

On Reversal and Transposition Medians

Genome Rearrangements

- During evolution, the gene order in a chromosome can change
- Gene order of two land snail mitochondrial DNAs

Cepaea nemoralis
$\overrightarrow{\operatorname{cox1}} \vec{V} \overrightarrow{\operatorname{rrnL}} \overrightarrow{L 1} \vec{A} \overrightarrow{\text { nad6 }} \vec{P} \overrightarrow{\text { nads }} \overrightarrow{\text { nad1 }} \overrightarrow{\text { nad4 }} \vec{L} \overrightarrow{\operatorname{cob}} \vec{D} \vec{C} \vec{F} \overrightarrow{\operatorname{cox} 2} \vec{Y} \vec{W} \vec{G} \vec{H}$

Albinaria coerulea
$\overrightarrow{\operatorname{cox1}} \vec{V} \overrightarrow{\operatorname{rrnL}} \overrightarrow{L 1} \vec{P} \vec{A} \overrightarrow{\text { nad }} \overrightarrow{\text { nads }} \overrightarrow{\text { nad } 1} \overrightarrow{\text { nad }} \vec{L} \overrightarrow{\operatorname{cob}} \vec{D} \vec{C} \vec{F} \overrightarrow{\operatorname{cox2}} \vec{Y} \vec{W} \vec{G} \vec{H}$ $\overleftarrow{Q} \overleftarrow{L 2} \overleftarrow{\operatorname{tap8}} \overleftarrow{N} \overleftarrow{\operatorname{atp} 6} \overleftarrow{R} \overleftarrow{E} \overleftarrow{\text { rrns }} \overleftarrow{M} \overleftarrow{\text { nad3 }} \overleftarrow{S 2} \overrightarrow{s 1}$ nad $4 \overleftarrow{T} \overleftarrow{\text { cox3 }} \vec{l} \overrightarrow{\text { nad }} \vec{K}$

Genome Rearrangements

- During evolution, the gene order in a chromosome can change
- Gene order of two land snail mitochondrial DNAs

Cepaea nemoralis
$\overrightarrow{\operatorname{cox1}} \vec{V} \overrightarrow{\operatorname{rrnL}} \overrightarrow{L 1} \vec{A} \overrightarrow{\text { nadt }} \vec{P} \overrightarrow{\text { nads }} \overrightarrow{\text { nad1 }} \overrightarrow{\text { nad4 }} \vec{L} \overrightarrow{\operatorname{cob}} \vec{D} \vec{C} \vec{F} \overrightarrow{\operatorname{cox2}} \vec{Y} \vec{W} \vec{G} \vec{H}$
$\overleftarrow{Q} \overleftarrow{L 2} \overleftarrow{\operatorname{atp8}} \overleftarrow{N} \overleftarrow{\operatorname{atp6} 6} \overleftarrow{R} \overleftarrow{E} \overleftarrow{\text { rrns }} \overleftarrow{M} \overleftarrow{\text { nad3 }} \overleftarrow{S 2} \overleftarrow{T} \overleftarrow{\operatorname{cox} 3} \overrightarrow{S 1} \overrightarrow{\text { nad } 4} \overrightarrow{1} \overrightarrow{\text { nad } 2} \vec{K}$
Albinaria coerulea
$\overrightarrow{\operatorname{cox1}} \vec{V} \overrightarrow{\operatorname{rrnL}} \overrightarrow{L 1} \vec{P} \vec{A} \overrightarrow{\text { nad }} \overrightarrow{\text { nads }} \overrightarrow{\text { nad } 1} \overrightarrow{\text { nadt }} \vec{L} \overrightarrow{\operatorname{cob}} \vec{D} \vec{C} \vec{F} \overrightarrow{\operatorname{cox} 2} \vec{Y} \vec{W} \vec{G} \vec{H}$

- Reconstruct evolutionary events
- Use as distance measure
- Use for phylogenetic reconstruction

The Median Problem

- Given gene orders $\pi^{1}, \pi^{2}, \pi^{3}$
- Find M where $\sum_{i=1}^{3} d\left(\pi^{i}, M\right)$ is minimized

The Median Problem

- Given gene orders $\pi^{1}, \pi^{2}, \pi^{3}$
- Find M where $\sum_{i=1}^{3} d\left(\pi^{i}, M\right)$ is minimized

- NP-hard even for the most simple distance measures

Our contribution

- Exact algorithms for the Transposition Median Problem Exact algorithm for the weighted Reversal and Transposition

Median Problem
(Extension of Reversal Median solver, Caprara 2003)

- Improved exact algorithm for pairwise distances
(Improvement of Christie 1998)

The Multiple Breakpoint Graph

- Edge-colored graph
- Contains neighborhood relations for each gene order

The Multiple Breakpoint Graph

- Edge-colored graph
- Contains neighborhood relations for each gene order
- Example:

The Multiple Breakpoint Graph

- Edge-colored graph
- Contains neighborhood relations for each gene order
- Example:

$$
\begin{aligned}
& \pi^{1}=\left(\begin{array}{lllll}
\overrightarrow{1} & \overleftarrow{3} & \overrightarrow{5} & \overleftarrow{4} & \overrightarrow{2}
\end{array}\right) \\
& \pi^{2}=\left(\begin{array}{llll}
\overrightarrow{1} & \overleftarrow{3} & \overleftarrow{4} & \overrightarrow{2} \\
5
\end{array}\right) \\
& \pi^{3}=\left(\begin{array}{ll}
\overrightarrow{1} \overleftarrow{4} \overleftarrow{3} \overleftarrow{2} \overrightarrow{5}
\end{array}\right) \\
& M=(\overrightarrow{1} \overleftarrow{3} \overleftarrow{2} \overrightarrow{4} \overrightarrow{5})
\end{aligned}
$$

The Multiple Breakpoint Graph

- Edge-colored graph
- Contains neighborhood relations for each gene order
- Example:

$$
\begin{aligned}
& \pi^{1}=\left(\begin{array}{lllll}
\overrightarrow{1} & \overleftarrow{3} & \overrightarrow{5} & \overleftarrow{4} & \overrightarrow{2}
\end{array}\right) \\
& \pi^{2}=\left(\begin{array}{ll}
(\overrightarrow{3} & \overleftarrow{4} \\
2 & \overrightarrow{5}
\end{array}\right) \\
& \pi^{3}=\left(\begin{array}{ll}
\overrightarrow{1} \overleftarrow{4} \overleftarrow{3} \overleftarrow{2} \overrightarrow{5}
\end{array}\right) \\
& M=(\overrightarrow{1} \overleftarrow{3} \overleftarrow{2} \overrightarrow{4} \overrightarrow{5})
\end{aligned}
$$

The Multiple Breakpoint Graph

- Edge-colored graph
- Contains neighborhood relations for each gene order
- Example:

$$
\begin{aligned}
& \pi^{1}=\left(\begin{array}{lllll}
\overrightarrow{1} & \overleftarrow{3} & \overrightarrow{5} & \overleftarrow{4} & \overrightarrow{2}
\end{array}\right) \\
& \pi^{2}=\left(\begin{array}{llll}
\overrightarrow{1} & \overleftarrow{3} & \overleftarrow{4} & \overrightarrow{2} \\
5
\end{array}\right) \\
& \pi^{3}=\left(\begin{array}{ll}
\overrightarrow{1} & \overleftarrow{4} \\
\hline & \overleftarrow{2} \overrightarrow{5}
\end{array}\right) \\
& M=(\overrightarrow{1} \overleftarrow{3} \overleftarrow{2} \overrightarrow{4} \overrightarrow{5})
\end{aligned}
$$

The Multiple Breakpoint Graph

- Edge-colored graph
- Contains neighborhood relations for each gene order
- Example:

$$
\begin{aligned}
& \pi^{1}=\left(\begin{array}{lllll}
\overrightarrow{1} & \overleftarrow{3} & \overrightarrow{5} & \overleftarrow{4} & \overrightarrow{2}
\end{array}\right) \\
& \pi^{2}=(\overrightarrow{1} \overleftarrow{3} \overleftarrow{4} \overrightarrow{2} \overrightarrow{5}) \\
& \pi^{3}=(\overrightarrow{1} \overleftarrow{4} \overleftarrow{3} \overleftarrow{2} \overrightarrow{5}) \\
& M=(\overrightarrow{1} \overleftarrow{3} \overleftarrow{2} \overrightarrow{4} \overrightarrow{5})
\end{aligned}
$$

The Multiple Breakpoint Graph

- Edge-colored graph
- Contains neighborhood relations for each gene order
- Example:

$$
\begin{aligned}
& \pi^{1}=\left(\begin{array}{lllll}
\overrightarrow{1} & \overleftarrow{3} & \overrightarrow{5} & \overleftarrow{4} & \overrightarrow{2}
\end{array}\right) \\
& \pi^{2}=\left(\begin{array}{llll}
\overrightarrow{1} & \overleftarrow{3} & \overleftarrow{4} & \overrightarrow{2} \\
5
\end{array}\right) \\
& \pi^{3}=\left(\begin{array}{ll}
\overrightarrow{1} \overleftarrow{4} \overleftarrow{3} \overleftarrow{2} \overrightarrow{5}
\end{array}\right) \\
& M=(\overrightarrow{1} \overleftarrow{3} \overleftarrow{2} \overrightarrow{4} \overrightarrow{5})
\end{aligned}
$$

Cycles and distances

- Edges of two colors form cycles

$$
\begin{aligned}
& \pi^{1}=\left(\begin{array}{lllll}
\overrightarrow{1} & \overleftarrow{3} & \overrightarrow{5} & \overleftarrow{4} & \overrightarrow{2}
\end{array}\right) \\
& M=\left(\begin{array}{lllll}
\overrightarrow{1} & \overleftarrow{3} & \overleftarrow{2} & \overrightarrow{4} & \overrightarrow{5}
\end{array}\right)
\end{aligned}
$$

Cycles and distances

- Edges of two colors form cycles

$$
\begin{aligned}
& \pi^{2}=(\overrightarrow{1} \overleftarrow{3} \overleftarrow{4} \overrightarrow{2} \overrightarrow{5}) \\
& M=(\overrightarrow{1} \overleftarrow{3} \overleftarrow{2} \overrightarrow{4} \overrightarrow{5})
\end{aligned}
$$

Cycles and distances

- Edges of two colors form cycles

$$
\begin{aligned}
& \pi^{3}=(\overrightarrow{1} \stackrel{\leftarrow}{4} \overleftarrow{3} \overleftarrow{2} \overrightarrow{5}) \\
& M=(\overrightarrow{1} \overrightarrow{3} \overleftarrow{2} \overrightarrow{4} \overrightarrow{5})
\end{aligned}
$$

Cycles and distances

- Edges of two colors form cycles

$$
\begin{aligned}
& \pi^{3}=(\overrightarrow{1} \overleftarrow{4} \overleftarrow{3} \overleftarrow{2} \overrightarrow{5}) \\
& M=(\overrightarrow{1} \overleftarrow{3} \overleftarrow{2} \stackrel{\rightharpoonup}{4} \overrightarrow{5})
\end{aligned}
$$

- Distances closely related to number of cycles

$$
\begin{gathered}
d_{r}=n-c+h+f \\
d_{t} \geq \frac{n-c_{\text {odd }}}{2} \\
d_{w} \geq \frac{w_{t}}{2}\left(n-c_{\text {odd }}-\left(2-\frac{2 w_{r}}{w_{t}}\right) c_{\text {even }}\right)
\end{gathered}
$$

Sketch of the algorithm

- Solve Cycle Median Problem
- Verify solution

Sketch of the algorithm

- Solve Cycle Median Problem
- Start with empty M
- Subsequently add edges
- Estimate lower bound for partial solution
- Continue with partial solution with least lower bound (branch and bound)
- NEW: Consider cycle lengths
- Verify solution

Sketch of the algorithm

- Solve Cycle Median Problem
- Start with empty M
- Subsequently add edges
- Estimate lower bound for partial solution
- Continue with partial solution with least lower bound (branch and bound)
- NEW: Consider cycle lengths
- Verify solution

Calculate edge weights

- ... either by an exact algorithm for pairwise distances
- ... or by an approximation algorithm (faster)

Experiments

- Create random input
- Start with id of size $n(n=37$ and $n=100)$
- Create 3 sequences of operations of length $r(2 \leq r \leq 15)$
- Use these sequences to obtain π^{1}, π^{2}, and π^{3}

Experiments

- Create random input
- Start with id of size $n(n=37$ and $n=100)$
- Create 3 sequences of operations of length $r(2 \leq r \leq 15)$
- Use these sequences to obtain π^{1}, π^{2}, and π^{3}
- Testing
- Most inputs could be solved within a few seconds
- Verifying solutions with approximation algorithm is very accurate
- Much faster than previous algorithm for the Transposition Median Problem (Yue et al. 2008)

Conclusion

We presented an algorithm that ...

- can solve the TMP and wRTMP exactly
- is fast enough for practical use
- is FREE SOFTWARE (GPL v3.0)
\Rightarrow download it from
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.
inst.190/Mitarbeiter/bader/phylo-1.0.1.tar.gz

Conclusion

We presented an algorithm that ...

- can solve the TMP and wRTMP exactly
- is fast enough for practical use
- is FREE SOFTWARE (GPL v3.0)
\Rightarrow download it from
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.
inst.190/Mitarbeiter/bader/phylo-1.0.1.tar.gz

Thanks for your attention!

