On Undetected Redundancy in the
Burrows-Wheeler Transform

Uwe Baier

Institute of Theoretical Computer Science
Ulm University

Data Compression

Why should we compress our data?...

...people from informatics should know best
themselves...

» huge amount of data, storage can be expensive

» not every method can be implemented using streaming
and parallelism = memory is an even more limited
resource

» some compressed representations allow methods of string
analysis to be performed much faster

1/25

In this talk

BWT Preliminaries

Tunneled BWT

Practical Implementation

Experimental Results

Conclusion

2/25

Context-Based Compression
Observation: similar contexts tend to be succeeded (or
preceded) by similar characters
» In english texts, the letter g always is followed by an u
» The string eer tends to be preceded by a b
Can we use this knowledge to compress data?
= Burrows-Wheeler Transform [Burrows and Wheeler, 1994]

BWT and sorted suffixes of S = easypeasy$

Yy

n n 9 0K AT O O

$

asy$

asypeasy$

easy$

easypeasy$

peasy$

sy$

sypeasy$

v$

ypeasy$ 3/25

BWT - What is it?

“The BWT L is a string generated by concatenating all cyclic
preceding characters of the lexicographically sorted suffixes of

astring S.”

BWT generation of S = easypeasy$

prec. char.
Y

A D Vv < T O Y ®n

suffixes

$

v$

sy$

asy$
easy$
peasy$
ypeasy$
sypeasy$
asypeasy$
easypeasy$

4/25

BWT - What is it?

“The BWT L is a string generated by concatenating all cyclic
preceding characters of the lexicographically sorted suffixes of
astring S.”

BWT generation of S = easypeasy$

prec. char. suffixes L sorted suffixes
y 9 vy $
s v$ e asy$
a sy$ e asypeasy$
e asy$ sort p easy$
p easy$ — $ easypeasy$
y peasy$ y peasy$
s ypeasy$ a sy$
a sypeasy$ a sypeasy$
e asypeasy$ s v$
$ easypeasy$ s ypeasy$

4/25

BWT - What is it?

“The BWT L is a string generated by concatenating all cyclic
preceding characters of the lexicographically sorted suffixes of

astring S.”

BWT generation of S = easypeasy$

prec. char.

y

A D Vv < T O Y ®n

suffixes

$

v$

sy$

asy$
easy$
peasy$
ypeasy$
sypeasy$
asypeasy$
easypeasy$

sort

Gn WO OK LT 00 k:jr

sorted suffixes
$

asy$
asypeasy$
easy$
easypeasy$
peasy$

sv$
sypeasy$
v$

ypeasy$

4/25

BWT - Use for Data Compression?

» BWT places characters preceding the same context near
to each other

y $
preceding asyd Context
characters asypeasy$

p easy$

» character distribution of small portions of BWT is skew
Common Compression Approaches

» transform local to global skewness (MTF [Ryabko, 1980])
+ entropy coding (Huffman-Coding [Huffman, 1952])

» run-length-encoding ---aaaaaa--- = ---a0l---
6 times 6 = (101),

5/25

BWT - Inverting

» generate F (first characters of sorted suffixes) by sorting L

n n Y 9 AT OO0 T
K 'S 0O 0 Y v AT

» k-th occurence of character c in L corresponds to
k-th occurence of character cin F

= collecting characters in L during a walk through L using
correspondence yields the reversed original sequence

6/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

n n o 0K AT 0 0K
(I B o B OB O B RN RS Sy

7/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

n n o 0K AT 0 0K
I R (I) L o I O B O B R U R =7 Ry |

7/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

n n 9 9K AT 0 0 <
N < n o 0 0 Y Y e T

S = sy$

7/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

n WY 9K AT OO K
KK L T 00 Y Y AT

S= asy$

7/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

n n o WK AT D 0D K
R (I () B o BN OB OB R < BT Ry |

S= easy$

7/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

n n 9 K AT 0 0K
I () I () B o I O« » R R R =7 Ry |

S = peasy$

7/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

n n Y oK AT O OK
KK D TD DY Y AT

S= ypeasy$

7/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

n n o 0 AT D DK
< <K 0w T OO Y AT

S= sypeasy$

7/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

»w n Y9 9K AT O D0 K
KK O T D0 QO T

S = asypeasy$

7/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

n n W oK AT D0 00K
R I B o B OB O < BN U iy

S = easypeasy$

7/25

BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

—

end

n n 9 9K AT O 0K
Ko LD 'T® D0 9 0 T

S = easypeasy$

7/25

Observation on Contexts

similar contexts tend to be preceded by the same character
= similar contexts tend to be preceded by the same substrings

sorted suffixes and corr. prefixes of S = easypeasy$

O oI O NN ORI

ea
ea
€as
eas

» Can we use this?

$

asy$
asypeasy$
easy$
easypeasy$
peasy$

sy$
sypeasy$
v$

ypeasy$

8/25

BWT "Tunneling*

1. determine a set of blocks (= equal consecutive preceding
substrings) to be tunneled

ea sypeasy$

easypeas v$
eas ypeasy$
2. determine the corresponding columns in L and F for each

block

3. cross out all entries from the columns in L and F, except for
the uppermost ones

4. remove positions which were crossed out both in F and L

5. result: shortened L and two bitvectors cntL and cntF
saving the remaining crosses

9/25

BWT Tunneling - Example

1. determine a set of blocks (= equal consecutive preceding
substrings) to be tunneled

L F
Yy
e a
e a
o) e
$ e
y P
a s
a S
e a s %
e a s Yy

10/25

BWT Tunneling - Example

2. determine the corresponding columns in L and F for each

block
L F
y $
pacy
e a
e a
—
P e
$ e
—/
Yy P
Py
a s
a s
—/
s Yy
S Y

10/25

BWT Tunneling - Example

3. cross out all entries from the columns in L and F, except for
the uppermost ones

L

<o (X oo (X o [X o e m

10/25

BWT Tunneling - Example

4. remove positions which were crossed out both in F and L

L F
y $
e a
X Pz
p e
$ X
y p
a s
K Z=N
S Yy
> y

10/25

BWT Tunneling - Example

5. result: shortened L and two bitvectors cntL and cntF
saving the remaining crosses

L cntL cntF
Y

e

p

$ X
Y

a

s

s X

10/25

Tunneling - Recap
tunneling removes all entries from a block except for

» the uppermost row
» the rightmost column

L L cntL cntF
Yy Yy
e e
e P
p tunneling $ X
$ y
y a
a e a s
a s X

e a s

a s

» tunneling reduces run-lengths in L at cost of increasing the
number of runs in cntL and cntF - is it worth it?

» Can we invert a tunneled BWT?
11/25

Tunneled BWT - Inverting

» sort regular characters in L to free places in F

L cntL cntF F
Y $
e a
P e
$ X

Yy p
a S
s y
s X y

» k-th occurence of character c in L corresponds to
k-th occurence of character cin F
» use uppermost row of a tunnel for all rows of a block
» when entering a tunnel, save offset to uppermost row to
get back to correct “lane” after tunnel
12/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

Xmm%w'@@%l_
<< oo X0 oo e

13/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

Xmm%w'@@%l_
< oo X0 oo e

13/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

Xmm%m’0®<l—
<< oo X0 o e

S = sy$

13/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

XUJQJ%%"O(D%I_
<< o X0 o e T

S= asy$

13/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

Xmm%w"d(D%I_
<< oo X0 om oo

S= easy$

13/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

XU)QJ%%"O(‘DKII_
<k wro X @ o e

S = peasy$

13/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

Xmm%m‘umwl—
< oo X0 o e

S= ypeasy$

13/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

L F
y $
e a
P e
$ X
y P
a S
S g
< y
tunnel start detected = switch to uppermost row
offset = 1
S= sypeasy$

13/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

XUJQJ%%"O(D%I_
<< o X0 o e T

offset = 1

S = asypeasy$

13/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

Xmm%w"d(D%I_
<< oo X0 om oo

offset = 1

S = easypeasy$

13/25

Tunneled BWT - Inverting Example

k-th occurence of character ¢ in L corresponds to
k-th occurence of character ¢ in F

end

<< oo X® o e
A

Xmm%m*@mml—

tunnel end detected = switch back using offset
offset = 1

S = easypeasy$

13/25

Tunneled BWT Inverting - Recap

Normal BWT Tunneled BWT

L F L F
y $ y $
e a aﬁ
e p
p $ ><</
$ B

3 < 1:_4,

Yy
y

=<\

? X
z —y

» uppermost row is used for all rows of a block
» offset is stored to "get back® to correct lane

Block Collisions

Compensable Critical Critical
o c b 1

b 1[99 ¥ BOA o o &k

b 1 8% x B o ek

b 1 674 «x Bl o o ok

b 1 ol §£04 o ¢ x
o c b 1
o e} b 1

» compensable collisions: cross overlay
» offset is stored on a stack 14/25

Practice: Considered Blocks

Consider only width-maximal run-based blocks:
block height is equal to the height of runs it starts and ends in

run = length-maximal repeat of same character

c-raaxx Xxxx xbbc aaaaaacc:- -
N——" N——
no run run

Result:
» only compensable collisions

» bitvectors cntL and cntF can be merged to one vector aux
with alphabet size 3

» aux can be shortened to work run-based: only 1 symbol
per run required

15/25

Practice: Block Choice

>
>

>

choice depends on compression of L and aux

L and aux come frome the same source

= compress both with same BWT backend encoder
allows to abstract choice from used backend encoder

Greedy run-length-encoding strategy

>

encoding size of run-length-encoded L and aux can be
estimated
greedy strategy: assign each block a score (= number of
bits removed from L-encoding)

» choose block with highest score

» decrease score of colliding blocks with lower score
result: “sorted list” of blocks

tunnel score-highest blocks which give best tradeoff
between benefit and aux encoding size

works good as long as backend encoders also use

run-length-encoding (or something similar) (605

Experiments: Overview

BWT compressors enhanced with tunneling

» bwz: original scheme by Burrows & Wheeler (=~ bzip2)
» bcm: one of the best open-source BWT compressors
» wt: wavelet tree using hybrid bitvectors

Test Data

» Silesia Corpus: contains 12 files (6 - 49 MB)
» Pizza & Chili Corpus: contains 6 files (54 - 1130 MB)
» Repetitive Corpus: contains 9 files (45 - 446 MB)

17/25

Comparison: normal vs. tunneled BWT

tunneling compression improvement

1
bwz H :8.4 —{ O
1
1
bcm H :1126 4{
1

I
wt — 1 16.48 ‘ OO

0% 10% 20% 30% 40% 50% 60%

» average encoding size decrease about 8 — 16 %
» peak encoding size decrease about 33 — 58 %

18/25

Comparison to other Compressors

» xz: uses LZMA, similarto 7-zip
» zpagq: uses context mixing
» all values are measured in bits per symbol

Compressor Silesia Corpus Pizza & Chili Corpus Repetitive Corpus

], & g 0E @ _
bwz 034 1.81 148|229 183 1.84 |0.23 031 0.12
bwz-tunneled | 0.33 1.75 1.48 |2.00 1.81 1.66 |0.17 021 0.11
bem 029 149 124|233 172 156 |023 0.32 0.13
bem-tunneled | 028 1.42 124195 170 134 |0.16 021 0.11
wt 0.61 270 2.08 |3.97 2.05 2.45 069 049 0.40
wt—tunneled |0.54 245 207|272 2.03 1.99 |0.38 042 0.29
xz 035 1.38 1.61|222 178 193 |0.14 011 0.09
zpaq 0.36 120 1.21|261 1.8 164 |062 1.85 0.09

19/25

Conclusion
Tunneling works nice...
» natural way to extend context-based compression to longer
strings
» significant BWT compression improvement
» same or less resource requirements for decoding BWT
... but has some problems:
» block choice under collisions is not always optimal
» current block choice strategy is too complicated

» heavy resource requirements for encoding
(memory peak and time double)

Future research goals

» try simpler block choice strategies
» examine hardness of optimal block choice
» prepare tunneling for text indexing

20/25

Questions

21/25

References |

ﬁ Uwe Baier.
Tunneled BWT Implementation and Benchmark.
https://github.com/waYnel337/tbwt.
last visited January 2018.

@ Uwe Baier.
On Undetected Redundancy in the Burrows-Wheeler Transform.
https://arxiv.org/abs/1804.01937,2018

ﬁ Michael Burrows and David J Wheeler.
A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

https://github.com/waYne1337/tbwt
https://arxiv.org/abs/1804.01937

References Il

@ Sebastian Deorowicz.
Silesia Corpus.

http://sun.aei.polsl.pl/~sdeor/index.php?page=
silesia.

last visited January 2018.

[d Paolo Ferragina and Gonzalo Navarro.
Pizza & Chili Corpus.
http://pizzachili.dcc.uchile.cl/texts.html.
last visited January 2018.

@ Paolo Ferragina and Gonzalo Navarro.
Repetitive Corpus.
http://pizzachili.dcc.uchile.cl/repcorpus.html.
last visited January 2018.

http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html

References llI

[@ Luca Foschini, Roberto Grossi, Ankur Gupta, and Jeffrey Scott
Vitter.

When Indexing Equals Compression: Experiments with
Compressing Suffix Arrays and Applications.

ACM Transactions on Algorithms, 2(4):611-639, 2006.

[§ Simon Gog.
sdsl-lite Library.
https://github.com/simongog/sdsl-1ite.
last visited January 2018.

[§ David A. Huffman.
A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the IRE, 40(9):1098-1101, 1952.

https://github.com/simongog/sdsl-lite

References IV

@ Juha Karkkainen, Dominik Kempa, and Simon J. Puglisi.
Hybrid Compression of Bitvectors for the FM-Index.

In Proceedings of the 2014 Data Compression Conference, DCC
14, pages 302-311, 2014.

[Matt Mahoney.
zpaq File Compressor.
http://mattmahoney.net/dc/zpaqg.html.
last visited January 2018.

@ Illya Muravyov.
bem File Compressor.
https://github.com/encode84/bcm.
last visited January 2018.

http://mattmahoney.net/dc/zpaq.html
https://github.com/encode84/bcm

References V

[B. Ya Ryabko.
Data compression by means of a “book stack”.
Problems of Information Transmission, 16:265—-269, 1980.

@ Tukaani.
xz File Compressor.
https://tukaani.org/xz/.
last visited January 2018.

https://tukaani.org/xz/

	BWT Preliminaries
	Tunneled BWT
	Practical Implementation
	Experimental Results
	Conclusion
	Appendix

