

Adrian Balint Andreas Fröhlich July 13, 2010

Improving stochastic local search for SAT with a new probability distribution

Introduction

SAT

- Formula *F* as a set of clauses. Each clause as a set of literals.
- ▶ Is there an assignment α , so that $F(\alpha) = 1$?

SLS-solvers

- Operate on complete assignments.
- Try to change an initial assignment α₀ in a way, so that it becomes satisfying after several steps.
- Use local information and heuristics to decide how to modify the assignment in each search step.

Pseudocode of a typical SLS-solver

INPUT: formula F, cutoff.

OUTPUT: model for F or UNKNOWN.

SLS(F, cutoff)

for i=1 to maxTries

 $\alpha = \alpha_0$ = random assignment;

```
for j=1 to maxFlips
```

if (α is a model for *F*) return α ;

```
var = pickVar();
```

```
\alpha[var] = 1-\alpha[var];
```

return UNKNOWN;

SLS architectures

Differ in how to select a variable for flipping.

GSAT

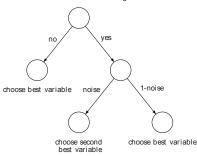
Considers all variables.

WalkSAT

Only considers variables from a randomly chosen unsatisfied clause.

DLS

Similar to GSAT. Additionally uses clause-weighting.


Modern SLS-solvers

- Can not be put into just one category.
- Are hybrids of the different architectures e.g.:
 - adaptG2WSAT = GSAT + WalkSAT + adaptive scheme [Li07]
 - gNovelty+ = adaptG2WSAT + DLS-component [Pham07]
 - TNM = GSAT + WalkSAT-version + two noise schemes to switch between [Wei09]
- they all use a Novelty-version to escape from local minima.

Escaping from local minima

Novelty

- ► Choose a random unsatisfied clause c ∈ F
- Pick a variable x from c according to the following heuristic:

best score variable has min age?

Escaping from local minima

adaptNovelty+

- Additionally implements a random walk with probability wp.
- Uses an adaptive scheme for setting the noise probability [Hoos02].

Novelty as a probability distribution

- ▶ This can be seen as a probability distribution *p* on the variables of *c*.
- p(x) can take only 4 different values:
 - Always chosen; p(x) = 1
 - Chosen, when no noise step occurs; p(x) = (1 noise)
 - Chosen, when a noise step occurs; p(x) = noise
 - Never chosen; p(x) = 0
- Information used to decide: score, age
- Does not take into account the exact values of score and age.
- Does not put different variables into relation.

Example

• $c = \{x_1, x_2, x_3\}$

Case 1

- score(x₁) = 0, score(x₂) = −3, score(x₃) = −3
- $age(x_1) = 10^4 2$, $age(x_2) = 10^4$, $age(x_3) = 10^4 1$

Case 2

- score(x₁) = −1, score(x₂) = −2, score(x₃) = −3
- $age(x_1) = 10^3$, $age(x_2) = 10^4$, $age(x_3) = 10^7$
- Both cases are identical for Novelty+.
- ▶ The only chance for x₃ to be selected is by a random walk.

New probability distribution

- Define a probability distribution as a concatenation of continuous functions on the variables of *c*.
- Choose a random variable according to this distribution.
- ► The form of this distribution p(x) := p_{s(x)} p_{a(x)} ∑_{x∈c} p_{s(x)} p_{a(x)}.
- $p_s(x)$ is a function considering the *score* of x.
- ► *p_a*(*x*) is a function considering the *age* of *x*.
- $p_a(x), p_s(x) > 0$

New probability distribution

- Define a probability distribution as a concatenation of continuous functions on the variables of *c*.
- Choose a random variable according to this distribution.
- The form of this distribution p(x) := p_{s(x)} p_{a(x)} ∑_{x∈c} p_{s(x)} p_{a(x)}.
- $\triangleright p_s(x) := c_1^{score(x)}$
- $p_a(x) := \left(\frac{age(x)}{c_3}\right)^{c_2} + 1$
- ► *c*₁ controls the influence of *score* on the decision.
- c₂ and c₃ specify, how quick and how strong *age* starts to affect the decision.

Properties of *p*

Like Novelty

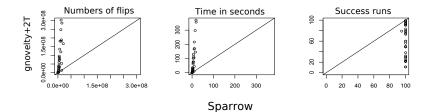
- Prefers variables with high score.
- Prefers variables with high age.

Additionally

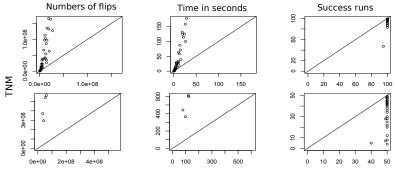
- Takes into account the exact values of score and age.
- Puts different variables into relation.
- Does not need an explicit random walk.
 - Implicit random walk because of $p_s(x), p_a(x) > 0$.
- Does not need an explicit noise scheme.
 - Growing age automatically leads to new decisions when getting stuck in a certain part of the search space.

Implementation details

Sparrow

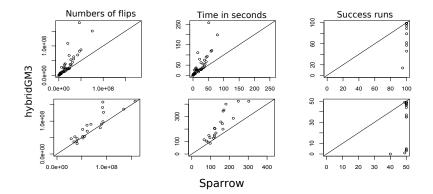

- gNovelty+ as the basic module. gNovelty+ consists of:
 - Gradient-walk as in G2WSAT.
 - adaptNovelty+ to escape local minima.
 - Additive weighting scheme.
- Replaced the adaptNovelty+ component by a WalkSAT-algorithm using the presented probability distribution.
- Specifying the parameters $c_1 = 4, c_2 = 4, c_3 = 10^5$.
 - Constants fixed for all instances.
 - Empirical values.
 - Not optimized yet.

Evaluation


Empirical Tests

- 2 sets of large random 3-SAT instances with ratio = 4.2
- Not optimized for *k*-SAT, $k \neq 3$.
- Benchmark 1:
 - 64 different instances from SAT 2009 Competition (2k 18k variables)
 - Each instance is solved 100 times (cutoff 1200 sec.)
- Benchmark 2:
 - 40 additional instances from SAT 2009 Competition (20k 26k variables)
 - Each instance is solved 50 times (cutoff 2400 sec.)

Results: Sparrow vs gNovelty+



Results: Sparrow vs TNM

Sparrow

Results: Sparrow vs hybridGM3

Conclusion

Summary

- Escaping local minima is a key feature for SLS-solvers
- Variable selection in local minima should not be done in a deterministic way
- Detailed differentiation useful for variable selection.

Outlook

- Implement more attributes.
- Arbitrary complex function.
- Variable expressions [Tompkins10].

Thank you for your attention!