In other words, if ρ 6= π, τmch(ρ, π)
cannot be minimal, and therefore τmch(ρ, π) > 0.

5.2.4 The algorithm

The algorithm uses the same greedy strategy as in the unichromosomal case. In each
step, it searches for all inverse operations that decrease the lower bound, i.e., they either
increase C(ρ, π), or decrease L(ρ, π) or T (ρ, π). From these operations, the one with
the maximum score σmch(ρ, π) is selected, where σmch(ρ, π) is defined analogous to
σuch(ρ, π). If there is no such operation, we use additional heuristics to find operations
that do not change the lower bound but have a positive score (i.e., σmch(iop) > (0, 0)).
However, considering all possible cases is too complicated, therefore there is still the
possibility that we do not find any operation with positive score. In this case, we use a
fallback algorithm that is guaranteed to terminate.
For simplification of the presentation of the algorithm, we assume that all chromosomes
of ρ consist of consecutive elements in Σn with positive orientation, i.e., they are of

the form (
−→
i
−−→
i+ 1 . . .

−−−→
j − 1

−→
j).

Decreasing the lower bound

Finding operations that increase C(ρ, π) can be done by finding 1-bridges and 2-bridges
in the breakpoint graph and verifying additional preconditions, as shown in the last
section. The only difference is that now there are DCJs that cut only one gray edge
(or no gray edge at all). This is the case when the other cutting point is at the end
of a chromosome, or at a breakpoint (xt/h, yt/h) where xt/h or yt/h is a telomere in
ρ. Thus, we also have to consider DCJs that act only on one 1-bridge. Such a DCJ
can be interpreted as a reversal, translocation, inverse fusion, or transposition. In the
last case, we have to find a third cutting point in the same chromosome such that
the resulting transposition still decreases the lower bound. Also finding operations
that decrease L(ρ, π) is straightforward and can be done as in the last section. The
remaining task is to find operations that decrease T (ρ, π). For this, we create a list of
telomeres in π that are not telomeres in ρ, and another list of inner breakpoints in
π where at least one of the adjacent extremities is a telomere in ρ. Operations that
decrease T (ρ, π) must act on one or two breakpoints of these lists, depending on the
operation type. Creating the lists can be done by a linear scan over π, therefore all
operations that decrease T (ρ, π) can be found in quadratic time. The only exceptions
are inverse deletions and inverse chromosome deletions, which may add segments of
arbitrary content. As in the unichromosomal case, practical tests have shown that it is

100

5.2 Sorting multichromosomal genomes

better to only allow the insertion of segments without any breakpoints. This does not
only lead to better sorting sequences, but also keeps the time complexity of finding the
operations in O(l(π)2), where l(π) is the number of elements in π.

Additional operations

If there is no inverse operation that decreases lbmch(ρ, π), we may still find inverse
operations that do not change the lower bound but decrease τmch(ρ, π). Searching for
all these operations would exceed our computing capacity, so we just search for the
following subset of these operations that can be found easily.

• There are inverse tandem duplications and transposition duplications that do
not change lbmch(ρ, π), but decrease τmch(ρ, π). We therefore search for identical
consecutive segments that are maximal, i.e., they cannot be extended in any
direction, and check the effect on lbmch(ρ, π) and τmch(ρ, π) if we remove one of
them. This operation corresponds either to an inverse tandem duplication, or
to an inverse transposition duplication, which can be simulated by a reversal or
transposition and an inverse tandem duplication.

• Depending on the telomeres of a chromosome, the lower bound can remain
unchanged during an inverse chromosome duplication, but τmch(ρ, π) can decrease.
We therefore search for identical chromosomes and check the score of removing
one of them.

• Inserting a segment of consecutive elements x with mult(x, ρ) > mult(x, π)
decreases τmch(ρ, π). We search for such segments of maximal length and try to
insert them by an inverse deletion. Note that this is not always possible as this
operation can increase the lower bound by merging two components.

• Creating inner or telomere adjacencies never increases the lower bound, but
decreases τmch(ρ, π). We therefore search for DCJs and inverse fissions that create
new adjacencies without splitting old ones.

The fallback algorithm

It is possible that neither there is an operation that decreases lbmch(ρ, π), nor do we
find an operation that decreases τmch(ρ, π), so the main algorithm gets stuck. However,
this case cannot occur if all elements have the same multiplicity in ρ and in π.

Lemma 5.11. If π 6= ρ and mult(x, π) = mult(x, ρ) holds for all elements x, then
there is an inverse operation with positive score.

Proof. When the preconditions are fulfilled, there must be at least one breakpoint in π
w.r.t. ρ. We have to distinguish three cases. (1) This is a telomere breakpoint. W.l.o.g.

101

5 Rearrangement Distances with Duplications and Deletions

ρ = {(
−→
1
−→
2), (
−→
3
−→
4
−→
5)}

ρ′ = {(
−→
1
−→
2), (
−→
1
−→
2), (
−→
3
−→
4
−→
5), (
−→
3
−→
4
−→
5)}

Step 2: adjust multiplicity in ρ
⇒ apply 2× chromosome duplication

Step 3: sort π backwards to ρ′

⇒ apply inverse fusion

π = {(
−→
1
−→
2), (
−→
1
−→
2
−→
3
−→
4
−→
5), (
−→
3
−→
4
−→
5)}

Step 1: adjust multiplicity in π
⇒ apply inverse deletion

π = {(
−→
1
−→
2), (
−→
1
−→
2
−→
3), (
−→
3
−→
4
−→
5)}

Figure 5.8: An example of the fallback algorithm. Note that this is a simplified exam-
ple, in which the algorithm would find an operation with positive score,
and not use the fallback algorithm.

a chromosome in π ends with xh, but xh is not a telomere in ρ. Then, mult(x, ρ) =
mult(x + 1, ρ) (as they are in the same chromosome), and therefore there must be
another breakpoint including (x+1)t. An operation that creates an adjacency between
xh and (x+1)t does not increase the lower bound, but decrease τmch(ρ, π) by at least 2.
(2) The breakpoint is an inner breakpoint between two extremities that are telomeres
in ρ. In this case, cutting the chromosome at the breakpoint with an inverse fusion
does not increase the lower bound but decreases τmch(ρ, π) by 2, because it creates
two telomere adjacencies. (3) The breakpoint is an inner breakpoint, and at least one
of the adjacent extremities is not a telomere in ρ. W.l.o.g., the breakpoint is of the
form (xh, yh), and xh is not a telomere in ρ. Then, mult(x, ρ) = mult(x + 1, ρ), thus
there must be another breakpoint including (x + 1)t. An operation that creates an
adjacency between xh and (x + 1)t does not increase the lower bound, but decreases
τmch(ρ, π) by at least 2.

The fallback algorithm first ensures that the precondition of the lemma holds. For
each chromosome ρi in ρ, we determine the element x in ρi with the most occurrences

in π. We then create maximal segments of consecutive elements
−→
y
−−−→
y + 1 . . . such

102

5.3 Experimental results

Algorithm 5.2 Heuristic algorithm for finding a sorting sequence of ρ w.r.t. π (mul-
tichromosomal case)

1: function findSequence(ρ, π)
2: while (lbmch(ρ, π), τmch(ρ, π)) 6= (0, 0) do
3: find all inverse operations that decrease lbmch(ρ, π)
4: if no inverse operation found then
5: find inverse tandem duplications
6: find inverse transposition duplications
7: find inverse deletions of consecutive segments with mult(x, π) < mult(x, ρ)
8: find DCJs that create adjacencies
9: if inverse operation found then

10: apply inverse operation with maximal score
11: else
12: use fallback algorithm
13: invert and output the sorting sequence

that each element z in the segment belongs to ρi and mult(z, π) < mult(x, π), and
add this segment by an inverse deletion to π. Note that this can be done without
creating new breakpoints. This step is repeated until all elements belonging to the
same component in ρ have the same multiplicity in π. We then transform ρ into ρ′ by
applying chromosome duplications and chromosome deletions on ρ such that for each
element x, mult(x, ρ′) = mult(x, π). Now, we apply our normal algorithm to sort π
into ρ′. To ensure that the precondition of Lemma 5.11 is always fulfilled, we forbid
operations that create or delete elements, i.e., any kind of duplication or deletion. Due
to Lemma 5.11, the algorithm will find a sorting sequence that transforms π into ρ′.
An example is depicted in Fig. 5.8. The whole algorithm in pseudocode is shown in
Algorithm 5.2.

5.3 Experimental results

We tested both the unichromosomal and the multichromosomal algorithm on artificial
data. The multichromosomal algorithm was also tested on cancer karyotypes from the
“Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer” [MJM10].

5.3.1 Creating artificial data

The artificial data for testing the unichromosomal algorithm was created by applying
random sequences of operations with an overall weight of αn on the identity genome of
size n. The operations of the sequences are independently distributed, with tandem
duplications and deletions having a probability of 1

3 , reversals having a probability of

103

5 Rearrangement Distances with Duplications and Deletions

2
9 , and block interchanges having a probability of 1

9 (thus the expected numbers of
DCJs, tandem duplications, and deletions are equal). Once the type of an operation
was determined, the operation was selected uniformly distributed among all operations
of this type. As long deletions can cancel the effects of previous operations, deletions
were restricted to have a length of at most 0.1 times the current genome length. To
keep the size of the genome approximately constant, also tandem duplications were
restricted to have a length of at most 0.1 times the current genome length.We created
test cases for different values of n and α, namely n ∈ {20, 50, 80, 100} and α from 0.1
to 1 in steps of 0.1. For each combination of the parameters n and α, we created 100
test cases.
The test cases for the multichromosomal algorithm were created in the same way.
However, we now started with genomes with n different elements and c different
chromosomes. Each chromosome has the same size, the ploidy (i.e., the number of
identical copies) of the chromosomes is 1 or 2. When creating the sequences of operations,
each type of operation had the same probability. Although these probabilities do not
match the biological reality, this is still convenient to assess the performance of the
algorithm. The parameter α which controls the weight of the sequences again was
varied from 0.1 to 1 in steps of 0.1, the parameters n and c as well as the ploidy
of the chromosomes were chosen such that they reflect the properties of biologically
meaningful datasets.
To understand what “biologically meaningful” means, let us have a brief look on
biological datasets. In most of them, elements do not represent single genes but
conserved segments [NT84] or synteny blocks [PT03], i.e., regions of a chromosome that
are highly conserved and do not contain breakpoints. These synteny blocks normally
contain several genes. The amount n of different synteny blocks depends on the allowed
dissimilarity between the synteny blocks as well as on the evolutionary distance between
the genomes. For example, El-Mabrouk et al. [EMNS98] tested their algorithm on yeast
genomes with 55 synteny blocks, Zheng et al. [ZZS06] identified 34 synteny blocks
between rice, sorghum, and maize. Salse et al. [SPCD02] used 60 synteny blocks to
compare Arabidopsis thaliana and rice. A recent comprehensive study of Drosophila
genomes [Dro07] identified between 112 and 1406 synteny blocks, depending on the
evolutionary distance of the species.
Our datasets reflect those parameters. Dataset 1 contains 16 chromosomes of ploidy 2
with a total of 64 elements, this approximately matches the yeast genome. Dataset 2
contains 12 chromosomes of ploidy 2 with a total of 36 elements, Dataset 3 contains 5
chromosomes of ploidy 2 with a total of 60 elements. These are realistic values for plant
genomes. Dataset 4 contains 5 different chromosomes with a total of 200 elements,
two of them with ploidy 1 and three of them with ploidy 2 (corresponding to two
sex chromosomes and three diploid chromosomes). This reflects the values for closely
related Drosophila species. Each dataset contains 100 different test cases for each choice
of the parameter α. This approach allows us to evaluate our algorithm on a large set

104

5.3 Experimental results

of test cases and for many different evolutionary distances, and gives us much more
robust result than just testing on a few biological datasets.

5.3.2 Results on artificial data

The results of the experiments using the algorithm for unichromosomal genomes are
depicted in Figs. 5.9 to 5.12. Each figure shows

(a) the relation of the weight of the sequence used to create the test case (also known
as the “true evolutionary distance” wtrue), the lower bound lbuch, and the weight
of the sequence calculated by our algorithm (denoted by wcalc), as well as

(b) the relative frequency of the different types of operations found by our algorithm.

Each value is the average of all 100 test cases created with the same parameters.
The results show that, as long as wtrue is close to the lower bound lbuch, also wcalc
is close to the lower bound, and on average less than wtrue. As the coherence of
lbuch and wtrue lessens for increasing values of n and α, the weights of the calculated
sequences increase. Nevertheless, even for higher values of n and α, wcalc is still a
good approximation of wtrue. The analysis of the frequency of the different types of
operations shows that at α = 0.2, the frequencies are close to those used to create the
test cases, only the number of reversals is a little bit overestimated (recall that when
creating the test cases, the ratio of the operations was reversals : block interchanges
: tandem duplications : deletions = 2

9 : 1
9 : 1

3 : 1
3). With increasing values of α, the

algorithm tends to overestimate the number of reversal and tandem duplications, and
underestimates the number of block interchanges and deletions. This effect increases
for increasing values of n.
The results of the algorithm for multichromosomal genomes are depicted in Figs. 5.13
to 5.16. Again, the true evolutionary distance and the distances calculated by our
algorithm are close together. In the fourth diagram, an additional saturation effect
can be observed, i.e., we can find a sorting sequence with weight walgo / 120 for most
genomes. The analysis of the frequencies of the different types of operations shows that
the algorithm tends to use many translocations and tandem duplications, while fusions
and chromosome duplications are rarely used. Again, this effect increases for increasing
values of α and n.

5.3.3 Evaluating the algorithm on cancer karyotypes

The “Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer”
[MJM10] contains the descriptions of cancer karyotypes which have been manually
collected from publications over the last twenty years. For our experiments, we used
the version of May 14, 2009, which contains 56428 datasets. The data is represented in
the ISCN format, which can be parsed by the software tool CyDAS [HBBR05]. From all

105

5 Rearrangement Distances with Duplications and Deletions

 0

 5

 10

 15

 20

 0 5 10 15 20

w
ei

gh
t

performed operations

n = 20

created sequence
lower bound

calculated sequence

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

α = 0.2 α = 0.5 α = 1.0

re
la

tiv
e

fr
eq

ue
nc

y

n = 20

reversals
block interchanges

tandem duplications
deletions

(b)

Figure 5.9: (a) Performance of the algorithm for unichromosomal genomes on the
dataset with n = 20. (b) Relative frequencies of reconstructed operations
on this dataset for three different values of α.

106

5.3 Experimental results

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

w
ei

gh
t

performed operations

n = 50

created sequence
lower bound

calculated sequence

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

α = 0.2 α = 0.5 α = 1.0

re
la

tiv
e

fr
eq

ue
nc

y

n = 50

reversals
block interchanges

tandem duplications
deletions

(b)

Figure 5.10: (a) Performance of the algorithm for unichromosomal genomes on the
dataset with n = 50. (b) Relative frequencies of reconstructed operations
on this dataset for three different values of α.

107

5 Rearrangement Distances with Duplications and Deletions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

w
ei

gh
t

performed operations

n = 80

created sequence
lower bound

calculated sequence

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

α = 0.2 α = 0.5 α = 1.0

re
la

tiv
e

fr
eq

ue
nc

y

n = 80

reversals
block interchanges

tandem duplications
deletions

(b)

Figure 5.11: (a) Performance of the algorithm for unichromosomal genomes on the
dataset with n = 80. (b) Relative frequencies of reconstructed operations
on this dataset for three different values of α.

108

5.3 Experimental results

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

w
ei

gh
t

performed operations

n = 100

created sequence
lower bound

calculated sequence

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

α = 0.2 α = 0.5 α = 1.0

re
la

tiv
e

fr
eq

ue
nc

y

n = 100

reversals
block interchanges

tandem duplications
deletions

(b)

Figure 5.12: (a) Performance of the algorithm for unichromosomal genomes on the
dataset with n = 100. (b) Relative frequencies of reconstructed operations
on this dataset for three different values of α.

109

5 Rearrangement Distances with Duplications and Deletions

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

w
ei

gh
t

performed operations

Dataset 1

created sequence
lower bound

calculated sequence

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

α = 0.2 α = 0.5 α = 1.0

re
la

tiv
e

fr
eq

ue
nc

y

Dataset 1

reversals
transpositions

fusions
fissions

translocations
tandem duplications

deletions
chromosome duplications

chromosome deletions

(b)

Figure 5.13: (a) Performance of the algorithm for multichromosomal genomes on
Dataset 1. (b) Relative frequencies of reconstructed operations on this
dataset for three different values of α.

110

5.3 Experimental results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

w
ei

gh
t

performed operations

Dataset 2

created sequence
lower bound

calculated sequence

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

α = 0.2 α = 0.5 α = 1.0

re
la

tiv
e

fr
eq

ue
nc

y

Dataset 2

reversals
transpositions

fusions
fissions

translocations
tandem duplications

deletions
chromosome duplications

chromosome deletions

(b)

Figure 5.14: (a) Performance of the algorithm for multichromosomal genomes on
Dataset 2. (b) Relative frequencies of reconstructed operations on this
dataset for three different values of α.

111

5 Rearrangement Distances with Duplications and Deletions

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

w
ei

gh
t

performed operations

Dataset 3

created sequence
lower bound

calculated sequence

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

α = 0.2 α = 0.5 α = 1.0

re
la

tiv
e

fr
eq

ue
nc

y

Dataset 3

reversals
transpositions

fusions
fissions

translocations
tandem duplications

deletions
chromosome duplications

chromosome deletions

(b)

Figure 5.15: (a) Performance of the algorithm for multichromosomal genomes on
Dataset 3. (b) Relative frequencies of reconstructed operations on this
dataset for three different values of α.

112

5.3 Experimental results

 0

 50

 100

 150

 200

 0 50 100 150 200

w
ei

gh
t

performed operations

Dataset 4

created sequence
lower bound

calculated sequence

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

α = 0.2 α = 0.5 α = 1.0

re
la

tiv
e

fr
eq

ue
nc

y

Dataset 4

reversals
transpositions

fusions
fissions

translocations
tandem duplications

deletions
chromosome duplications

chromosome deletions

(b)

Figure 5.16: (a) Performance of the algorithm for multichromosomal genomes on
Dataset 4. (b) Relative frequencies of reconstructed operations on this
dataset for three different values of α.

113

5 Rearrangement Distances with Duplications and Deletions

fission

translocation

translocation

translocation

translocation

deletion

tandem duplication

(
−→
1
−→
2), (
−→
1
−→
2), (
−→
3
−→
4
−→
5
−→
6), (
−→
3
−→
4
−→
5
−→
6), (
−→
4
−→
5
−→
6), (
−→
7
−→
8), (
−→
9
−→
10), (

−→
11
−→
12), (

−→
13
−→
14)

(
−→
1
−→
2), (
−→
1
−→
8), (
−→
3
−→
4
−→
5
−→
6), (
−→
3
−→
4
−→
5
−→
6), (
−→
4
−→
5
−→
6), (
−→
7
−→
2), (
−→
9
−→
10), (

−→
11
−→
12), (

−→
13
−→
14)

(
−→
1
−→
2), (
−→
1
−→
8), (
−→
3
−→
4
−→
5
−→
6), (
−→
3
−→
4
−→
5
−→
2), (
−→
4
−→
5
−→
6), (
−→
7
−→
6), (
−→
9
−→
10), (

−→
11
−→
12), (

−→
13
−→
14)

(
−→
1
−→
5
−→
6), (
−→
1
−→
8), (
−→
3
−→
4
−→
2), (
−→
3
−→
4
−→
5
−→
2), (
−→
4
−→
5
−→
6), (
−→
7
−→
6), (
−→
9
−→
10), (

−→
11
−→
12), (

−→
13
−→
14)

(
−→
1
−→
5
−→
6), (
−→
1
−→
8), (
−→
3
−→
4
−→
2), (
−→
3
−→
4
−→
5
−→
2), (
−→
4
−→
5
−→
6), (
−→
7
−→
6), (
−→
9
−→
14), (

−→
11
−→
12), (

−→
13
−→
10)

(
−→
1
−→
5
−→
6), (
−→
1
−→
8), (
−→
3
−→
4
−→
2), (
−→
3
−→
4
−→
5
−→
2), (
−→
4
−→
5
−→
6), (
−→
7
−→
6), (
−→
9
−→
14), (

−→
12), (

−→
13
−→
10)

(
−→
1
−→
2), (
−→
1
−→
2), (
−→
3
−→
4
−→
5
−→
6), (
−→
3
−→
4
−→
5
−→
6), (
−→
7
−→
8), (
−→
9
−→
10), (

−→
11
−→
12), (

−→
13
−→
14)

(
−→
1
−→
2), (
−→
1
−→
2), (
−→
3
−→
4
−→
5
−→
6), (
−→
3
−→
4
−→
5
−→
6 N
−→
4
−→
5
−→
6), (
−→
7
−→
8), (
−→
9
−→
10), (

−→
11
−→
12), (

−→
13
−→
14)

Figure 5.17: Sorting scenario for a cancer karyotype reported in [CPT+88]. For better
readability, all chromosomes identical in ρ and π are omitted.

datasets which could be parsed by CyDAS without error (44064 datasets), all unknown
elements were removed and all segments without breakpoint were compressed, i.e., if
a set of consecutive elements contains no breakpoint in any chromosome, it can be
represented as one element. The resulting datasets were used as input to our algorithm.
Most of the scenarios are rather easy to reconstruct, the average lower bound is 2.63
and the average calculated weight is 4.08. However, there are some more complicated
karyotypes, with rearrangement scenarios of over 50 operations. Exemplarily, the
reconstructed scenario for one karyotype is shown in Fig. 5.17. This karyotype was
reported in [CPT+88], and can be described by the ISCN formula1

47, XY, t(3; 7)(q23; q22), t(3; 7; 9)(q23; q32; q22),+i(7)(q10), t(14; 18)(q32; q21), del(17)(p11)

In principle, our algorithm correctly identified all operations. The triple translocation
t(3; 7; 9)(q23; q32; q22) and the new chromosome +i(7)(q10) are not allowed operations
in our model. Our algorithm replaced the triple translocation by two translocations,
and the new chromosome by a tandem duplication with a subsequent fission, which are
the best possible explanations within our model.

5.4 Conclusion and Discussion

We have developed algorithms for two genome rearrangement problems which consider
a large variety of operations, including tandem duplications and deletions of segments
of arbitrary size. Both algorithms are guaranteed to terminate, i.e., they find a sorting

1For details about the ISCN format, see [Mit95].

114

5.4 Conclusion and Discussion

sequence for any possible pair of input genomes.
Genome rearrangement algorithms that also consider duplicated gene content is a
rather new field of research, and although our results are promising, the algorithms
should be seen as small steps towards an algorithm that produces biologically reliable
results. We will now discuss some ideas which might improve the algorithms in future
work.
One of the main drawbacks of the algorithms is that weights are chosen due to a
mathematical model and do not reflect the biological reality. This leaves room for
further investigations. For example, the algorithm could be improved by giving unwanted
operations a larger weight or completely omit them. While adapting the theoretical
model to other weights seems to be the obvious way to improve the algorithm, it might
also be worth to examine how robust the results are w.r.t. the chosen weights. In other
words, does the optimal rearrangement scenario change when we use other weights?
Some observations in the genome can be explained best by a specific operation (e.g., a
duplicated chromosome is most likely caused by a single chromosome duplication), no
matter how this operation is weighted. Such observations are predominant in closely
related genomes, and the corresponding operations can be reconstructed even with a
wrong weighting scheme. In more diverged genomes, there are often different possible
rearrangement scenarios, and the weighting scheme matters. Thus, further investigations
should examine what the “critical distance” between two genomes is, i.e., up to which
distance the optimal rearrangement scenario is mostly robust w.r.t. the weighting
scheme.
Furthermore, there are many other possible improvements, both of theoretical and
practical nature. For example, a tighter lower bound for the distances or even an
upper bound would give us new insight into the problem. Also changing the model
such that there are no restrictions to the ancestral genome are of great interest. A
more practical improvement would be an improved heuristic or a postprocessing of the
sorting sequence that removes redundant operations (like operations whose effects are
cancelled by a subsequent deletion).

115

List of Tables

3.1 reversal distance, n = 37 (left) and n = 100 (right). 64

3.2 n = 37, transposition distance . 65

3.3 n = 100, transposition distance . 65

3.4 n = 37, wr = 1, wt = 1 . 65

3.5 n = 100, wr = 1, wt = 1. 66

3.6 n = 37, wr = 1, wt = 1.5 . 66

3.7 n = 100, wr = 1, wt = 1.5 . 66

3.8 n = 37, wr = 1, wt = 2 . 67

3.9 n = 100, wr = 1, wt = 2 . 67

3.10 GRAPPA-TP, n = 37 (left) and n = 100 (right). 67

4.1 Results for the Campanulaceae dataset. 79

4.2 Results for the Metazoan dataset. 79

4.3 Results for the Protostomes dataset. 80

5.1 Changes of m(ρ, π), a(ρ, π), and τuch(ρ, π) by applying the different
sequences of operations described in this section. 93

117

List of Figures

1.1 Examples for the operations. 5

1.2 The breakpoint graph of π = (
←−
7
←−
4
−→
2
−→
5
−→
3
←−
1
←−
6
−→
8) and

ρ = (
−→
1
−→
2
−→
3
−→
4
−→
5
−→
6
−→
7
−→
8). 9

2.1 (a) The breakpoint graph of π = (
−→
5
−→
4
−→
1
←−
2
←−
3
−→
6) and ρ = (

−→
1
−→
2
−→
3
−→
4
−→
5
−→
6),

and the one of their equivalent simple permutations

πsimple = (
−→
5
←−
8
−→
7
−→
4
−→
1
←−
2
←−
3
−→
6) and ρsimple = (

−→
1
−→
7
−→
2
−→
8
−→
3
−→
4
−→
5
−→
6).

(b) The corresponding interleaving graphs. 18

2.2 The canonical labeling of a cycle. 20

2.3 Two (b, g)-splits on the permutations π = (
−→
3
−→
2
−→
1
−→
5
←−
6
←−
4
−→
7) and

ρ = (
−→
1
−→
2
−→
3
−→
4
−→
5
−→
6
−→
7). 21

2.4 The (b, g)-split of Case 1.3(a) where gk = g2 intersects with gm and (a)
is unoriented or (b) is oriented. 26

2.5 The (b, g)-split of Case 1.3(b) where gk = g1 intersects with gm = g`(cj)
and (a) is unoriented or (b) is oriented. 26

2.6 The (b, g)-split of Case 1.3(c) where gk = g1 intersects with gm 6= g`(cj)
and (a) is unoriented or (b) is oriented. 27

2.7 The (b, g)-split of (a) Case 2.1 and (b) Case 2.2. 29

2.8 The data structure for πsimple = (
−→
5
←−
3
←−
7
←−
1
←−
4
−→
6
−→
2), where 3, 7, and

1 are padded elements. 31

2.9 The effect of inverting the segment
←−
1
←−
4
−→
6 in the example permutation

of Fig. 2.8. 33

119

LIST OF FIGURES

3.1 The MB graph for π1 = (
−→
1
−→
2
−→
3
−→
4), π2 = (

−→
1
−→
2
−→
4
−→
3), and

π3 = (
−→
1
−→
4
−→
3
−→
2). 38

3.2 The contraction of the edge (4h, 1t) in the left graph (dotted edge) yields
the right graph. 39

3.3 A cycle decomposition of a graph in mdECD. 41

3.4 Transformation of a node v with degree 8 into a Y ′4 42

3.5 Transformation of G′ = (V,E) into G̃ = (Ṽ , Ẽ). 43

3.6 Transformation steps from a graph G to a graph G′, such that G′ is
isomorphic to a MB graph. 45

3.7 Transformation of a configuration of G containing a red edge (u, v) that
might belong to a long red/black cycle. 49

3.8 The effect of the transposition described in Lemma 3.24. 50

3.9 The configuration of the companion c of a red edge e. 51

3.10 A sequence of 3 transpositions that can be applied when the black edges
adjacent to e do not intersect. 52

4.1 A new node πp can either be added to (a) a node πi in the tree or (b)
to a node πc in a cloud of an edge (πi, πj). 71

4.2 The subtrees T1 and T2 are reconnected by an edge (π1, π2), where
π1 ∈ cloud(πi, πj) and π2 ∈ V2. 74

5.1 The breakpoint graph of ρ = (
−→
1
−→
2
−→
3
−→
4
−→
5
−→
6) and

π = (
−→
1
−→
3
←−
3
←−
5
−→
4
←−
3
←−
5
←−
4
←−
3
−→
6). 83

5.2 The effects of the different operations on the breakpoint graph. 85

5.3 An example of a sequence that removes two of the segments
−→
x
−→
y without

increasing the lower bound. 89

5.4 The configuration in which a DCJ can create an adjacency without
creating a loop. 90

5.5 The different configurations in which each node is adjacent to at most 2
gray edges, and no adjacency can be created without creating a loop. . 91

5.6 The breakpoint graph of ρ = {(
−→
1
−→
2
−→
3), (
−→
1
−→
2
−→
3), (
−→
4
−→
5
−→
6)} and

π = {(
−→
1
−→
2
←−
2
−→
3), (
−→
4
←−
3
−→
2
←−
5
−→
6), (
−→
5
←−
1)}. 96

5.7 Two genomes ρ and π written in extremities notation. Extremities
accounting for T (ρ, π) are drawn in red. 97

5.8 An example of the fallback algorithm. 102

120

LIST OF FIGURES

5.9 (a) Performance of the algorithm for unichromosomal genomes on the
dataset with n = 20. (b) Relative frequencies of reconstructed operations
on this dataset for three different values of α. 106

5.10 (a) Performance of the algorithm for unichromosomal genomes on the
dataset with n = 50. (b) Relative frequencies of reconstructed operations
on this dataset for three different values of α. 107

5.11 (a) Performance of the algorithm for unichromosomal genomes on the
dataset with n = 80. (b) Relative frequencies of reconstructed operations
on this dataset for three different values of α. 108

5.12 (a) Performance of the algorithm for unichromosomal genomes on the
dataset with n = 100. (b) Relative frequencies of reconstructed opera-
tions on this dataset for three different values of α. 109

5.13 (a) Performance of the algorithm for multichromosomal genomes on
Dataset 1. (b) Relative frequencies of reconstructed operations on this
dataset for three different values of α. 110

5.14 (a) Performance of the algorithm for multichromosomal genomes on
Dataset 2. (b) Relative frequencies of reconstructed operations on this
dataset for three different values of α. 111

5.15 (a) Performance of the algorithm for multichromosomal genomes on
Dataset 3. (b) Relative frequencies of reconstructed operations on this
dataset for three different values of α. 112

5.16 (a) Performance of the algorithm for multichromosomal genomes on
Dataset 4. (b) Relative frequencies of reconstructed operations on this
dataset for three different values of α. 113

5.17 Sorting scenario for a cancer karyotype reported in [CPT+88]. 114

121

List of Algorithms

2.1 (b, g)-split . 23

3.1 An exact algorithm for the weighted reversal and transposition distance. 56

3.2 An exact algorithm for the weighted reversal and transposition median. 61

4.1 Creating a phylogenetic tree . 72

4.2 Creating a cloud of the edge (πi, πj) 73

5.1 Heuristic algorithm for finding a sorting sequence of ρ w.r.t. π (unichro-
mosomal case) . 93

5.2 Heuristic algorithm for finding a sorting sequence of ρ w.r.t. π (multi-
chromosomal case) . 103

123

List of Abbreviations

BBS tree balanced binary search tree
DCJ double cut and join
DNA deoxyribonucleic acid
ECD Eulerian cycle decomposition problem
MB graph multiple breakpoint graph
Mbp million base pairs
mdECD marked directed Eulerian cycle decomposition problem
oCMP odd cycle median problem
RMP reversal median problem
SBDCJ sorting by double cut and join
SBR sorting by reversals
SBT sorting by transpositions
SBwRT sorting by weighted reversals and transpositions
TMS transposition median problem on the symmetric group Sn

TMP transposition median problem
wCMP weighted cycle median problem
wRTMP weighted reversal and transposition median problem

125

Bibliography

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Combinatorial optimization problems and their approx-
imability properties. Complexity and Approximation. Springer-Verlag,
1999.

[AHK+07] A. Amir, T. Hartman, O. Kapah, A. Levy, and E. Porat. On the cost
of interchange rearrangement in strings. In Proc. 15th Annual European
Symposium on Algorithms, volume 4698 of Lecture Notes in Computer
Science, pages 99–110. Springer-Verlag, 2007.

[AS08] Z. Adam and D. Sankoff. The ABCs of MGR with DCJ. Evolutionary
Bioinformatics, 4:69–74, 2008.

[AT07] W. Arndt and J. Tang. Improving inversion median computation using
commuting reversals and cycle information. In Proc. 5th Annual RE-
COMB Satellite Workshop on Comparative Genomics, volume 4751 of
Lecture Notes in Computer Science, pages 30–44. Springer-Verlag, 2007.

[Bad05] M. Bader. Sorting by weighted transpositions and reversals. Diploma
thesis, Ulm University, 2005.

[BAO08] M. Bader, M.I. Abouelhoda, and E. Ohlebusch. A fast algorithm for
the multiple genome rearrangement problem with weighted reversals and
transpositions. BMC Bioinformatics, 9:516, 2008.

[BBD+99] D.W. Burt, C. Bruley, I.C. Dunn, C.T. Jones, A. Ramage, A.S. Law, D.R.
Morrice, I.R. Paton, J. Smith, D. Windsor, A. Sazanov, R. Fries, and
D. Waddington. The dynamics of chromosome evolution in birds and
mammals. Nature, 402:411–413, 1999.

127

BIBLIOGRAPHY

[BBG+00] G. Blanc, A. Barakat, R. Guyot, R. Cooke, and M. Delseny. Extensive
duplication and reshuffling in the arabidopsis genome. The Plant Cell,
12:1093–1101, 2000.

[BCF04] G. Blin, C. Chauve, and G. Fertin. The breakpoint distance for signed
sequences. In Proc. 1st International Conference on Algorithms and
Computational Methods for Biochemical and Evolutionary Networks, pages
3–16, 2004.

[Ber07] M. Bernt. personal communication, 2007.

[Ber10] M. Bernt. Gene order rearrangement methods for the reconstruction of
phylogeny. PhD thesis, Universität Leipzig, 2010.

[BH96] P. Berman and S. Hannenhalli. Fast sorting by reversals. In Proc. 7th
Symposium on Combinatorial Pattern Matching, volume 1075 of Lecture
Notes in Computer Science, pages 168–185. Springer-Verlag, 1996.

[BK99] P. Berman and M. Karpinski. On some tighter inapproximability results.
Technical Report 23, DIMACS, 1999.

[BKS96] M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rear-
rangement. Gene, 172:GC11–17, 1996.

[BKS99] M. Blanchette, T. Kunisawa, and D. Sankoff. Gene order breakpoint evi-
dence in animal mitochondrial phylogeny. Journal of Molecular Evolution,
49(2):193–203, 1999.

[BLEMG06] D. Bertrand, M. Lajoie, N. El-Mabrouk, and O. Gascuel. Evolution of
tandemly repeated sequences through duplication and inversion. In Proc.
4th RECOMB Comparative Genomics Satellite Workshop, volume 4205
of Lecture Notes in Computer Science, pages 129–140. Springer-Verlag,
2006.

[BMM07] M. Bernt, D. Merkle, and M. Middendorf. Using median sets for inferring
phylogenetic trees. Bioinformatics, 23:e129–e135, 2007.

[BMS04] A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles
and fortresses. In Proc. 15th Annual Symposium on Combinatorial Pattern
Matching, volume 3109 of Lecture Notes in Computer Science, pages 388–
399. Springer-Verlag, 2004.

[BMS06] A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome
rearrangements. In Proc. 6th Workshop on Algorithms in Bioinformat-
ics, volume 4175 of Lecture Notes in Computer Science, pages 163–173.
Springer-Verlag, 2006.

128

BIBLIOGRAPHY

[BMS09] A. Bergeron, J. Mixtacki, and J. Stoye. A new linear time algorithm
to compute the genomic distance via the double cut and join distance.
Theoretical Computer Science, 410(51):5300–5316, 2009.

[BMY01] D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for
computing inversion distance between signed permutations with an ex-
perimental study. Journal of Computational Biology, 8:483–491, 2001.

[BO07] M. Bader and E. Ohlebusch. Sorting by weighted reversals, transpositions,
and inverted transpositions. Journal of Computational Biology, 14(5):615–
636, 2007.

[BP93] V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by
reversals. In Proc. 34th IEEE Symposium on Foundations of Computer
Science, pages 148–157, 1993.

[BP96] V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by
reversals. SIAM Journal on Computing, 25(2):272–289, 1996.

[BP98] V. Bafna and P.A. Pevzner. Sorting by transpositions. SIAM Journal on
Discrete Mathematics, 11(2):224–240, 1998.

[BP02] B. Bourque and P.A. Pevzner. Genome-scale evolution: Reconstructing
gene orders in the ancestral species. Genome Research, 12(1):26–36, 2002.

[Bro02] T.A. Brown. Genomes. BIOS Scientific Publishers Ltd, second edition,
2002.

[Bry00] D. Bryant. The complexity of calculating exemplar distances. In Proc.
Workshop on Gene Order Dynamics, Comparative Maps, and Multigene
Families, pages 207–211. Kluwer Academic Publishers, 2000.

[Cap99] A. Caprara. On the tightness of the alternating-cycle lower bound for
sorting by reversals. Journal of Combinatorial Optimization, 3:149–182,
1999.

[Cap03] A. Caprara. The reversal median problem. INFORMS Journal on
Computing, 15(1):93–113, 2003.

[Chr98] D.A. Christie. Genome Rearrangement Problems. PhD thesis, University
of Glasgow, 1998.

[CJM+00a] M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L.-S. Wang,
T. Warnow, and S. Wyman. An empirical comparison between BPAnalysis
and MPBE on the campanulaceae chloroplast genome dataset. In Proc.

129

BIBLIOGRAPHY

Workshop on Gene Order Dynamics, Comparative Maps, and Multigene
Families, pages 99–121. Kluwer Academic Publishers, 2000.

[CJM+00b] M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L.-S. Wang,
T. Warnow, and S. Wyman. A new fast heuristic for computing the
breakpoint phylogeny and experimental phylogenetic analyses of real
and synthetic data. In Proc. 8th International Conference on Intelligent
Systems for Molecular Biology, pages 104–115. AAAI Press, 2000.

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press and McGraw-Hill Book Company, second edition,
2001.

[CPT+88] F. Cabanillas, S. Pathak, J. Trujillo, J. Manning, R. Katz, P. McLaughlin,
W.S. Welasquez, F.B. Hagemeister, A. Goodacre, A. Cork, J.J. Butler,
and E.J. Freireich. Frequent nonrandom chromosome abnormalities
in 27 patients with untreated large cell lymphoma and immunoblastic
lymphoma. Cancer Research, 48:5557–5564, 1988.

[CPvV+00] S. Casjens, N. Palmer, R. van Vugt, W.M. Huang, B. Stevenson, P. Rosa,
R. Lathigra, G. Sutton, J. Peterson, R.J. Dodson, D. Haft, E. Hickey,
M. Gwinn, O. White, and C.M. Fraser. A bacterial genome in flux: the
twelve linear and nine circular extrachromosomal DNAs in an infectious
isolate of the lyme disease spirochete borrelia burgdorferi. Molecular
Microbiology, 35(3):490–516, 2000.

[Cra72] C.A. Crane. Linear lists and priority queues as balanced binary trees.
PhD thesis, Stanford University, 1972.

[CZF+05] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. The
assignment of orthologous genes via genome rearrangement. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2(4):302–315,
2005.

[DEEA02] D.A. Dalevi, N. Eriksen, K. Eriksson, and S.G.E Andersson. Measuring
genome divergence in bacteria: A case study using chlamydia data. Journal
of Molecular Evolution, 55:24–36, 2002.

[Dro07] Drosophila 12 Genomes Consortium. Evolution of genes and genomes on
the drosophila phylogeny. Nature, 450:203–218, 2007.

[DS38] T.H. Dobzhansky and A.H. Sturtevant. Inversions in the chromosomes of
drosophila pseudoobscura. Genetics, 23(1):28–64, 1938.

130

BIBLIOGRAPHY

[EH06] I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by
transpositions. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 3(4):369–379, 2006.

[EM01] N. El-Mabrouk. Sorting signed permutations by reversals and inser-
tions/deletions of contiguous segments. Journal of Discrete Algorithms,
1(1):105–122, 2001.

[EM02] N. El-Mabrouk. Reconstructing an ancestral genome using minimum
segments duplications and reversals. Journal of Computer and System
Sciences, 65:442–464, 2002.

[EMNS98] N El-Mabrouk, J. Nadeau, and D. Sankoff. Genome halving. In Proc. 9th
Annual Symposium on Combinatorial Pattern Matching, volume 1448 of
Lecture Notes in Bioinformatics, pages 235–250. Springer-Verlag, 1998.

[Eri02] N. Eriksen. (1 + ε)-approximation of sorting by reversals and transposi-
tions. Theoretical Computer Science, 289(1):517–529, 2002.

[Eri03] N. Eriksen. Combinatorial methods in comparative genomics. PhD thesis,
Royal Institute of Technology, Stockholm, 2003.

[Eri07] N. Eriksen. Reversal and transposition medians. Theoretical Computer
Science, 374:111–126, 2007.

[Eri09] N. Eriksen. Median clouds and a fast transposition median solver. In
Proc. 21st International Conference on Formal Power Series and Algebraic
Combinatorics, pages 373–384, 2009.

[FCV+06] Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, and T. Jiang. A parsiomony
approach to genome-wide ortholog assignment. In Proc. 10th Annual
International Conference on Research in Computational Molecular Biol-
ogy, Lecture Notes in Computer Science, pages 578–594. Springer-Verlag,
2006.

[FSS06] G. Fritzsch, M. Schlegel, and P.F. Stadler. Alignments of mitochondrial
genome arrangements: Applications to metazoan phylogeny. Journal of
Theoretical Biology, 240(4):511–520, 2006.

[Han06] Y. Han. Improving the efficiency of sorting by reversals. In Proc. Interna-
tional Conference on Bioinformatics and Computational Biology, pages
406–409. CSREA Press, 2006.

[HBBR05] B. Hiller, J. Bradtke, H. Balz, and H. Rieder. CyDAS: a cytogenetic data
analysis system. Bioinformatics, 21(7):1282–1283, 2005.

131

BIBLIOGRAPHY

[HCKP95] S. Hannenhalli, C. Chappey, E.V. Koonin, and P.A. Pevzner. Genome
sequence comparison and scenarios for gene rearrangements: A test case.
Genomics, 30:299–311, 1995.

[Hol81] I. Holyer. The NP-completeness of some edge-partition problems. SIAM
Journal on Computing, 10(4):713–717, 1981.

[HP95] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip
(polynomial algorithm for sorting signed permutations by reversals). In
Proc. 27th Annual ACM Symposium on Theory of Computing, pages
178–189, 1995.

[HP99] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals. Journal
of the ACM, 46(1):1–27, 1999.

[HS05] T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting
by transpositions and transreversals. Journal of Computer and System
Sciences, 70(3):300–320, 2005.

[HS06] T. Hartman and R. Shamir. A simpler and faster 1.5-approximation
algorithm for sorting by transpositions. Information and Computation,
204(2):275–290, 2006.

[Hug00] D. Hughes. Evaluating genome dynamics: the constraints on rearrange-
ments within bacterial genomes. Genome Biology, 1(6):reviews0006–
reviews0006.8, 2000.

[IKH+89] N. Iwabe, K.-I. Kuma, M. Hasegawa, S. Osawa, and T. Miyata. Evolu-
tionary relationship of archaebacteria, eubacteria, and eukaryotes inferred
from phylogenetic trees of duplicated genes. Proceedings of the National
Academy of Sciences of the United States of America, 86:9355–9359, 1989.

[JA11] S. Jiang and M.A. Alekseyev. Weighted genomic distance can hardly
impose a bound on the proportion of transpositions. To appear in Proc.
15th Annual International Conference on Research in Computational
Molecular Biology, 2011.

[Jar30] V. Jarńık. O jistém problému minimálńım. Práce Moravské Př́ırodovědecké
Společnosti, 6:57–63, 1930.

[KBH+03] W.J. Kent, R. Baertsch, A. Hinrichs, W. Miller, and D. Haussler. Evolu-
tion’s cauldron: Duplication, deletion, and rearrangement in the mouse
and human genomes. Proceedings of the National Academy of Sciences of
the United States of America, 100(20):11484–11489, 2003.

132

BIBLIOGRAPHY

[KM07] F Kuttler and S. Mai. Formation of non-random extrachromosomal
elements during development, differentiation and oncogenesis. Seminars
in Cancer Biology, 17:56–64, 2007.

[Knu98] D.E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, second edition, 1998.

[KST99] H. Kaplan, R. Shamir, and R.E. Tarjan. A faster and simpler algorithm for
sorting signed permutations by reversals. SIAM Journal on Computing,
29(3):880–892, 1999.

[KV03] H. Kaplan and E. Verbin. Efficient data structures and a new randomized
approach for sorting signed permutations by reversals. In Proc. 14th
Symposium on Combinatorial Pattern Matching, volume 2676 of Lecture
Notes in Computer Science, pages 170–185. Springer-Verlag, 2003.

[LHWC06] C.L. Lu, Y.L. Huang, T.C. Wang, and H.-T. Chiu. Analysis of circular
genome rearrangement by fusions, fissions and block-interchanges. BMC
Bioinformatics, 7:295, 2006.

[LMSK63] J.D.C. Little, K.G. Murty, D.W. Sweeney, and C. Karel. An algorithm
for the traveling salesman problem. Operations Research, 11(6):972–989,
1963.

[LRSM10] Y. Lin, V. Rajan, K.M. Swenson, and B.M.E. Moret. Estimating true
evolutionary distances under rearrangements, duplications, and losses.
BMC Bioinformatics, 11(Suppl 1):S54, 2010.

[LTM05] T. Liu, J. Tang, and M.E. Moret. Quartet-based phylogeny reconstruction
from gene orders. In Proc. 11th Annual International Conference on
Computing and Combinatorics, volume 3595 of Lecture Notes in Computer
Science, pages 63–73. Springer-Verlag, 2005.

[LX01] G.-H. Lin and G. Xue. Signed genome rearrangement by reversals and
transpositions: models and approximations. Theoretical Computer Science,
259:513–531, 2001.

[Mik03] I. Miklós. MCMC genome rearrangement. Bioinformatics, 19(Suppl
2):ii130–ii137, 2003.

[Mit95] F. Mitelman, editor. Iscn 1995: An International System For Human
Cytogenetic Nomenclature. S. Karger AG, 1995.

133

BIBLIOGRAPHY

[MJM10] F. Mitelman, B. Johansson, and F. Mertens, editors. Mitelman
Database of Chromosome Aberrations and Gene Fusions in Can-
cer, http://cgap.nci.nih.gov/Chromosomes/Mitelman (Last checked
10/13/2010), 2010.

[MSM04] M. Marron, K.M. Swenson, and B.M.E. Moret. Genomic distances under
deletions and insertions. Theoretical Computer Science, 325(3):347–360,
2004.

[MSTL02] B. Moret, A. Siepel, J. Tang, and T. Liu. Inversion medians outperform
breakpoint medians in phylogeny reconstruction from gene-order data.
In Proc. 2nd Workshop on Algorithms in Bioinformatics, volume 2452
of Lecture Notes in Computer Science, pages 521–536. Springer-Verlag,
2002.

[MT] B.M.E. Moret and J. Tang. GRAPPA’s homepage. World Wide Web,
http://www.cs.unm.edu/∼moret/GRAPPA (Last checked 10/13/2010).

[MT04] B.M.E. Moret and J. Tang. GRAPPA version 2.0 Manual, 2004.

[MTWW02] B.M.E. Moret, J. Tang, L.-S. Wang, and T. Warnow. Steps towards
accurate reconstructions of phylogenies from gene-order data. Journal of
Computer and System Sciences, 65(3):508–525, 2002.

[MWB+01] B.M.E. Moret, S.K. Wyman, D.A. Bader, T. Warnow, and M. Yan. A
new implementation and detailed study of breakpoint analysis. In Proc.
6th Pacific Symposium on Biocomputing, pages 583–594, 2001.

[MWD00] J. Meidanis, M.E.M.T. Walter, and Z. Dias. Reversal distance of signed
circular chromosomes. Technical Report IC-00-23, Institute of Computing,
University of Campinas, 2000.

[NI92] H. Nagamochi and T. Ibaraki. A linear time algorithm for computing 3-
edge-connected components in a multigraph. Japan Journal of Industrial
and Applied Mathematics, 9:163–180, 1992.

[NT84] J.H. Nadeau and B.A. Taylor. Lengths of chromosomal segments con-
served since divergence of man and mouse. Proceedings of the National
Academy of Sciences of the United States of America, 81(3):814–818,
1984.

[OFS07] M. Ozery-Flato and R. Shamir. On the frequency of genome rearrange-
ment events in cancer karyotypes. In Proc. 1st RECOMB Satellite
Workshop in Computational Cancer Biology, page 17, 2007.

134

BIBLIOGRAPHY

[OFS08] M. Ozery-Flato and R. Shamir. Sorting cancer karyotypes by elemen-
tary operations. In Proc. 6th Annual RECOMB Satellite Workshop on
Comparative Genomics, volume 5267 of Lecture Notes in Bioinformatics,
pages 211–225. Springer-Verlag, 2008.

[PH88] J.D. Palmer and L.A. Herbon. Plant mitochondrial DNA evolves rapidly
in structure, but slowly in sequence. Journal of Molecular Evolution,
27:87–97, 1988.

[Pri57] R.C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36:1389–1401, 1957.

[PS98] I. Pe’er and R. Shamir. The median problems for breakpoints are NP-
complete. Technical Report TR98-071, Electronic Colloquium on Com-
putational Complexity, 1998.

[PT03] P. Pevzner and G. Tesler. Genome rearrangements in mammalian evo-
lution: Lessons from human and mouse genomes. Genome Research,
13:37–45, 2003.

[RXL+10] V. Rajan, A.W. Xu, Y. Lin, K.M. Swenson, and B.M.E. Moret. Heuristic
for the inversion median problem. BMC Bioinformatics, 11(Suppl 1):S30,
2010.

[San99] D. Sankoff. Genome rearrangement with gene families. Bioinformatics,
15:909–917, 1999.

[San01] D. Sankoff. Gene and genome duplication. Current Opinion in Genetics
and Development, 11:681–684, 2001.

[SB98] D. Sankoff and M. Blanchette. Multiple genome rearrangement and
breakpoint phylogeny. Journal of Computational Biology, 5(3):555–570,
1998.

[SCL76] D. Sankoff, R.J. Cedergren, and G. Lapalme. Frequency of insertion-
deletion, transversion, and transition in the evolution of 5S ribosomal
RNA. Journal of Molecular Evolution, 7:133–149, 1976.

[SM97] J.C. Setubal and J. Meidanis. Introduction to Computational Molecular
Biology. PWS Publishing Company, Boston, 1997.

[SM01] A.C. Siepel and B.M.E. Moret. Finding an optimal inversion median:
Experimental results. In Proc. 1st Workshop on Algorithms, volume 2149
of Lecture Notes in Computer Science, pages 189–203. Springer-Verlag,
2001.

135

BIBLIOGRAPHY

[SMEDM08] K.M. Swenson, M. Marron, J.V. Earnest-DeYoung, and B.M.E. Moret.
Approximating the true evolutionary distance between two genomes.
ACM Journal of Experimental Algorithmics, 12:3.5:1–3.5:17, 2008.

[SPCD02] J. Salse, B. Piégu, R. Cooke, and M. Delseny. Synteny between arabidopsis
thaliana and rice at the genome level: a tool to identify conservation
in the ongoing rice genome sequencing project. Nucleic Acids Research,
30(11):2316–2328, 2002.

[SSK96] D. Sankoff, G. Sundaram, and J.D. Kececioglu. Steiner points in the
space of genome rearrangements. International Journal of Foundations
of Computer Science, 7(1):1–9, 1996.

[STTM09] K.M. Swenson, Y. To, J. Tang, and B.M.E. Moret. Maximum independent
sets of commuting and noninterfering inversions. BMC Bioinformatics,
10(Suppl 1):S6, 2009.

[Stu26] A.H. Sturtevant. A crossover reducer in drosophila melanogaster due to
inversion of a section of the third chromosome. Biologisches Zentralblatt,
46(12):697–702, 1926.

[SV05] M.R. Salavatipour and J. Verstraete. Disjoint cycles: Integrality gap,
hardness, and approximation. In Proc. 11th Conference on Integer Pro-
gramming and Combinatorial Optimization, volume 3509 of Lecture Notes
in Computer Science, pages 51–65. Springer-Verlag, 2005.

[TBS07] E. Tannier, A. Bergeron, and M.-F. Sagot. Advances on sorting by
reversals. Discrete Applied Mathematics, 155:881–888, 2007.

[TMCd04] J. Tang, B.M.E. Moret, L. Cui, and C.W. dePamphilis. Phylogenetic
reconstruction from arbitrary gene-order data. In Proc. 4th IEEE Confer-
ence on Bioinformatics and Bioengineering, pages 592–599. IEEE Press,
2004.

[TS04] E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time.
In Proc. 15th Annual Symposium on Combinatorial Pattern Matching,
volume 3109 of Lecture Notes in Computer Science, pages 1–13. Springer-
Verlag, 2004.

[TS07] E. Tannier and M.-F. Sagot. personal communication, 2007.

[Tsi09] Y.H. Tsin. Yet another optimal algorithm for 3-edge-connectivity. Journal
of Discrete Algorithms, 7:130–146, 2009.

136

BIBLIOGRAPHY

[TZS08] E. Tannier, C. Zheng, and D. Sankoff. Multichromosomal genome median
and halving problems. In Proc. 8th Workshop on Algorithms in Bioinfor-
matics, volume 5251 of Lecture Notes in Computer Science, pages 1–13.
Springer-Verlag, 2008.

[Wak68] A. Waksman. A permutation network. Journal of the ACM, 15(1):159–163,
1968.

[WC53] J.D. Watson and F.H.C. Crick. A structure for deoxyribose nucleic acid.
Nature, 171:737–738, 1953.

[WDM98] M.E.M.T Walter, Z. Dias, and J. Meidanis. Reversal and transposition
distance of linear chromosomes. In Proc. Symposium on String Processing
and Information Retrieval, pages 96–102. IEEE Computer Society, 1998.

[XM10] A.W. Xu and B.M.E. Moret. Genome rearrangement analysis on high-
resolution data. Submitted, 2010.

[XS08] A.W. Xu and D. Sankoff. Decomposition of multiple breakpoint graphs
and rapid exact solutions. In Proc. 8th Workshop on Algorithms in
Bioinformatics, volume 5251 of Lecture Notes in Computer Science, pages
25–37. Springer-Verlag, 2008.

[Xu08] A.W. Xu. A fast and exact algorithm for the median of three problem - a
graph decomposition approach. In Proc. 6th Annual RECOMB Satellite
Workshop on Comparative Genomics, volume 5267 of Lecture Notes in
Bioinformatics, pages 184–197. Springer-Verlag, 2008.

[Xu09a] A.W. Xu. DCJ median problems on linear multichromosomal genomes:
Graph representation and fast exact solutions. In Proc. 7th Annual
RECOMB Satellite Workshop on Comparative Genomics, volume 5817 of
Lecture Notes in Bioinformatics, pages 70–83. Springer-Verlag, 2009.

[Xu09b] A.W. Xu. A fast and exact algorithm for the median of three problem
- a graph decomposition approach. Journal of Computational Biology,
16(10):1369–1381, 2009.

[YAF05] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic
permutations by translocation, inversion and block interchange. Bioin-
formatics, 21(16):3340–3346, 2005.

[YF08] S. Yancopoulos and R. Friedberg. Sorting genomes with insertions,
deletions and duplications by DCJ. In Proc. 6th Annual RECOMB
Satellite Workshop on Comparative Genomics, volume 5267 of Lecture
Notes in Bioinformatics, pages 170–183. Springer-Verlag, 2008.

137

BIBLIOGRAPHY

[YZT07] F. Yue, M. Zhang, and J. Tang. A heuristic for phylogenetic reconstruction
using transposition. In Proc. 7th IEEE Conference on Bioinformatics
and Bioengineering, pages 802–808, 2007.

[YZT08] F. Yue, M. Zhang, and J. Tang. Phylogenetic reconstruction from trans-
positions. BMC Genomics, 9(Suppl 2):S15, 2008.

[ZAT09] M. Zhang, W. Arndt, and J. Tang. An exact solver for the DCJ median
problem. In Proc. 14th Pacific Symposium on Biocomputing, pages 138–
149. World Scientific, 2009.

[ZZS06] C. Zheng, Q. Zhu, and D. Sankoff. Genome halving with an outgroup.
Evolutionary Bioinformatics, 2:319–326, 2006.

138

	Summary
	Contents
	Preface
	Introduction
	Biological background
	The structure of the genome
	Genome dynamics
	Prokaryotic and eukaryotic DNA
	Computational challenges and genome rearrangement problems

	Preliminaries
	Elementary definitions
	Relevance of the operations
	Circular versus linear genomes
	The breakpoint graph

	Genome rearrangement problems and distance measures
	Simple permutations
	On median problems
	Phylogenetic reconstruction
	Genome rearrangements with duplications

	Simple Permutations
	Fundamental definitions and results
	Transforming a permutation into its equivalent simple permutation
	The canonical labeling of cycles
	(b, g)-splits
	The data structure
	The algorithm

	Transforming back the simple permutation
	The data structure
	Transforming a reversal on simple into a reversal on
	Update of the data structure

	On Median Problems
	Fundamental definitions and results
	The multiple breakpoint graph

	The transposition median problem is NP-complete
	Reduction from mdECD to oCMP
	Reduction from oCMP to TMP

	A branch and bound algorithm
	Exact calculation of pairwise distances
	The median solver
	Adaption to the TMP
	Experimental results

	Conclusion and open problems

	Phylogenetic Reconstruction
	Fundamental definitions
	The algorithm
	Creating the tree
	Creating the clouds
	Improving the topology
	Improving internal nodes
	Implementation details

	Experimental results
	Data sets
	Weight ratios
	Other tools using the reversal distance
	Results

	Conclusion and discussion

	Rearrangement Distances with Duplications and Deletions
	Sorting unichromosomal genomes
	Problem definition
	Idea of the algorithm
	The breakpoint graph revisited
	A lower bound
	The algorithm

	Sorting multichromosomal genomes
	Additional definitions
	A further extension of the breakpoint graph
	A lower bound
	The algorithm

	Experimental results
	Creating artificial data
	Results on artificial data
	Evaluating the algorithm on cancer karyotypes

	Conclusion and Discussion

	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations
	Bibliography

