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Abstract. Preprocessing techniques are crucial for SAT solvers when it comes to
reaching state-of-the-art performance as it was shown by the results of the last
SAT Competitions. The usefulness of a preprocessing technique depends highly
on its own parameters, on the instances on which it is applied and on the used
solver. In this paper we first give an extended analysis of the performance gain
reached by using different preprocessing techniques individually in combination
with CDCL solvers on application instances and SLS solvers on crafted instances.
Further, we provide an analysis of combinations of preprocessing techniques by
means of automated algorithm configuration, where we search for optimal prepro-
cessor configurations for different scenarios. Our results show that the performance
of CDCL and especially of SLS solvers can be further improved when using ap-
propriate preprocessor configurations. The solvers augmented with the best found
preprocessing configurations outperform the original solvers on the instances from
the SAT Challenge 2012, achieving new state-of-the-art results.

1 Introduction
The propositional satisfiability problem (SAT) is one of the most studied NP-complete
problems in computer science. One reason is the wide range of SAT’s practical appli-
cations ranging from hardware verification to planning and scheduling [1,2,3]. Given a
propositional formula in conjunctive normal form (CNF), the SAT-problem consists in
finding an assignment for the variables such that all clauses are satisfied.

The area of pragmatic SAT Solving is dominated by two types of solving techniques:
Conflict Driven Clause Learning (CDCL) solvers and Stochastic Local Search (SLS).
Each technique has its strength on different types of problems. While CDCL solvers are
best suited for structured problems and unsatisfiable crafted problems, SLS solver exhibit
their strength on random and satisfiable crafted problems.

Besides solving techniques, preprocessing techniques (PPT) (meanwhile also used
during search and known as inprocessing) have turned out to be crucial for SAT Solvers
and enabled them to further increase their performance. PPTs can be seen as transforma-
tion rules, that take a formula as input and output a transformed problem, that is satisfia-
bility equivalent to the original one.

Since the introduction of the SATELITE preprocessor [4], which is still one of the
most used preprocessor today and is prepended in several state-of-the-art SAT solvers,
many new techniques for preprocessing have been proposed (e.g. [5,6,7,8,9]) and imple-
mented. Although most of these new PPTs have found their way into SAT solvers, until
the introduction of the preprocessor COPROCESSOR [10] there was no PPT framework
like SATELITE which provided them as a stand-alone tool.



Most of the new PPTs are developed only for CDCL solvers or at least with CDCL
solvers in mind. A reason why the parameters of these techniques are predetermined to
work well in collaboration with CDCL solvers, which raises up the question whether
these techniques (maybe with different parameters) could also be useful to SLS solvers.
Some PPTs have been analyzed in combination with SLS solvers [11], but did not yield
an improvement. Though there is evidence that some PPTs can help SLS solvers on
crafted problems: the SLS solver SATTIME2012 [12] (which uses failed literal probing
and unit propagation as preprocessing) showed remarkable performance on the crafted
problems during the latest SAT Competitions.

In this paper we are interested in analyzing the utility of PPTs for CDCL and SLS
solvers separately. A PPT P is considered to be useful (or utile) for a solver S on a set of
instances I if the performance of S on I denoted by perf (S(I)) can be improved by first
executing the preprocessor P and then running the solver S on the simplified problems
P (I), i.e. if perf (S(P (I)) > perf (S(I)), where perf is the statistical measure of inter-
est (e.g. the number of solved instances). The same run time limitations are imposed to
preprocessing time and solving time. Note that the usefulness of a PPT highly depends
on the solver and on the instances. We are not interested in the size of the reduction nor
in the structural changes of PPTs, but in the speedup preprocessing entails for the SAT
Solver. Therefore, we address the following questions related to the utility of PPTs.

1. How useful is each PPT on its own?
2. Which combination and parametrization of PPTs yields the best improvement?
3. How far can the best PPT be improved with appropriate parametrization?
4. How sensitive is the performance gain when exchanging the solvers?

To answer the above questions, we first implemented most of the currently available
formula simplification techniques into the preprocessor COPROCESSOR. The new version
of COPROCESSOR(CP3)3extends some of the functionalities by incorporating covered
clause elimination techniques [9]. CP3 as a PPT framework in combination with the
state-of-the-art SAT solvers GLUCOSE 2.1 (CDCL) and SPARROW (SLS) represents the
experimental basis for our analysis. For the evaluation we use the application and crafted
instances from the SAT Challenge 2012 (SC12)4. Question 1 is answered by evaluating
each PPTs individually in combination with the two solvers. To answer question 2 and 3,
we make use of an automated algorithm configuration tool, which searches for optimal
combinations and parameterization of PPTs. The results obtained are validated with other
solvers, answering question 4.

Although there is also a reasonable amount of work on inprocessing [13,14], which is
performing formula simplifications during search, we do not focus on this kind of appli-
cation of PPTs here, for two reasons: (i) SLS solvers do not learn clauses, and therefore
triggering inprocessing rules during search is less powerful, and (ii) GLUCOSE 2.1 does
not ship with a framework for performing inprocessing.

1.1 Summary of Contributions
To the best of the authors knowledge, this is the first study on the utility of individual

PPTs, and the first attempt to automatically configure these for different types of SAT
solvers on heterogeneous sets of SAT instances.

3 COPROCESSOR is available at http://tools.computational-logic.org.
4 http://baldur.iti.kit.edu/SAT-Challenge-2012/index.html
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The results of our analysis show that the performance of SLS solvers can be drasti-
cally increased when using the appropriate PPT parameterization. The performance of
the SLS solver SPARROW could be improved by 25% on hard combinatorial instances
from the SC12, making it the best performing single engine solver on this class of in-
stances. We could also show that good configuration of PPTs for SLS solvers strongly
differ from those commonly used for CDCL solvers, though the best performing single
techniques is the same, namely (bounded) variable elimination. A deeper analysis of this
PPT shows that for SLS solver it is beneficial to allow a growth of the formula by up to
1000 clauses, while each elimination step is allowed to introduce ten more clauses than
clauses being eliminated. To our surprise, not the least frequent variable is eliminated
first, but the most often occurring variable.

We show that for CDCL solvers on application instances, among the published PPTs,
(bounded) variable elimination (BVE) [4] is the most powerful. However, we are also
able to show that for special instance classes, techniques as equivalent literal elimina-
tion [15], or bounded variable addition (BVA) [6] are also important, having a unique
contribution. State-of-the-art performance can only be achieved by combining several
PPTs, more specifically BVE, BVA and unhiding [8]. We are also able to show that the
performance of the award winning solver GLUCOSE 2.1 can be further improved by 3%
when using an appropriate PPT configuration.

All in all we could show that the performance of solvers can be improved by appro-
priate parameterization of the preprocessor and that optimal settings are very different
for CDCL and SLS solvers. Further bounded variable elimination turns out to be the
best PPT (independent of the solver), a result that might motivate to revisit the possible
alternatives of this technique.

1.2 Related Work

In general, formula simplification is analyzed when new techniques are presented
(e.g. [6,15,4,5,16,9,7]), however, the utility of these techniques has not been compared
yet. This has only been done for components of CDCL SAT solvers [17], but without
the analysis of complex combinations nor of PPTs. Furthermore, proposed PPTs are usu-
ally not well parameterized, although their implementation could offer many degrees of
freedom.

Formula simplifications have been combined with SLS solvers already in [18], where
redundant binary clauses are added to a formula to help the SLS solver simulate unit
propagation. In [12], the SLS solver SATTIME2012 is combined with unit propagation
and failed literal detection, to improve its performance on crafted instances. In [11], the
effect of covered clause elimination(CCE) [9] techniques with respect to the performance
of SLS solvers on crafted instances has been analyzed, showing that this technique family
does not improve the performance, which is in line with the results we will present.

To the best of our knowledge, automated configuration of PPTs has not been consid-
ered so far – however, the power of automated configuration has been demonstrated on
a wide range of optimization scenarios, including CDCL and SLS SAT solvers [19,20].
The parameters of SPARROW itself have been optimized using this techniques [20].
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2 Preliminaries
We assume the reader to be familiar with propositional logic and its clausal fragment.

In the following we will briefly discuss the notations used throughout this paper and give
a brief description of the PPTs we are considering.

Let V be a fixed set of Boolean variables, or briefly just variables. A literal is a
variable x (positive literal) or a negated variable x (negative literal). We overload the
overbar notation: The complement l of a positive (negative, resp.) literal l is the negative
(positive, resp.) literal with the same variable as l. A clause is a finite set of literals and
a formula (in conjunctive normal form) is a finite set of clauses. A clause that contains
exactly a single literal is called a unit clause. A clause that contains a literal and its
complement is called a tautology. The set of all variables occurring in a formula F (in
positive or negative literals) is denoted by Vars(F ). Given two clauses C and D with
l ∈ C and l ∈ D, we call the clause E := (C \ l) ∪ (D \ l) the resolvent of C and D,
that has been created by resolution, which is written E = C ⊗D.

Since we do not discuss the properties of these techniques, we also do not introduce
semantics of propositional logic here. Briefly, an assignment that satisfies a formula F is
called a model of F .

3 Modern Preprocessing Techniques
Most modern SAT solvers still rely on standard preprocessor SATELITE published

in 2005 [4], which includes the PPTs Unit Propagation (also called Boolean Constraint
Propagation), Subsumption, Strengthening (also called self subsuming resolution) and
(bounded) variable elimination. Since 2005 many other preprocessing techniques have
been published [6,15,4,5,16,9,7]. The implementation details or possible variations (pa-
rameterizations) of these PPTs are presented in these publications only briefly. In the
following we provide a short description along with possible parameterizations of all
PPTs considered in this work. We define F as the input formula to a technique, and F ′

as the output.

Unit Propagation (UP): If there is a unit clause in the formula C = {l} ∈ F , then the
interpretation mapping this literal to > is applied to the formula.

Subsumption (SUB): If there is a clause C ∈ F that is a subset of another clause D ∈ F ,
then D is removed.

Strengthening (STR): Let D and E be a disjunction of literals. If there exist two clauses
C1 = {l,D} and C2 = {l, E,D}, then the clause C2 can be replaced by the resolvent
C1 ⊗ C2 = {D,E}. Note, that the clause C2 could produce several resolvents that
subsume C2. However, to the best of the authors knowledge, C2 is replaced immediately,
so that other resolvents may not be produced anymore. We enabled COPROCESSOR to
keep C2 during strengthening, and introduce a parameter allStrength that enabled this
extension based on the size of C2.

(Bounded) Variable Elimination (BVE) [4]: Let Sx = {C | C ∈ F, x ∈ C} and Sx =
{C | C ∈ F, x ∈ C}. Let S be the set of non-tautological pairwise resolvents of all
clauses in Sx and Sx. Then, F ′ = F \ (Sx ∪ Sx) ∪ S. As a bound, usually the number
of clauses is used: if |S| < |Sx| + |Sx|, the sets are replaced. Since it is very unlikely
that |S| < |Sx| + |Sx|, if both |Sx| and |Sx| are large, there is a cutoff, that does not
apply BVE to a variable x, if each of the sets has at least 10 clauses, or if one set has at
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least 5 clauses and the other set contains more than 15 clauses. During the computation
of BVE, for each clause in Sx and Sx the number of resolvents is counted, to calculate
the bound first. If a clause does not produce any resolvent, this clause is called blocked,
and can be removed, even if no variable elimination is performed [5]. This technique is
called blocked clause elimination (BCE), and can be disabled with a parameter noBce.

(Bounded) Variable Addition (BVA) [6]: Let x be a fresh variable, that is x /∈ Vars(F ),
and S ∈ F be a set of clauses, such that there exists two sets Sx and Sx, and Sx⊗Sx = S.
Inversely to BVE, BVA replaces the set of clauses S, if |S| > |Sx| + |Sx|. The current
implementation is only able to find simple patterns, where the clauses in S are of the
form {l,Di}, {l′, Di}, and i > 2 so that the final set of clauses contains less clauses. The
fresh variable will be added within the clause x → l ∧ l′. If a set S is found, and i > 4,
another clause l ∧ l′ → x is added, and furthermore, all clauses C with l, l′ ∈ C are
replaced with (C \ {l, l′}) ∪ {x}.
Probing (Probe) [21,16]: Contrary to the depth first search of CDCL solvers, probing
(also called failed literal detection) performs a breadth first search to check whether
certain literal l assignments lead to a conflict by unit propagation. If a conflict is found,
then the clause {l} can be added to the formula. Furthermore, conflict analysis with
the first UIP scheme as in the CDCL algorithm could be applied [22]. Since probing
searches on the top level, also all UIPs could be collected and added to the formula.
Furthermore, double look-ahead can be used [23]. With the immediate implications of l
and l, furthermore equivalent literals, and necessary assignments can be detected [23].

Covered Clause Elimination (CCE) [9]: There exists several techniques that allow the ad-
dition of literals to a clause C. CCE in COPROCESSOR allows hidden literal addition [7],
asymmetric literal addition [7] and covered literal addition [9], which are described in
the literature. During computing hidden literal addition, or asymmetric literal addition,
the procedure might also find failed literals. The final clause C ′ can either be a tauto-
logical clause, or C ′ could be blocked. If any of the reasons match, C is removed from
F . Since the computation of C ′ is expensive, CCE is only applied to clauses with a size
larger than 40 % of the maximum clause size.

Hidden Tautology Elimination (HTE) [7]: When restricting the computation of the hid-
den literal addition to binary clauses only, a clause C can still become a tautology. These
clauses are removed by HTE.

Equivalent Literal Elimination (EE) [15]: A set of literals, that contains equivalent liter-
als can be computed based on the binary implication graph of the binary clauses in the
formula [15]. All literals in such a set are replaced with one representative literal of that
class.

Unhiding (Unhide) [8]: HTE and STR can be approximated based on sampling the binary
implication graph of the formula [8]. During sampling the graph, failed literals can be
detected. To improve the quality of the approximation, multiple randomized samplings
(iterations) can be generated. Furthermore, one can choose whether HTE (UHTE) or
STR(UHLE) should be applied based on the sampling.

Ternary Resolution (3RES): resolving two ternary (or binary) clauses can result in an-
other ternary (binary) clause, or even in a binary clause. This technique can be applied
before search. The newly created clause can even subsume other clauses in the formula.
The subsumption can be eagerly enabled via the parameter eagerSubsume.
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Add Binary Resolvents (ADD2) [18]: for SLS solvers it has been reported that adding
redundant binary clauses to the formula can speed up the search of this kind of solvers.
Thus, redundant binary clauses can be generated by performing probing on a literal l, and
then a clause {l, l′} can be added, if this clause is not already present in the formula, and
the literal l′ is propagated after assuming l. Since the possible number of those clauses is
huge, the number of added clauses is heavily restricted.

Dense : after many simplification techniques, the set of variables in the formula is not
continuous any more. By removing the gaps, the total number of variables in the final
formula is not decreased, however, the numeric representation is smaller, and therefore
the SAT solver has a compact variable representation, which might result in a more cache
friendly and thus faster execution.

3.1 Implementation
The standard preprocessor SATELITE ships with a cutoff: if the number of clauses in

the formula exceeds six million, the preprocessor simply returns the input formula. How-
ever, these large instances could also benefit from simplifications. Therefore, instead of
applying a clause limit for the whole preprocessor, CP3 provides limits for each tech-
nique, allowing it to perform only a given number of clause dereferences. In this way, the
overall simplification time can be controlled, and the simplification can be reproduced on
any computing system because it is independent of time.

4 Experimental Setup
To answer the four questions posted in the introduction we set up a series of four

experiments which are based on the following two evaluation scenarios. If not indicated
otherwise, all statements about performance in this paper always refer to these scenarios.

1. CP3 combined with SPARROW on the satisfiable Hard Combinatorial instances from
the SC12 (SHC12) with a run time limit of 900 s.

2. CP3 and GLUCOSE 2.1 without SATELITE on the Application instances from the
SC12 (APP12) with a run time limit of 900 s.

Single PPT Analysis. To answer question 1 we have measured the utility of each PPT
individually, keeping the parameters of each PPT close to the literature.

Combined PPTs Analysis. To answer question 2 we have parameterized all PPTs, allow-
ing to turn each technique on and off and to set different parameters. The PPTs execution
order is fixed for all experiment: UP, 3RES, SUB, STR, EE, Unhide, HTE, Probe, BVE,
BVA, CCE, ADD2 and finally DENSE5. The parameterized version of CP3 together
with the solver (which had fixed parameters) was then optimized with a parallel model
based automatic algorithm configurator, which is a parallel version of the SMAC con-
figurator presented in [24]. The configurator is implemented in the EDACC framework
[25]. We have performed five configurations experiments with a configuration budget of
2 · 106 s and a cutoff of 450 s per job optimizing the PAR10 statistic, which is the sum
of the run time of all solved instances plus the number of unsolved instances penalized
with ten times the timeout. Optimizing the PAR10 statistic is almost equivalent to op-
timizing the number of solved instances. For the optimization of CP3 +SPARROW we

5 Allowing the configurator to also alter the execution order of PPTs would have resulted in a
much larger configuration space.
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have randomly selected 150 instances from scenario 1 on which at least one of the PPTs
from the analysis of the individual PPT have ever changed something on the instance.
For the optimization of CP3 +GLUCOSE 2.1 we have randomly selected 300 instances
from scenario 2 without further restrictions.

Extended Single PPT analysis. The results of the first two experiments raised up ques-
tion 3, which we tried to answer by further extending the parameterization of the best
performing single PPT, namely BVE, and optimizing it in a separate experiment with
an optimization budget of 4 · 106 s. BVE was extended and parameterized further than
proposed in the literature.

Remember BVE and notations S, Sx and Sx. First, we loosen the limit |S| + bl <
|Sx|+ |Sx|, where bl is a local limit that has to be met per step (default configuration bl =
0). With the local limit we allow each elimination to increase the number of clauses in the
formula per step. Furthermore, we introduce a global counter cg = 0, which cumulates
the difference of clauses in F and F ′ per step: cg := cg+ |Sx|+ |Sx|−|S|. By specifying
a global upper bound bu, when can reject elimination steps that would surpass this global
limit, preventing BVE from introducing more than bu clauses. For an unlimited increase
of the number of clauses, this upper bound can be disabled (bu is enabled by default). We
also allow the elimination to take place when |S|l < |Sx|l + |Sx|l, where | · |l measures
the number of literals (parameter (red lits). Finally, we tried a number of heuristics to
control how the variable for the next elimination step is chosen.

Applicability to other Solvers. Question 4 is answered by prepending the best found CP3
configurations from the previous experiments to other CDCL and SLS solvers and eval-
uate them on our scenarios.

Software and Hardware. All experiments were performed on the bwGrid clusters [26]
(Intel Harpertown quad-core CPUs with 2.83 GHz and 8 GByte RAM). The operating
system was Scientific Linux. Experiments were conducted with EDACC, a platform that
distributes solver execution on clusters [25]. The Sparrow code is an improved version
of the code used in [27]. GLUCOSE version 2.1 is available online6.

5 PPTs Analysis for SLS Solvers

5.1 Single PPT Analysis

Figure 1 presents the result of the evaluation of each individual PPT as a cactus plot.
Along the individual PPTs we have also evaluated Sparrow alone and prepended with the
SATELITE preprocessor. Most of the PPTs are not able to boost the performance of Spar-
row performing similar or even worse than Sparrow alone. BVE is the best performing
PPT decreasing the runtime of Sparrow over the complete set and allowing it to solve 11
instances more (Sparrow solved 209). Independent of the used PPT, the runtime of CP3
was in most cases around five seconds and seldom above ten. When using SATELITE,
the run time distribution is completely different: up to 300 seconds, this configuration
can solve less instances than any other configuration, but later on, it is able to solve
240 instances. Compared to CP3, SATELITE is performing a combination of PPTs until
completion which motivates the analysis of combinations of PPTs.

6 https://www.lri.fr/˜simon/?page=glucose
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Fig. 1: Number of solved instances by Sparrow alone and when prepended with the different PPTs
individually and with SatElite on the set of satisfiable Hard Combinatorial instances from the SAT
Challenge 2012.

5.2 Combined PPTs Analysis

When searching for the best PPT combination and parameterization for our Sparrow
scenario we have used only a small set of training instances (150 from the total of 360).
The best performing configurations from our five configuration experiments described
in 4 where evaluated on the complete set of instances. We report the results only for
the best combined configuration, though some other configurations performed also rel-
atively good and had similar settings. From Figure 2 we can see that the best combined
PPT technique denoted in the plot wit CP3+Sparrow combined is able to significantly
improve Sparrow, solving a total of 250 instances from the set, more than the best single
engine SLS solver from the SC12.

5.3 Extended Single PPT analysis

As BVE was the best performing PPT we have performed an extra configuration ex-
periment (see Section 4). The best found BVE configuration used the new introduced
parameters in a somehow unexpected way: No Gate Detection, only SUB and not STR
during the BVE loop, prefer the variable with maximum occurrences to be eliminated
first. Finally, the formula is allowed to grow: per step at most bl = 10 clauses can be
added and in total the formula should grow by bu = 1000 clauses. Consequently the
preprocessed formulas can get larger in terms of clauses, but variables with large occur-
rences will be eliminated first. This type of BVE configuration is almost contrary to the
standard configuration for CDCL solvers. In Figure 2 we can see that this configuration
denoted in the plot with CP3+SPARROW EXT BVE is able to outperform the combined
PPT configuration further by 11 instances solving a total of 261 instances, which is far
more than any single engine solver that participated in the last years SC12. The perfor-
mance increase is due to two classes of instances present in our evaluation set, the fsf* and

8



100 150 200 250

0

200

400

600

800

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●●●●

●●●●

●●●●●●●

●●

●●●
●
●
●●●

●

●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●

●
●●●●●●●●●

●
●●

●●
●●

●●
●

●
●
●
●

●

●
●

●
●●

●●

number of solved instances

C
P

U
 T

im
e 

(s
)

●

●

Sparrow

sattime2012

CP3+Sparrow combined

CP3+sattime2012 combined

CP3+Sparrow ext BVE 

CP3+sattime2012 ext BVE

Fig. 2: Number of solved instances by Sparrow and SATTIME2012 alone and when prepended
with the best combined PPTs and the best BVE parameterization on the set of satisfiable Hard
Combinatorial instances from the SAT Challenge 2012.

the prime*, which Sparrow is barely able to solve alone. When prepended with the BVE
PPT configuration, SPARROW solves all these instances quite easily, having run times
lower than 300 seconds. Note, that none of these instances is solved by CP3 already.

5.4 Applicability to other SLS Solvers

We have combined the best performing CP3 configuration from our combined and
extended single analysis with another SLS solver, namely SATTIME2012 [12], which
was the best performing single engine solver for the SHC12 instance set. SATTIME2012
already has an incorporated preprocessor, which performs failed literal probing and unit
propagation. In Figure 2 we can see that the performance of SATTIME2012 can also be
increased by using the combined and the extended BVE configuration, as it was the case
for Sparrow. The gain in terms of number of solved instances is not that big as it is for
Sparrow, but is still significant and decreases the runtime of SATTIME2012 on a large
set of instances drastically (more than 200 instances can be solved in less than 50 sec-
onds). SATTIME2012 can not benefit that much from the BVE configuration because the
preprocessing is not able to make those instances solvable, which SATTIME2012 can-
not solve alone, namely the VanDerWärden* instances. Still, using another preprocessor
before running the internal preprocessor of SATTIME2012 seems to pay off.

6 PPTs Analysis for CDCL Solvers

Over the years, many PPTs have been proposed to help systematic SAT solvers to
improve their performance or to simulate high level domain simplifications. From todays
perspective it is not clear how each single PPT contributes to the performance of CDCL
solvers, especially on heterogeneous benchmarks.

9



100 150 200 250 300 350 400

0

200

400

600

800

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●●●●
●●
●●●●●

●●●●●
●●●●●●

●●●
●●●●

●●●●●
●●●●●

●●●●
●●●●●●

●●●●
●
●●●●

●●●●●●●●
●●●

●●●
●●●

●

●●●
●●●●●

●●●
●●●

●●
●●●●●

●●
●●●

●

●

●●
●●
●●●●

●●●
●
●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●
●●●●●

●●●●●
●●
●●●●●●●

●●●●●
●●●●

●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●

●●●●
●●●●●●

●●●●●●●●●●
●●●

●●●●●
●●●●●●

●●●●●●
●●
●●
●●●

●
●●●

●●●
●●●●

●●
●●
●
●●●

●●●
●●
●●●

●
●
●●
●●●●

●●●
●●

●●
●●

number of solved instances

C
P

U
 T

im
e 

(s
)

●

●

CP3+glucose UP

CP3+glucose EE

CP3+glucose SUB

CP3+glucose BVA

glucose 2.1 (SAT Challenge 2012)

CP3+glucose CCE

CP3+glucose HTE

CP3+glucose Probe

CP3+glucose 3RES

CP3+glucose Unhide

glucose21 NSE

CP3+glucose BVE

Fig. 3: Number of solved instances by GLUCOSE 2.1 when prepended with the different PPTs
individually on the set of application instances from the SAT Challenge 2012. As base solver we
added glucose21 NSE, which is GLUCOSE 2.1 without the SATELITE preprocessor, and as a state-
of-the-art solver GLUCOSE 2.1 2.1 in the version of the SAT Challenge 2012.

6.1 Single PPT Analysis

In the following we evaluate the utility of each PPT on the APP12 benchmarks. In
Figure ?? we can see the cactus plot of the different configurations – note that this plot
shows only the number of solved instances, but does not tell the general utility of each
technique. The plot reveals that BVE is a crucial simplification technique, which outper-
forms any other PPT. This fact also explains the performance of the SATELITE prepro-
cessor, which incorporates BVE.

To identify the utility of each individual PPT, we use the unique solver contribution
that gives the number of instances that can be solved solely by this PPT. Since we always
use the same solver, this measure results in the unique PPT contribution (UPT):

None UP 3RES SUB+STR EE Unhide HTE Probe BVE BVA CCE

UPT 2 – – 1 6 – 1 5 52 2 2
solved 356 347 346 349 351 347 350 361 414 352 329

The given data shows that the techniques UP, 3RES and Unhide do not help GLU-
COSE 2.1 to improve on the used benchmark. The contribution of HTE is small, one
instance can be solved by using HTE only. When using BVA, CCE or no simplification
at all, each time two unique formulas can be solved. This fact motivates two conclusions:
(i) there exists instances where formula simplifications change the formula so that solver
heuristics do not perform as well, and (ii) there exists only a few instances in the bench-
mark that benefit from complex techniques like BVA or CCE. When giving more rea-
soning power to the preprocessor by performing look-ahead during probing, 5 instances
can be solved. Furthermore, when combining equivalent literals and thus reducing the
number of variables of the formula, the solver can tackle another 6 instances. Finally, the
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Fig. 4: Spearman correlation matrix when correlating the performance of GLUCOSE 2.1 when
being combined with a single PPT. The darker each field, the more correlated is the performance
of the two configurations.

most powerful technique BVE is able to solve 52 instances that cannot be solved by any
other technique.

Another interesting result can be concluded from the data: a PPT is not only valuable
if it helps solving the highest number of instances from a benchmark, but it is also im-
portant to have a UPT. Looking at EE, it can be seen that GLUCOSE 2.1 +EE solves less
instances than using GLUCOSE 2.1 alone. Still, EE helps solving 6 instances that cannot
be solved by any other configuration. For CCE, this difference is even more significant:
CCE can solve 27 instances less, but still helps to solve 2 instances7.

The given unique PPT contributions motivate a further analysis: namely the correla-
tion of the solver performance after applying a certain PPT. Figure 4 provides a heatmap
visualization of the Spearman correlation matrix between the different PPTs, where a
darker field represents a higher correlation.

Two major correlations can be seen: SUB+STR simulate UP, and removing redundant
clauses does not improve the performance of the CDCL solver much. Furthermore, the
failed literals that are found during Probe seem to correlate to the failed literals that can
be extracted during HTE. Finally, the only technique that seems to correlate with BVE is
SUB+STR, which is natural, since BVE performs SUB+STR before executing the actual
variable elimination.

6.2 Multiple PPTs Analysis
After seeing the unique solver contribution of each single PPT, naturally the question

arises whether these technique can be combined, resulting in more powerful simplifica-
tion procedures. Since most techniques offer parameters like the number of iterations,
step limits, or the complexity of the applied algorithm, we have used an automatic algo-
rithm configurator to find good configurations. The following combination of techniques
has been found to suite GLUCOSE 2.1 best (PPTs are run in the specified order): UP,
SUB+STR with allStrength=3, Unhide without UHLE and 5 iterations, BVE without

7 We propose to study the effects of PPTs as EE and CCE and the CDCL algorithm in more
details, since this is not part of the presented work
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on the fly BCE, BVA with steps set to 120000, and DENSE. With this configuration,
GLUCOSE 2.1 can solve 443 instances of the 600 benchmark instances, whereas when
combined with SATELITE only 430 instances can be solved. For solving the provided
benchmark, it seems to pay off to create additional clauses during strengthening, and to
create all clauses that can follow from strengthening ternary or smaller clauses. Instead
of performing the expensive HTE, the cheap approximation with Unhide is calculated.
To achieve a good approximation, the number of iterations has been increased to 5 – also
detecting more failed literals. By this setup, Unhide seems to cover most benefits from
Probe, HTE and CCE. Next, BVE is executed in the default setup, but without removing
blocked clauses. Finally, the formula is partially rewritten by using BVA, however, in a
very limited way. The few number of steps indicates that the first steps of BVA are im-
portant, but running this technique until completion does not improve the performance
of CDCL solvers further.

6.3 Extended Single PPT analysis

When tuning BVE further for GLUCOSE 2.1, the following configuration of BVE
has been found to perform best on the given benchmark: no on the fly BCE, enabled
global upper bound bg = 0, enabled local elimination limit loosened bl = 2 and DENSE.
When using this configuration, the performance of GLUCOSE 2.1 + CP3 matches the
performance of GLUCOSE 2.1 + SATELITE. It can be concluded that, except using the
global and local bounds during the elimination, SATELITE has a well performing default
parameter setting.

6.4 Applicability to other CDCL Solvers

Finally, we check whether the utility of the improved preprocessor configuration can
be transferred to other SAT solvers as well. We chose the widely used MINISAT 2.2 as
another solving engine. When using MINISAT 2.2 + SATELITE, 376 instances of the
benchmark can be solved, whereas when switching to the best configuration found for
CDCL solvers with CP3 (see Sect. 6.2), another 6 instances can be solved. The improve-
ment is not as high as for GLUCOSE 2.1, however, the configuration process has been
carried out for the latter solver. We therefore conclude, that the results obtained by our
experiments can still be transferred to other SAT solvers.

7 Conclusion and Future Work
In this paper we have analyzed the utility of preprocessing techniques (PPTs) for

CDCL and SLS solvers on application respectively satisfiable hard combinatorial prob-
lems by means of single and combined PPT analysis using automatic algorithm config-
uration procedures. We showed that the performance of SLS solvers can be drastically
improved by using appropriate PPTs (which in our case was BVE) and that the con-
figuration of PPTs strongly differs from configurations used in the literature for CDCL
solvers. The utility of the best found PPT configuration keeps its validity even when ex-
changing the solver. For example, when applying preprocessing to another SLS solver
like SATTIME2012, the performance also increased. Overall the PPT and solver combi-
nations found in this paper achieve new state-of-the-art performance for SLS solvers on
hard combinatorial problems.

For CDCL solvers we showed, that their performance can be further improved (which
is known to be a hard task) by configuring the parameters of their PPTs. When combining
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variable elimination with variable addition and the approximation of HTE and failed
literal detection based on the binary implication graph, a PPT configuration has been
found that, combined with GLUCOSE 2.1, yields a better performance, than when using
SATELITE. Our results also show that each individual PPT can be useful, allowing to
solve instances not solved by any other PPT.

We propose two different directions of research motivated by our work. The first one
is the improvement of the overall solving performance by extending the parameterization
analysis to the solver parameters, execution order of PPT and even including the PPTs as
inprocessing steps.

The second direction would be to analyze the structural changes performed by the
PPTs on the instances and find out why they have a positive effect on the solving time of
the solvers. In this way new PPTs could be developed that try to further improve these
beneficial changes.
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forschung und kunst baden-württemberg). Technical report, Universities of Baden-Württem-
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