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Chapter 1

Introduction

Quantum computing is an exciting new area between theoretical computer sci-
ence and quantum physics. There are many reasons for exploring quantum com-
puting. First, quantum computing is a challenge. The computation is based on
quantum mechanics. All classical computers consist on classical physics, but
classical physics do not describe all phenomena in nature. Therefore it is nec-
essary to explore the potential of quantum computation as well as the power
and limitation of quantum mechanics.

Quantum computing has the potential to demonstrate that for some
problems it is more powerful than classical computation. An example is
Shor’s [Sho97] polynomial time quantum algorithm for the factorization of range
intergers. On a classical computer the best known method for factorization of
a number with 300 digits takes 5 · 1024 steps or with terahertz speed 150.000
years. A quantum algorithms needs only 5 · 1010 steps, or with terahertz speed
less than one second.

Another reason for the study of quantum computing is the fact that the
miniaturization of computing continues fast and achieves the microscopic level,
where the laws of the quantum world dominate. At the latest in 15 years the chip
development will achieve this physical limit. The demand for computing power
will grow, for example for the search on databases, weather forecasts, simulation
of processes or for mathematical optimization. With quantum computers we
can enlarge the power of computation and speed up many important classical
algorithms.

Quantum Bits and Transformations

In quantum computing we use quantum bits for the computation. A quantum
bit or shortly qubit is not necessary in the state 0 or 1 like a classical bit. The
qubit exists in a superposition of these two states. This means, a general state
|ψ〉 of a qubit is a vector α0|0〉 + α1|1〉, where α0, α1 are two complex numbers
with the property |α0|2 + |α1|2 = 1. Consequently, a qubit is a unit vector in
the two dimensional space spanned by the basis states |0〉 and |1〉.

We can generalize the concept of qubits to quantum registers. A state of a
quantum register of size n is the tensor product of n quantum bits, and can be

1



2 CHAPTER 1. INTRODUCTION

written as

|ψ〉 =
∑

x∈{0,1}n

αx|x〉 with
∑

x∈{0,1}n

|αx|2 = 1.

The size of computational state space of a quantum register is exponential in
the physical size of the system.

On a quantum register two basic operations can be applied: unitary evolu-
tions and measurement. Quantum physics requires that the evolution of quan-
tum states are described by linear and unitary operators. A unitary operator
preserves the norm, the scalar product and is invertible. To get a solution of the
computational problem we have to measure the current quantum state. After
a measurement of a quantum state |ψ〉 =

∑
x αx|x〉 we get |x〉 with probability

|αx|2. The measurement destroys the original state, and it changes the state of
the system to |x〉.

The Power of Quantum Computation

Now we answer the question, what brings its power to quantum computation.
The main reason is the quantum parallelism, discovered by Deutsch [Deu85].
Quantum parallelism is a fundamental feature of all quantum algorithms. This
principle allows us to evaluate a function f for distinct inputs simultaneously.

For example let f : {0, 1} → {0, 1} be a Boolean function, we show, how we
can compute f(0) and f(1) in one step. For this task we need two qubits |x〉
and |y〉 in a quantum register, denoted by |x, y〉. With a logical gate we can
transform this state with a map Uf in

|x, y〉 Uf→ |x, y ⊕ f(x)〉 ,

where ⊕ represents the addition modulo 2. Suppose we have a classical circuit
for computing f , then there is a quantum circuit to compute Uf efficiently with

a quantum computer. Let |x〉 = |0〉+|1〉√
2

be a superposition state and |y〉 = |0〉.
Then it holds

Uf

( |0, 0〉 + |1, 0〉√
2

)
=

1√
2
|0, f(0)〉 +

1√
2
|1, f(1)〉 .

From this quantum state follows that we have evaluated f(x) for the input
x = 0 and x = 1 in one step. This feature is called the quantum parallelism.
We can generalize this result. Suppose we have a quantum state of n qubits.
This state can exists in a superposition of 2n basic states, and the evaluation
of f(x) for all 2n values can be performed in one step. Unfortunately, the
quantum parallelism is not useful in this form, because after the measurement
of the quantum state we get only one value of f(x). The goal is the construction
of quantum algorithms with the ability to extract information about more than
one value of the superposition state.

The second reason for the power of quantum computation are entangled
states. Quantum entanglement is a quantum mechanical phenomenon, in which
the quantum states of two or more qubits are correlated. For example, it is
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possible to prepare two qubits in a single quantum state, such that if one is
observed in the state |0〉, the other one will always be observed in the state
|1〉, and vice versa. As a result, measurements performed on one system seem
to be instantaneously influencing other systems entangled with it. Quantum
entanglement is the basis for quantum algorithms, quantum cryptography and
has been used for experiments in quantum teleportation.

The two principles quantum parallelism and entangled states makes quan-
tum computing more powerful than classical computation. For more details
about the application of these two features, see for example the Deutsch-Jozsa
quantum algorithm [DJ92].

Historical Development of Quantum Computing

Quantum computing and quantum information theory is a fast growing area in
theoretical computer science and quantum physics. We give a short overview
about the milestones in this research area:

1980 Paul Benioff [Ben80] was the first person who looked at the interaction
between computation and quantum mechanics. He showed that reversible
unitary evolution was sufficient to realize the computational power of a
Turing machine.

1982 Richard Feynman [Fey82] pointed out that difficult simulations of quan-
tum mechanics on a classical computer seem to require exponential time.
He also raised the possibility of using a computer based on quantum me-
chanical principles to avoid this problem.

1985 David Deutsch [Deu85] defined the quantum Turing machines, a theoreti-
cal model for quantum computing. He also found the quantum parallelism
principle, the main tool for quantum computation.

1992 Deutsch and Jozsa [DJ92] considered the following problem: Given a func-
tion f : {0, 1, . . . , N} → {0, 1}. Decide if f is either constant for all inputs,
or else f is balanced (i.e. f is equal to 1 for exactly half of all the possible
inputs, and 0 for the other half). Deutsch and Jozsa constructed a quan-
tum algorithm which is exponentially faster than the best known classical
algorithm for this problem.

1993 Bernstein and Vazirani [BV97] showed the existence of a universal quan-
tum Turing maschine, which is capable to simulate other quantum Turing
machines in polynomial time. Yao [Yao93] showed that quantum Tur-
ing machines and quantum circuits compute in polynomial time the same
class of functions.

1994 Peter Shor [Sho94] developed a quantum algorithm for factorization of
integers. This algorithm is exponentially faster than any known classi-
cal algorithm for factorization of integers. With Shor’s algorithm, it is
possible to break cryptography procedures, like the RSA algorithm.



4 CHAPTER 1. INTRODUCTION

1996 Lov Grover [Gro96] discovered a quantum search algorithm. This algo-
rithm gives an optimal quadratic speed-up for the search of objects in an
unsorted database.

1998 Since 1998 several quantum computers for small calculations have been
constructed by Chung et. al. (see [CVZLL98]) and others.

2001 Aharonov, Ambainis, Kempe and Vazirani [AAKV01] introduced quan-
tum walks on graphs, the generalization of random walks on finite graphs
to the quantum world.

2001 John Watrous [Wat01] developed polynomial time quantum algorithms
for computing several problems on solvable groups.

2004 Ambainis [Amb04a] presented the first quantum algorithm which uses
quantum walks and goes beyond the capability of Grover search.

2004 Dürr, Heiligman, Høyer and Mhalla [DHHM04] constructed some optimal
quantum algorithms for fundamental graph problems.

Quantum Computing and Algorithms

Quantum algorithms have the potential to demonstrate that for some problems
quantum computation is more efficient than classical computation. A goal of
quantum computing is to determine for which problems quantum computers
are faster than classical computers. It is still an open issue, whether a quantum
computer can solve all problems in the complexity class NP in polynomial time.

Until today, there are only two basic quantum algorithmic methods known.
The first one is Shor’s [Sho94] polynomial time quantum algorithm for the fac-
torization of integers, and the second one is Grover’s search algorithm [Gro96].
Since then, we have seen some generalizations and applications of these two ba-
sic quantum techniques. The Shor algorithm has been generalized to quantum
algorithms for the hidden subgroup problems (see e.g. [CEMM98]). Grover’s
search algorithm can be used for quantum amplitude amplification [BHMT02]
and quantum random walk search [Amb04a, Sze04a, MNRS07]. The applica-
tions of these quantum tools is a fast growing area in quantum computing.

Our Work: Quantum Algorithms for Graph and Algebraic Problems

In this thesis we present new quantum algorithms for graph and algebra prob-
lems. Our quantum algorithms for these problems use a combination of Grover
search, amplitude amplification and quantum walk search. The quantum algo-
rithms are faster than the best known classical algorithms for the corresponding
problems.

We use two quantum complexity measures for our quantum algorithms in-
cluded in this thesis: the query and the time complexity. The quantum query
complexity of a quantum algorithm A is the number of quantum queries to the
input made by A, and the quantum time complexity is the number of ”basic”
quantum operations (measured in the circuit size of the unitary operations)
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made by A. In our work we give lower and upper bounds for the quantum
query complexity of important graph and algebra problems. For some of these
problems we show that the complexity bounds are tight. In graph theory, we
study the complexity of algorithms for matching problems on quantum com-
puters and compare these to the best known classical algorithms. We consider
different versions of matching problems, depending on whether the graph is
bipartite or not and whether the graph is unweighted or weighted. We show
that on a quantum computer a maximum matching in an undirected graph can
be determined polynomially faster. This result improves a maximum matching
quantum algorithm by Ambainis and Špalek [AS06]. Then we present the com-
plexity of algorithms for graph traversal problems on quantum computers. More
precisely, we look at eulerian tours, optimal postman tours, hamiltonian tours,
travelling salesman problem and project scheduling. In particular, we prove
that the quantum algorithms for the eulerian tour and the project schedul-
ing problem are optimal in the query model. Furthermore we give quantum
complexity lower and upper bounds for independent set problems in graphs.

In the algebra part, we present quantum query and time complexity bounds
for group testing problems. For a set S and a binary operation on S represented
as operation table, we consider the decision problem whether a groupoid, semi-
group, monoid or quasigroup is a group. We also present upper and lower
bounds for testing associativity, distributivity and commutativity. In particu-
lar, we give the first application of the new quantum random walk technique
by Magniez, Nayak, Roland, and Santha [MNRS07]. Then we consider several
quantum query complexity bounds of some important linear algebra problems.
We give tight bounds for the determinant, rank, matrix inverse, and the matrix
power problem. Furthermore we present an application of the quantum walk
search schema for finding more than one solution of a search problem. We ap-
ply our quantum walk to matrix multiplication, thereby improving a result by
Buhrman and Špalek [BŠ06].

The motivation for studying the quantum complexity of graph and algebra
problems is twofold. On the one hand side, these are fundamental and basic
problems which have many applications in computer science. For example,
testing if a black box is a group is very useful in cryptography. On the other
hand, we can analyze how powerful are our tools for the construction of lower
and upper bounds for the quantum query complexity of these problem. For
many problems we can find optimal quantum algorithms by a combination of
Grover search, amplitude amplification and quantum walk search. But for some
problems this does not seem to work. Maybe this can be a motivation for the
development of new quantum techniques.

Related Work

Quantum algorithms have been presented for several problems in computer
science, graph theory and algebra. The first quantum algorithms for funda-
mental graph problems were presented by Dürr, Heiligman, Høyer and Mhalla
[DHHM04]. They studied the quantum query complexity for minimum spanning
tree, graph connectivity, strong graph connectivity and single source shortest
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paths in the adjacency matrix and in the list model. Magniez, Santha and
Szegedy [MSS05] constructed a quantum query algorithm for finding a triangle
in a graph. Some polynomial time quantum algorithms are given by Ambainis
and Špalek [AS06] for the maximum matching and the network flow problem.

There are two important results for algebraic problems which use quantum
walk search. The first one is the work by Magniez and Nayak [MN05] in which
they quantize a classical Markov chain for testing the commutativity of a black
box group. In the second result Buhrman and Špalek [BŠ06] constructed a
quantum algorithm for matrix multiplication and its verification.

Organisation of the Thesis

This thesis is organized as follows: In Chapter 2 we give some basic notations,
definitions and facts from linear algebra, graph theory, group theory and quan-
tum computation. In Chapter 3 we describe three important methods for the
construction of quantum algorithms. We present the quantum search algorithm
by Grover [Gro96], the quantum amplitude amplification [BHMT02] and the
quantum walk search technique by Magniez et al [MNRS07]. These three tools
are the basis for the development of our new quantum algorithms for graph and
algebra problems. In Chapter 4 we present two tools for proving quantum query
lower bounds. We present the quantum adversary method by Ambainis [Amb02]
and the polynomial method introduced by Beals et al. [BBCMW01]. The quan-
tum adversary tool is very useful to prove good lower bounds for many graph
and algebra problems.

The part of the thesis containing the orginal results is organized in two
parts. In the first part we consider the graph problems. In Chapter 5 we give a
short summary of known quantum graph algorithms by [DHHM04] and [AS06].
In Chapter 6 to 8 we study the complexity of our new algorithms for matching
problems, graph traversal and independent set problems on quantum comput-
ers. In the second part of our thesis we present new quantum algorithms for
algebraic problems. In Chapter 9 to 10 we consider group testing problems and
prove quantum complexity bounds for important problems from linear algebra.



Chapter 2

Preliminaries

This Chapter describes some basic notations, definitions and facts that are used
in this thesis. It consists of four sections concerning linear algebra, graph theory,
group theory, and quantum computation.

2.1 Linear Algebra

We denote with [n] the set {1, 2, . . . , n}. Let’s denote by F an arbitary field, N

the set of natural numbers, Z the set of integers, R the set of real numbers and
C the set of complex numbers. An m × n matrix over the field F is denoted
by A = (ai,j) ∈ F

m×n . The element at position (i, j) in the matrix A is
denoted by ai,j. For a subset R ⊆ [m], let A|R,∗ the |R| × n sub-matrix of A
restricted to the rows from R. Analogously, for every S ⊆ [n], let A|∗,S the
m × |S| sub-matrix of A restricted to the columns from S. The matrix whose
elements are purely zero is called zero-matrix, which is denoted by 0. In the
case when m = n, A is called square matrix of order n. We denote by I = In
the identity matrix of order n. The transpose of matrix A is denoted by AT ,
and the transpose complex conjugate is denoted by A†. A square matrix that
satisfy A = AT is called symmetric. The spectral gap or eigenvalue gap δ of
A is the difference between the largest and the second largest eigenvalue of A.
Let A = (ai,j) ∈ F

m×n and B = (bi,j) ∈ F
k×l, the tensor product of A and B is

A⊕B = (ai,j ·B) ∈ Fmk×nl.
The characteristic function χS is defined by χS(x) = 1, if x ∈ S and 0

otherwise. The Kronecker function δx,y is 1, if x = y, and 0 otherwise.
Let f : N → N be a function, we define the function classes:

O(f(n)) = {g : N → N | ∃c ∈ R
+, n0 ∈ N : g(n) ≤ c · f(n), ∀n ≥ n0}

Ω(f(n)) = {g : N → N | ∃c ∈ R
+, n0 ∈ N : g(n) ≥ c · f(n), ∀n ≥ n0}.

We write g ∈ Θ(f(n)) iff g ∈ O(f(n)) and g ∈ Ω(f(n)).

2.2 Graph Theory

Let G = (V,E) be an undirected graph, with V = V (G) and E = E(G)
we denote the set of vertices and edges of G. Let n = |V | be the number

7



8 CHAPTER 2. PRELIMINARIES

of vertices and m = |E| the number of edges of G. We denote with {u, v}
an undirected edge between the vertices u and v in G, and called u and v
adjacent in G. The neighbourhood NG(v) of a vertex v in G is the set of
all vertices w of G such that v and w are adjacent in G; the cardinality of
NG(v) is called the degree dG(v) of v. Let U ⊂ V , we write NG(U) for the set⋃
v∈U NG(v). Let δ(G) := min{dG(v) | v ∈ V (G)} be the minimum degree and

∆(G) := max{dG(v) | v ∈ V (G)} the maximum degree of G.
Let G = (V,E) be a directed graph (digraph), with (u, v) we denote a

directed edge in G from vertex u to vertex v; the vertex v is called adjacent to
vertex u in G. The number of vertices adjacent to v is called the out-degree of v,
denoted by d+

G(v). The in-degree of a vertex v is the number of edges directed
to v, denoted by d−G(v).

Let S ⊂ V (S ⊂ E) be a subset of vertices (edges), we denote with G−S the
graph which is obtained from G by deleting all the vertices (edges) of S and
the incident edges, we write G−a for G−{a}.

Definition 2.2.1 Let G = (V,E) be an undirected graph. A subgraph of G is
a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G). With any subset I of
V (G) we associate the vertex-induced subgraph G[I] := (I, {e ∈ E(G) | e ⊆ I).
Similarly, with any subset J of E(G), we associate the edge-induced subgraph
G[J ] := (

⋃
J, J), where

⋃
J =

⋃
j∈J j. A set V ′ ⊂ V is called independent, if

G[V ′] is edgeless. A clique of G is a subset V ′ ⊂ V such that G[V ′] is complete.

Definition 2.2.2 A graph G = (V,E) is called simple, if G is an undirected
graph without loops (an edge that joins a single endpoint to itself) and without
multiple edges (a set of edges which the same endpoints). A walk (path) between
two vertices s and t in G is a sequence (v1, . . . , vk), where k ≥ 1 and v1, . . . , vk
are (distinct) vertices of G such that s = v1, t = vk and (vi, vi+1) ∈ E for
i ∈ [k−1]. A cycle of G is a sequence (v1, . . . , vk, v1) where k ≥ 3 and v1, . . . , vk
are distinct vertices of G such that (vi, vi+1) ∈ E for i ∈ [k−1] and (vk, v1) ∈ E.
The length of a walk or path (v1, . . . , vk) is k − 1, and the length of a cycle
(v1, . . . , vk, v1) is k. The graph G is called connected, if between every pair
of vertices of G there is a path. A connected component of G is a maximal
connected subgraph of G. The number of connected components of G is denoted
by c(G). A tree is a connected graph without cycle. A subgraph G′ of G is
a spanning tree of G, if G′ is a tree and V (G) = V (G′). A hamiltonian path
(cycle) of a graph G is a path (cycle) that contains all the vertices of G. A
hamiltonian graph is a graph that has a hamiltonian cycle. The graph G is
called bipartite, if the vertices of G can be partitioned into two disjoint vertex
sets in such way that no edge joins two vertices in the same set.

Definition 2.2.3 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, G1

and G2 called isomorphic, if there is a bijection ϕ : V1 → V2 such that
(u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2 for all u, v ∈ V1.

Definition 2.2.4 The graph categorical product G = G1 × G2 of two
graphs G1, G2 is defined as follows: V (G) = V (G1) × V (G2), and
((g1, g2), (g

′
1, g

′
2)) ∈ E(G) iff (g1, g

′
1) ∈ E(G1) and (g2, g

′
2) ∈ E(G2).
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We consider the following two models for accessing information in digraphs:

• Adjacency matrix model: Given is the adjacency matrix A ∈ {0, 1}n×n of
G with Ai,j = 1 iff (i, j) ∈ E. Weighted graphs are encoded by a weight
matrix, where Ai,j is the weight of edge (i, j) and for convenience we set
Ai,j = ∞ if (i, j) 6∈ E.

• Adjacency list model: Given are the out-degrees d+
G(1), . . . , d+

G(n) of the
vertices and for every i ∈ V an array of its neighbours fi : [d+

G(i)] → [n].
The value fi(j) is the j-th neighbour of i. Weighted graphs are encoded
by a sequence of functions fi : [d+

G(i)] → [n]×N, such that if fi(j) = (i′, w)
then there is an edge (i, i′) with weight w and i′ is the j-th neighbour of
the vertex i.

In undirected graphs, we replace the directed edge (u, v) by an undirected edge
{u, v}, and the out-degree d+

G(i) through the degree dG(i) of the every i ∈ V .

Definition 2.2.5 A finite Markov chain consists of:

1. A finite set X = {1, . . . , n}, the state space, the elements of X are called
states.

2. A probability vector (pi)i∈X , the starting vector.

3. A stochastic matrix P = (pi,j)i,j∈X , the transition matrix.

The Markov chain is a random walk x0, x1, x2, . . . on the states of X, such that
Prob(xi = y | xi−1 = x) = px,y and Prob(x0 = i) = pi. A Markov chain
is called irreducible, if every state is reachable from every other state (strong
connected). An irreducible Markov chain is called aperiodic, if there is a state x
and a threshold n0 such that for every n > n0 the probability that x is reached
from x after making exactly n steps is not zero (non-bipartite). A Markov chain
is called ergodic if it is irreducible and aperiodic.

2.3 Group Theory

Definition 2.3.1 A group is a set G with a binary operation ◦ : G × G → G
satisfying the following conditions:

1. For all a, b, c ∈ G : (a ◦ b) ◦ c = a ◦ (b ◦ c) (associative law);

2. There exists e ∈ G (identity) such that e ◦ a = a ◦ e = a for all a ∈ G;

3. For each a ∈ G there is a−1 ∈ G (inverse) such that a◦a−1 = a−1 ◦a = e.

We write ab for a ◦ b. A group G is called abelian, if ab = ba for all a, b ∈ G. A
subgroup of G is a subset H ⊆ G, such that H is a group under the operation
◦ induced by G, we write H ≤ G. A set R ⊂ G is called generator set of G,
if every element of G is representable as a product of elements of R, we write
G = 〈R〉. If an = e for some n ∈ N, then a is said to have finite order.
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Definition 2.3.2 A groupoid is a finite set S with a binary operation ◦, denoted
by (S, ◦). The groupoid is called a semigroup, if it is associative. A monoid is
a semigroup with an identity element e, such that a◦e = a = e◦a for all a ∈ S.
A quasigroup is a groupoid, where all equations a ◦ x = b and x ◦ a = b have
unique solutions, and a loop is a quasigroup with an identity element.

2.4 Quantum Computing

We introduce the basic model of quantum computing. For more infor-
mation about quantum computing, see e.g. the textbook by Nielsen and
Chuang [NC03].

2.4.1 State Space

In quantum computing we use quantum bits for the computation. Quantum
bits are elements of the two-dimensional complex Hilbert space H2 = C

2. In
a finite dimension, a Hilbert space H is a vector space with a scalar product.
The computational basis is an orthonormal basis for H, i.e. every basis vector
is normalized and the scalar product between different basis vectors is zero.

Definition 2.4.1 A general state of a quantum bit or qubit is a vector

|ψ〉 := α0 |0〉 + α1 |1〉 , α0, α1 ∈ C,

with |α0|2+ |α1|2 = 1. The complex numbers α0, α1 called the amplitudes of the
qubit. The state space of a qubit is a two-dimensional Hilbert space H2 = C

2

with computational basis {|0〉 , |1〉}.

A qubit can exist in a superposition of the states |0〉 and |1〉. The amplitude
αx is related to the probability of the qubit being in the state |x〉 for x ∈ {0, 1}.
Many different physical systems can be used to realize a qubit, for example the
two different polarizations of a photon or the spin of an electron. The states
|0〉 and |1〉 are represented by column vectors

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
.

We denote the vector |ψ〉 as ket-vector and 〈ψ| = |ψ〉† as bra-vector. The
scalar product of |ϕ〉 and |ψ〉 is denoted by 〈ϕ|ψ〉, and the norm of |ψ〉 is defined
by || |ψ〉 || =

√
〈ψ|ψ〉.

Let HX and HY be the Hilbert spaces spanned by the {|x〉}x∈X and
{|y〉}y∈Y . The direct sum HX ⊕ HY is the Hilbert space spanned by
{|x〉}x ∪ {|y〉}y. The tensor product HX ⊗ HY is the Hilbert space spanned
by {|x〉 ⊗ |y〉 = |x〉|y〉 = |x, y〉}x,y. Let H⊗1 := H and H⊗(n+1) := H⊗H⊗n the
tensor power of H.

Definition 2.4.2 A quantum register or quantum system of the length m is
an ordered system of m qubits. The state space of such a system is the m-fold
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tensor product

H2m = H2 ⊗ . . .⊗H2︸ ︷︷ ︸
m

with the computational basis states {|x〉 | x ∈ {0, 1}m}, which can also be
writen as {|a〉 | a ∈ {0, 1, . . . , 2m − 1}. A state of a m qubit is a vector

|ψ〉 := α0 |0〉 + α1 |1〉 + . . .+ α2m−1 |2m − 1〉

with |α0|2 + |α1|2 + . . .+ |α2m−1|2 = 1.

A quantum system with m qubits is specified by 2m amplitudes. For m = 500
this number is larger than the estimated number of atoms in the universe.

Remark 2.4.3 The states |0〉, |1〉, . . . , |2m− 1〉 are represented by column vec-
tors

|0〉 =




1
0
0
...
0



, |1〉 =




0
1
0
...
0



, . . . , |2m − 1〉 =




0
0
0
...
1



.

Definition 2.4.4 Let |ψ〉 be a quantum state of HX⊗HY . If |ψ〉 can be written
as |ψx〉 ⊗ |ψy〉 with |ψx〉 ∈ HX and |ψy〉 ∈ HY , then |ψ〉 is called product state,
otherwise it called entangled .

All computational basis states are by definition product states, but there are
states which cannot be written as a direct product of two states. A famous one is
the EPR-pair after the inventors Einstein, Podolsky, and Rosen, which is defined
by 1√

2
(|00〉+|11〉). The EPR-pair is very useful for quantum teleportation. Most

of the quantum states are entangled, since the Hilbert space on n qubits has
dimension 2n, and product states can be described by using just 2n complex
parameters.

On a quantum system two basic operations can be applied: unitary evolution
and measurement.

2.4.2 Evolution

Quantum physics requires that the evolution of quantum states are described
by linear and unitary operators.

Definition 2.4.5 An operator U is called linear , if it satisfies

U
∑

x

αx|x〉 =
∑

x

αxU |x〉.

The operator U is called unitary , if UU † = U †U = I.
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Remark 2.4.6 A unitary operator U preserves the norm and the scalar prod-
uct, it is reversible, i.e. U−1 = U †, and it can be diagonalized with an orthonor-
mal set of eigenvectors, where the corresponding eigenvalues are all of absolute
value 1.

Remark 2.4.7 Let {|x〉}Nx=1 be an orthonormal basis for a Hilbert space H.
The operator U can be represented in this basis by a unitary N × N matrix
U = (ux,y) with

U =
∑

x,y

ux,y|x〉〈y|.

If a quantum system is in the state |ψ〉, then after applying U , the new state
U |ψ〉 is determined by the matrix-vector product of U and |ψ〉.

Example 2.4.8 Some important unitary operators for qubits are

M¬ :=

(
0 1
1 0

)
and H :=

(
1√
2

1√
2

1√
2

− 1√
2

)
.

The matrix M¬ is called quantum not-gate and H is the Hadamard matrix.

Let U1 and U2 be two operators, then U1 ⊗U2 : |ϕ〉⊗ |ψ〉 → U1|ϕ〉⊗U2|ψ〉, and
U⊗n

1 :=
⊗n

i=1 U1.

Lemma 2.4.9 Let H be the Hadamard transformation and |x〉 = |x1 . . . xn〉,
then it holds

Hn := H⊗n |x〉 =
1√
2n

∑

z∈{0,1}n

(−1)x·z |z〉 ,

where x · z is the scalar product of the two vectors.

Proof . We use the linearity of the Hadamard transformation, then

H⊗n |x〉 =
n⊗

i=1

H|xi〉 =
1√
2n

n⊗

i=1

∑

zi∈{0,1}
(−1)xi·zi |zi〉

=
1√
2n

∑

z∈{0,1}n

(−1)
Pn

i=1 xi·zi |z〉 .

=
1√
2n

∑

z∈{0,1}n

(−1)x·z |z〉 .

�

2.4.3 Measurement

In the last two sections we have described quantum states and what kind of
operations one can apply to them. Now we present the measurement principles
to get the output of the quantum computation.



2.4. QUANTUM COMPUTING 13

Measurement in computational basis. The simplest case of a quantum
measurement is the measurement in the computational basis. After this mea-
surement of a quantum state |ψ〉 =

∑
x αx|x〉 we obtain |x〉 with probability

|αx|2. The measurement destroys the original state and changes the state of
the system to |x〉. For example, in a qubit there are an infinite number of
complex amplitudes, such that in principle a qubit can represented infinity of
information, but a measurement of a qubit gives only one bit 0 or 1.

Projective measurement. We can generalize this simple measurement prin-
ciple to the projective measurement. Let H = H1 ⊗ . . . ⊗ Hk be the Hilbert
space of the quantum system which is split into a direct sum of orthogonal
subspaces Hi. A quantum state |ψ〉 ∈ H can then be expressed as

|ψ〉 =

k∑

i=1

αi |ψHi〉 ,

where |ψHi〉 is a normalized quantum state in Hi (the projection of |ψ〉 into
Hi), and

∑k
i=1 |αi|2 = 1. Observing the state |ψ〉 will cause the following:

1. One of the Hi will be selected with probability |αi|2.

2. After the observation, the state |ψ〉 will collapse to |ψHi〉 with amplitude
one.

3. The only information that we obtain, is the subspace Hi which was se-
lected. All information not in the state |ψHi〉 is lost.

Remark 2.4.10 A way of representing a projective measurement are projec-
tors. A projector is a linear operator P , such that P 2 = P and P † = P . We
represent the subspace Hi by the projector Pi = ΠHi with

∑k
i=1 Pi = I. If a

state |ψ〉 is measured by the projective measurement {Pi}ki=1, then the proba-
bility of obtaining the output i is ||Pi|ψ〉||2 = 〈ψ|Pi|ψ〉, and the quantum state
collapses to Pi|ψ〉/||Pi|ψ〉||.

Example 2.4.11 A measurement of all qubits of an n-qubit system
in the computational basis is described by the projective measurement
{|x〉〈x| | x ∈ {0, 1}n}.

Projective measurements are not the most general measurements. A gen-
eralization is the POVM measurement. A POVM measurement is described
by a list of positive semidefinite operators. For more information about this
measurement, see e.g. [NC03].

2.4.4 Density Operator

The quantum measurements are for some problems not useful, because they use
the concept of randomness to determine the state of the quantum system after
a measurement. Sometimes it is useful to consider an object that completely
describes the quantum system, and which can be manipulated deterministically.
This object is the density operator:
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Definition 2.4.12 Let {pi, |ψi〉}ki=1 be an ensemble of pure states of a quantum
system, where pi is the probabilities of being in state |ψi〉. The density operator
for this system is defined by

ρ =
k∑

i=1

pi|ψi〉〈ψi|.

If ρ = |ψ〉〈ψ| for some |ψ〉, we call it a pure state, otherwise we call it a mixed
state.

Example 2.4.13 Suppose a quantum system is in the computational basis
state |x〉, then ρ = |x〉〈x| contains exactly one 1 on the main diagonal and
it contains 0 everywhere else. If the system is in a probabilistic mixture of
computational basis states described by the probability distribution p, then
ρ =

∑
x px|ψx〉〈ψx| is a diagonal operator, whose diagonal represents the prob-

ability distribution.

2.4.5 Quantum Query Model

Many quantum algorithms are developed for the so-called oracle or query model.
In the query model, the input x1, . . . , xN is contained in a black box or oracle
and can be accessed by queries to the black box. As a query we give i as input to
the black box, and the black box outputs xi. The goal is to compute a Boolean
function f : {0, 1}N → {0, 1} on the input bits x = (x1, . . . , xN ) minimizing
the number of queries. The classical version of this model is known as decision
tree.

The quantum query model was explicitly introduced by Beals et
al. [BBCMW01]. In this model we pay for accessing the oracle, but unlike
the classical case, we use the power of quantum parallelism to make queries in
superposition. The state of the computation is represented by |i, b, z〉, where i
is the query register, b is the answer register, and z is the working register.

Definition 2.4.14 A quantum computation with T queries is a sequence of
unitary transformations

U0 → Ox → U1 → Ox → . . .→ UT−1 → Ox → UT ,

where each Uj is a unitary transformation that does not depend on the input x,
and Ox are query (oracle) transformations. The operator Ox can be defined
as Ox : |i, b, z〉 → |i, b⊕ xi, z〉. The computations consist of the following three
steps:

1. Go into the initial state |0〉,

2. Apply the transformation UTOx · · ·OxU0,

3. Measure the final state.

The result of the computation is the rightmost bit of the state obtained by the
measurement.
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In the query model of computation each query adds one to the query com-
plexity of an algorithm, but all other computations are free. The time com-
plexity of the algorithm is usually measured in terms of the total circuit size for
the unitary operations Ui. All quantum algorithms in this thesis are bounded
error.

Definition 2.4.15 The quantum query complexity of a quantum algorithm A
computing a function f is the number of queries to the input black box made
by A to compute f . The quantum time complexity of an algorithm A is the
number of basic quantum operations (measured in terms of the total circuit size
of the unitary operations) made by A.

Remark 2.4.16

1. The quantum query complexity of black box computation has become
a great interest in quantum computing. The black box model provides
a simple and abstract framework for the construction of quantum algo-
rithms. All quantum algorithms can be formulated in the black box model,
we can determine the speed up against classical algorithm, and we can
prove lower bounds for the quantum query complexity.

2. The quantum time complexity is always at least as large as the quantum
query complexity, since each query takes one unit step. A lower bound
for the quantum query complexity implies also the same lower bound for
the quantum time complexity.

3. For most polynomial time quantum algorithms (e.g. Grover search), the
time complexity is equal to the query complexity with a log factor. An
exception is the hidden subgroup problem which has polynomial query
complexity, yet polynomial time algorithms are known only for some in-
stances of the problem.

Definition 2.4.17 Let f : {0, 1}N → {0, 1} be a Boolean function. An algo-
rithm computes f exactly , if the output equals f(x) with probability 1 for all
x ∈ {0, 1}N . It computes f with zero-error if it allowed to give the answer
”don’t know” with probability smaller than 1/2, and if the output is 0 or 1
then this must be correct. An algorithm computes f with bounded-error if the
output equals f(x) with probability greater than 2/3 for all x ∈ {0, 1}N .

Let D(f), R0(f), R2(f) (QE(f), Q0(f), Q2(f)) be the minimum number of
queries that an exact, zero-error, or bounded-error classical (quantum) algo-
rithm have to do to compute f . Then it follows immediately:

N ≥ D(f) ≥ QE(f) ≥ Q0(f) ≥ Q2(f)

N ≥ D(f) ≥ R0(f) ≥ R2(f) ≥ Q2(f).

Between the exact classical query complexityD(f) and the bounded-error quan-
tum query complexity Q2(f) holds the gap D(f) ≤ 4096Q2(f)6 proved by Beals
et al. [BBCMW01].





Chapter 3

Methods for Quantum

Algorithms

In this Chapter we present three important tools for the construction of
quantum algorithms. First we introduce the quantum search algorithm by
Grover [Gro96]. This algorithm gives an optimal quadratic speed-up for the
search of objects in an unsorted database. We can speed up many algorithms
by a combination of Grover search with classical algorithms. Another important
ingredient for the construction of quantum algorithms is the quantum ampli-
tude amplification [BHMT02]. Suppose we have an algorithm A with one-sided
error and small success probability of at least ε. Classically, we need Θ(1/ε)
repetitions of A to increase its success probability from ε to a constant. In
quantum computing we need only Θ(

√
1/ε) repetitions of A to increase the

success probability to a constant. The third tool for the development of our
quantum algorithms is the quantum random walk search technique. Quantum
walks are the quantum counterpart of Markov chains and random walks. The
discrete quantum walk is a way of formulating local quantum dynamics on a
graph. The walk takes discrete steps between neighbouring vertices and is a
sequence of unitary transformations.
For all these methods, we give a detailed description of their derivation and ap-
plication. Our quantum algorithms for graph and algebra problems use a com-
bination of Grover search, amplitude amplification and quantum walk search.

3.1 Grover Search

An important technique for the construction of quantum algorithms is Grover’s
search algorithm [Gro96]. Suppose we have a set of Boolean values of size N ,
on a classical computer it takes O(N) steps to find an entry with value one.
With the Grover algorithm we find such an entry in O(

√
N) steps. This is a

quadratic speed-up in the search of objects in an unsorted database. Combining
this quantum search procedure with classical algorithms, we can speed up many
algorithms.

17
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3.1.1 Grover Algorithm

In this subsection we consider search problems. A search problem P is a subset
P ⊆ [N ] of the search space [N ]. With P we associate its characteristic function
fP : [N ] → {0, 1} with

fP (x) =

{
1, if x ∈ P,

0, otherwise.

Any x ∈ P is called a solution to the search problem. The task is to find one
or more solutions of P . Let k = |P | be the number of solutions of P .

In the classical computation we need O(N · g(N)) steps to find a solution,
where g(N) is the time for computing the characteristic function of P . Now we
present Grover’s algorithm, which finds such a solution in time O(

√
N · g(N)).

Algorithm 1 Grover Algorithm

Input: Search function f : [N ] → {0, 1} (N = 2n), k = |{x ∈ [N ] | f(x) = 1}|.
Output: x∗ with f(x∗) = 1 (if there is one).
Complexity: O(

√
N/k) quantum queries.

1: Initialization:

|ψ〉 :=
1√
N

N−1∑

x=0

|x〉

2: Repeat π
4

√
N/k times the Grover iteration:

1. Phase flip:
Uf : |x〉 → (−1)f(x)|x〉.

2. Diffusion:

(a) Apply the Hadamard transformation Hn.

(b) Perform a phase shift

U0 : |x〉 → −(−1)δx,0 |x〉.

(c) Apply the Hadamard transformation Hn.

3: Measure the current state |ψ〉

For proving the correctness of the Grover Algorithm, we use the follow-
ing simple fact:

Lemma 3.1.1 Let N = 2n and DN := HnU0Hn the diffusion operator, then

DN = −IN + 2|ψ〉〈ψ| with |ψ〉 =
1√
N

N−1∑

x=0

|x〉.
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Proof . Since DN = HnU0Hn, it holds

|x〉 Hn→ 1√
N

N−1∑

y=0

(−1)x·y|y〉 U0→ − 1√
N

N−1∑

y=0

(−1)x·y|y〉 +
2√
N

|0〉

Hn→ −|x〉 + 2|ψ〉 〈ψ|x〉 .

�

Theorem 3.1.2 [Gro96] The Grover Algorithm algorithm finds one so-
lution of a search problem with quantum query complexity of O(

√
N/k) and

success probability of at least 1/2.

Proof . The quantum search algorithm starts in an uniform superposition state

|ψ〉 =
1√
N

N−1∑

x=0

|x〉.

We show that after performing π
4

√
N/k application of the Grover operator

G := DNUf with DN = HnU0Hn to |ψ〉, we measure with high probability a
value x∗ with f(x∗) = 1.

Our analysis is based on the fact that a Grover iteration is a rotation in a
two-dimensional subspace, defined by the two states

|ψ0〉 :=
1√

N − k

N−1∑

x=0
f(x)=0

|x〉 and |ψ1〉 :=
1√
k

N−1∑

x=0
f(x)=1

|x〉 .

Then the initial state of the algorithm can be written as

|ψ〉 =

√
N − k

N
|ψ0〉 +

√
k

N
|ψ1〉 = cosα |ψ0〉 + sinα |ψ1〉 ,

where

sinα := 〈ψ,ψ1〉 =

√
k

N
.

Now we perform one step of the Grover iteration, first the phase flip step:

Uf (cosα|ψ0〉 + sinα |ψ1〉) = cosα |ψ0〉 − sinα |ψ1〉 .

Second, we apply the diffusion step with the operator DN = −IN + 2|ψ〉〈ψ|:

|ψ0〉 DN→ −|ψ0〉 + 2cosα(cosα|ψ0〉 + sinα|ψ1〉) = cos 2α |ψ0〉 + sin 2α |ψ1〉

|ψ1〉 DN→ −|ψ0〉 + 2 sinα(cosα|ψ0〉 + sinα|ψ1〉) = sin 2α |ψ0〉 − cos 2α |ψ1〉 .

Then the Grover iteration can be written in the basis {|ψ0〉, |ψ1〉} as

G = DNUf =

(
cos 2α sin 2α
sin 2α − cos 2α

)
·
(

1 0
0 −1

)
=

(
cos 2α − sin 2α
sin 2α cos 2α

)
.
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|ψ1〉

|ψ〉

2α
α

G|ψ〉

|ψ0〉

Figure 3.1: Grover iteration

From the analysis follows that the phase flip is a reflection around |ψ0〉 in the
plane spanned by the two states |ψ0〉 and |ψ1〉. The diffusion is a reflection
around the vector |ψ〉 in the same plane. Then, one step of the Grover iteration
is the composition of these two reflections, which is a rotation in the plane by
the angle 2α, see Figure 3.1. If we now perform the Grover iteration t times, it
holds

Gt|ψ〉 = cos((2t+ 1)α)|ψ0〉 + sin((2t+ 1)α)|ψ1〉.
Now we compute the value of t, such that the state |ψ〉 is rotated near |ψ1〉,

and then after a measurement we find a solution with high probability. For
k << N it is arcsin(

√
k/N ) ≈

√
k/N and consequently α =

√
k/N . Since we

must take |ψ〉 near |ψ1〉, it holds

(2t+ 1)α =
π

2
,

and then it follows t =
⌊
π
4

√
N/k

⌋
. By a simple computation, we can show that

the success probability of Grover’s algorithm is at least 1/2. �

Corollary 3.1.3 The quantum time complexity of the Grover algorithm is
O(

√
N logN).

Proof . In the Grover algorithm we use 2 log n Hadamard transformations in
each diffusion step. �

Remark 3.1.4

1. Grover [Gro02] showed that it is possible to reduce the running time
O(log n) factor to O(log log n).

2. The Grover search algorithm is optimal, i.e. there is no quantum al-
gorithm, which can search with fewer than Ω(

√
N) quantum queries
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(see [BBBV97] or Section 4). This gives us the information that there is
no search based method for attacking NP-complete problems. When the
NP-complete problems have no structure, and the best possible method
for solving such a problem is a search method, then quantum computers
can not solve a NP-complete problem efficiently.

3.1.2 Expected Quantum Search

In the Grover algorithm we need the number of solutions of the search prob-
lem. The problem is that we don’t known this number in the most practical
application. Boyer et al. [BBHT98] showed that it is possible to find a solution
in O(

√
N/k) expected steps, even if the number k of solution is unknow.

The idea of this procedure is the following: First we start with one Grover
iteration. Then we increase the number of repetitions of the iteration after
every unsuccessful attempt. We choose the number of iterations from a set [m].
At the beginning m = 1, then we multiply the value of m after each choice with
the factor 6/5.

Lemma 3.1.5 [BBHT98] Let k be the (unknown) number of solutions and
let α be such that sin2 α = k/N . Let m be an arbitrary positive integer and
j ∈R [0,m − 1]. After j iterations of the Grover iteration the probability of ob-
taining a solution is exactly

Pm =
1

2
− sin(4mα)

4m sin(2α)
.

In particular Pm ≥ 1/4 when m ≥ 1/ sin(2α).

We are now ready to describe the algorithm for finding a solution of a
search problem, when k is unknown. For simplicity, we assume at first that
1 ≤ k ≤ 3N/4.

Algorithm 2 Expected Grover Search

Input: Search function f : [N ] −→ {0, 1}.
Output: x∗ with f(x∗) = 1.
Complexity: O(

√
N/k) expected quantum queries.

Comment: Grover Algorithm[f, j] makes j Grover iterations starting from
the initial state.

1: m := 1, λ := 6/5
2: j ∈R [0,m− 1]
3: x =Grover Algorithm[f, j]
4: if f(x) = 1 then
5: return[x]
6: else
7: m := min(λm,

√
N)

8: goto 2

Theorem 3.1.6 [BBHT98] The expected number of quantum queries of the
Expected Grover Search algorithm is O(

√
N/k).
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Proof . Let α be the angle such that sin2 α = k/N , and

m0 :=
1

sin(2α)
=

N

2
√

(N − k)k
<

√
N

k
,

since we assumed k ≤ 3N/4. Now we estimate the expected number of times
that a Grover iteration is performed. On the i–th time round, the value of m
is min(λi−1,

√
N), and the expected number of Grover iterations is less than

half this value. Note that m < m0 for the first logλm0 times round the main
loop. We say that the algorithm reaches the critical stage, when m > m0 for
the first time. The total expected number of Grover iterations needed to reach
the critical stage, if it is reached, is at most

1

2

⌈ logλm0⌉∑

i=1

λi−1 = O(m0).

If the algorithm succeeds before reaching the critical stage, it finds a solution
in O(

√
N/k ) quantum queries.

Now we apply Lemma 3.1.5, if the critical stage is reached, then in every
iteration from this point the search will succeed with probability of at least 1/4.
Therefore, 1

2λ
m0 expected iterations will be performed at round m0 + 1. This

will succeed with probability of at least 1/4. Total the expected number of
Grover iterations needed to succeed once the critical stage has been reached is

1

2

∞∑

i=0

(
3

4

)i
λm0+i = O(m0) = O

(√
N

k

)
,

if 0 < k ≤ 3N/4. The case t > 3N/4 and t = 0 are obviously. �

3.1.3 Finding all Solutions

For many practical applications we are interested in all solutions of the search
problem. For this task, we use the following simple procedure:

Theorem 3.1.7 Let P ⊆ [N ] be a search problem and k the number of solutions
of P . The quantum query complexity for finding k solutions of a search problem
of size N is O(

√
N · k).

Proof . We use a list of all found solutions, and we modify the oracle Uf such
that it flips the phase of |x〉 iff f(x) = 1 and x is not yet in the list. Then the
query complexity for finding all solutions is

k−1∑

i=0

√
N

k − i
= O(

√
N · k).

�

Now we summarize the results of this section in connection with quantum
search bounds by Buhrman et al. [BCWZ99]:
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Theorem 3.1.8 [Gro96, BBHT98, BCWZ99] Let P ⊆ [N ] be a search problem
and k the number of solutions of P .

1. Finding one solution of P can be done in O(
√
N/k) expected quantum

queries to fP with probability of at least a constant. The search algorithm
does not require prior knowledge of k.

2. Finding one solution of P can be done in O(
√
N) quantum queries to fP

with probability of at least a constant, provided there is one.

3. Finding one solution of P can be done in O(
√
N log(1/ε)) quantum

queries to fP with probability of at least 1 − ε, provided there is one.

4. Whether k > 0 can be decided in O(
√
N) quantum queries to fP with

probability of at least a constant.

5. Finding all solutions of P can be done in O(
√
kN) quantum queries to fP

with probability of at least a constant.

We use quantum search for speed up of classical algorithms. For these
algorithms we use the following notation: Given is a search problem P ⊆ [N ]
with f : [N ] → {0, 1}, we denote by:

• Quantum Search[fP ] an application of Grover’s search algorithm, which
computes an element x∗ with fP (x∗) = 1.

• All Quantum Search[fP ] an application of Grover search algorithm
that computes the set {x ∈ [N ] | fP (x) = 1} of all solutions.

Remark 3.1.9

1. The Grover search outputs a correct answer with probability of at least
1/2. If we want to reduce the error probability to less than 1/n, we have
to repeat the quantum search O(log n) times. This increases the query
complexity by a logarithmic factor. Suppose our quantum algorithm calls
l < n different Grover subroutines, then it outputs a correct answer with
success probability at least (1 − 1/n)l ≥ 1/e.

2. The time complexity of our quantum algorithms which use Grover search
is bigger than its query complexity by another logarithmic factor, since the
running time complexity of Grover search is logarithmic bigger than its
query complexity. For simplicity, we often omit the logarithmic factors in
our proofs, but we state them correctly in the statements of our theorems.

3. Suppose we have n quantum (search) algorithms, each computing
some bit-value with bounded error probability. Høyer, Mosca and de
Wolf [HMW03] constructed a quantum algorithm that uses O(

√
n) repe-

titions of the base algorithms and with high probability finds the index
of a 1-bit among these n bits (if there is one). This shows that it is not
necessary to first significantly reduce the error probability in the base
algorithms to O(1/poly(n)).
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3.1.4 Minima finding

Many algorithms for optimization problems utilize minima or maxima finding.
We present the minima finding quantum algorithm based on quantum search
by Dürr et al. [DH96, DHHM04].

Minima finding: Given an injective function f : [N ] → R, find an index i
such that f(i) is a minimum of f .

For quantum search, we define a search function fy : [N ] → {0, 1} with

fy(x) :=

{
1, if f(x) < f(y)
0, otherwise.

The minima finding algorithm is presented in algorithm Minima finding.
Analogously, we can compute the maxima of a function.

Algorithm 3 Minima finding

Input: Injective function f : [N ] → R.
Output: Index i, such that f(i) is a minimum of f .
Complexity: O(

√
N) quantum queries.

1: j ∈R [N ]
2: while true do
3: i := Quantum Search[fj]
4: j := i
5: return[j]

Theorem 3.1.10 [DH96] The expected quantum query complexity of the Min-
ima finding algorithm is O(

√
N).

Proof . Every index j ∈ [N ] has a rank, which is defined as the number of
indices i such that f(i) ≤ f(j). Suppose that the rank of j is r. Let t be a
power of two such that t ≤ r ≤ 2t. After a expected number of O(

√
N/t)

quantum queries, the algorithm finds an index i of rank less than r. The total
expected number of quantum queries is at most

logN∑

k≥0

O

(√
N

2k

)
= O(

√
N),

since
∑

k≥0
1√
2k

is upper bounded by a constant. The Minima finding algo-

rithm stops, if the Quantum Search subroutine has no solution. �

Next, we consider a more difficult minima finding problem:

Minimum type finding: Let f, g : [N ] → R be two functions,
e := |{g(j) | j ∈ [N ]}| be the number of different types and d′ be an integer.
Find a subset I ⊆ [N ] with d := |I| = min{d′, e} and g(i) 6= g(i′) for all distinct
i, i′ ∈ I such that for all j ∈ [N ]\I and i ∈ I, if f(j) < f(i) then there exists
i′ ∈ I with f(i′) ≤ f(j) and g(i′) = g(j).
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Theorem 3.1.11 [DHHM04] The quantum query complexity of the minimum
type finding problem is O(

√
d ·N).

The quantum algorithm for finding the d smallest values of different types is
useful for the construction of quantum algorithms for the minimum spanning
tree and the shortest path problem in graphs (see Chapter 5.3).

3.2 Amplitude Amplification

3.2.1 Amplitude Amplification Theorem

The quantum amplitude amplification is a generalization of Grover’s search al-
gorithm [Gro96]. Let A be an algorithm with one sided error, i.e. an algorithm
that if the correct answer is no, A always outputs no and if the correct an-
swer is yes, A outputs yes with at least some probability ε > 0. Classically,
we need Θ(1/ε) repetitions to increase its success probability from ε to a con-
stant, for example 2/3. With quantum computation we can perform this task
quadratically better, this process is called quantum amplitude amplification.

Theorem 3.2.1 [BHMT02] Let A be a quantum algorithm with one-sided error
and success probability at least ε. Then there is a quantum algorithm B that
solves A with success probability 2/3 by O( 1√

ε
) invocations of A.

Proof . Let A be any quantum algorithm which uses no measurements, and let

|ψ〉 := A|0〉 =
N−1∑

x=0

αx|x〉

the superposition state after the application of A. Let S ⊂ [N ] be the set of
solutions of A, and US a transformation that flips the phase of |x〉 if x ∈ S.
We denote with ε :=

∑
x∈S αx the probability that we obtain a solution, if we

measure the state in the computational basis. We show that there is a quantum
algorithm B that uses O( 1√

ε
) applications of A, A−1, US and finds a solution

with constant probability.

The amplitude amplification is similar to Grover search, but it uses the
subroutines A and A−1 instead of the Hadamard transform. The amplification
process is realized by repeatedly applying the unitary operator

Q := A · U0 · A−1 · US ,

where U0 changes the sign of the amplitude iff the state is the zero state |0〉.
The operator Q is well-defined, since we assume that A uses no measurements,
and therefore A has an inverse A−1.

Let |ψ0〉 be the projection of |ψ〉 onto the bad subspace spanned by the set
of basis states |x〉 for which x /∈ S, and |ψ1〉 is the projection of |ψ〉 onto the
good subspace, spanned by the set of basis states |x〉 for which x ∈ S. We use
the same arguments as in the proof of Theorem 3.1.2, the quantum state Qt|ψ〉
stays in a two-dimensional subspace spanned by |ψ0〉 and |ψ1〉.
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Let αε be defined such that sin2(αε) = ε and 0 < αε ≤ π/2. From the
analysis of the Grover algorithm follows that after t applications of operator Q,
the state is

Qt|ψ〉 =
1√
ε

sin((2t+ 1)αε) |ψ1〉 +
1√

1 − ε
cos((2t+ 1)αε) |ψ0〉.

Now we compute the value of t, such that the state |ψ〉 is rotated near |ψ1〉,
and then after a measurement we find a solution with high probability. If ε is
small, then αε =

√
ε. Since we must take |ψ〉 near |ψ1〉, it holds

(2t+ 1)αε =
π

2
,

and it follows m =
⌊

π
4
√
ε

⌋
= O( 1√

ε
). �

Remark 3.2.2 For the transformation of a classical algorithm into a quantum
algorithm, we can use Grover search, or the fact that any classical computation
can be simulated on a quantum computer (see e.g. [NC03]). More precisely,
in the query model, a classical computation with N queries can be simulated
by a quantum computation with N queries. The application of the amplitude
amplification follows immediately:

1. Take a classical algorithm with small success probability ε.

2. Transform the classical algorithm into a quantum algorithm, for example
with Grover search, with running time O(p(n)).

3. Apply the quantum amplitude amplification.

The result is a quantum algorithm with running time of O(p(n) 1√
ε
).

3.2.2 Examples: Claw and Triangle finding

Now we consider two simple examples for the application of the quantum am-
plitude amplification:

Claw-finding: Given two integers M,N and two functions f, g : [N ] → [M ],
find a pair (x, y) ∈ [N ]2, such that f(x) = g(y).

A special case of claw-finding is the element distinctness problem, where
f, g : [N ] → N. There are two quantum algorithms for these problems. The
first, due to Buhrman et al. [BDHHMSW01] uses Grover search and amplitude
amplification, and solves this problems in O(N3/4) quantum queries. The sec-
ond, due to Ambainis [Amb04a], uses a quantum walk search (see Chapter 3.3)
and finds a claw in O(N2/3) quantum queries. This procedure is optimal, since
there is a lower bound of Ω(N2/3) by Shi [AS04] resp. Kutin [Kut05].

Theorem 3.2.3 [BDHHMSW01] The quantum query complexity of the claw-
finding problem is O(N3/4) and the quantum time complexity is O(N3/4 log3N).
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Proof . The claw-finding algorithm consists of the following three steps:

1. Choose a set A ⊂ [N ] of size r.

2. Use a classical algorithm for sorting the set {f(a) | a ∈ A}.

3. Find y ∈ [N ] such that ∃x ∈ A with f(x) = g(y) by Grover search.

Step 1 uses O(r) queries. In step 2 we need no quantum queries, but
O(r log r) time steps for sorting. Step 3 can be done in O(

√
N) quantum queries,

and O(
√
N log r) quantum time steps, since testing if there is an x ∈ A such

that f(x) = g(y) for a given y ∈ [N ] costs O(log r) comparisons. The success
probability of this algorithm is ε = r/N , if there is a claw. Then the total
quantum query complexity of claw-finding is O((r +

√
N) ·

√
N/r) = O(N3/4)

if r =
√
N . The quantum time complexity of this algorithm is O(N3/4 log3N),

by using Remark 3.1.9. �

Now we present a simple O(
√
nm) quantum query algorithm for finding a

triangle in a graph G = (V,E) with n = |V | and m = |E|:

Triangle finding: Given a graph G = (V,E), find distinct vertices u, v,w ∈
V such that {u, v}, {v,w}, {u,w} ∈ E.

Theorem 3.2.4 [BDHHMSW01] The quantum query complexity of the trian-
gle finding problem is O(n1.5) and the quantum time complexity is O(n1.5 log2 n).

Proof . The triangle finding algorithm consists of the following steps:

1. Find an edge e = {u, v} in G with Grover search.

2. Find a vertex w with {u, v}, {v,w}, {u,w} ∈ E with Grover search.

3. Apply amplitude amplification.

The step 1 takes O(
√
n2/m) and step 2 takes O(

√
n) quantum queries to the

adjacency matrix. If there is a triangle in the graph, then the probability that
we find an edge belonging to this specific triangle is at least 3/m. In total,
triangle finding can be done in

O
(
(
√
n2/m+

√
n)
√
m
)

= O(n+
√
nm)),

resp. O(n1.5) quantum queries if m = O(n2). �

The best known quantum query lower bound for triangle finding is
Ω(n) [BDHHMSW01]. There is an O(n1.3) triangle finding algorithm by Mag-
niez et al. [MSS05] which uses quantum walks (see Section 5.1). Therefore the
quantum algorithm by Buhrman et al. [BDHHMSW01] is optimal for m = O(n)
and faster than the quantum walk algorithm for m = O(n1.6).
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3.3 Discrete Quantum Walk

Quantum walks are the quantum counterpart of Markov chains and random
walks. A discrete quantum walk is a way of formulating local quantum dynamics
on a graph. The walk takes discrete steps between neighbouring vertices, and
it is a sequence of unitary transformations.

In this section we present the quantum walk search schema by Magniez
et al. [MNRS07] for finding a marked element in the state space of a classi-
cal Markov chain. The quantum walk search provides a promising source for
new quantum algorithms, like element distinctness algorithm [Amb04a], tri-
angle finding [MSS05], testing group commutativity [MN05], matrix verifica-
tion [BŠ06] and testing associativity [DT07].

3.3.1 Scheme for Searching

Let P = (pxy) be the transition matrix of an ergodic symmetric Markov chain
on the state space X with stationary distribution π = (πx). Let M ⊆ X be a
set of marked states. Assume that the search algorithms use a data structure D
that associates some data D(x) with every state x ∈ X. From D(x), we would
like to determine if x ∈ M . When operating on D, we consider the following
three types of costs:

• Setup cost s: The worst case cost to compute D(x), for x ∈ X.

• Update cost u: The worst case cost for transition from x to y, and update
D(x) to D(y).

• Checking cost c: The worst case cost for checking if x ∈M by using D(x).

More precise, suppose 0 ∈ X, the setup cost is the cost for constructing the
state ∑

x

√
πx|x,D(x)〉|0,D(0)〉,

The update cost is the cost to realize the unitary transformation and its inverse

|x,D(x)〉|0,D(0)〉 → |x,D(x)〉
∑

y

√
pxy|y,D(y)〉

|0,D(0)〉|y,D(y)〉 →
∑

x

√
pyx∗ |x,D(x)〉|y,D(y)〉,

where P ∗ = (p∗xy) is the time-reversed Markov chain defined by the equations
πxpxy = πyp

∗
yx. For checking we realize

|x,D(x)〉|y,D(y)〉 → −|x,D(x)〉|y,D(y)〉 if x ∈M,

and leaves it unchanged otherwise.

Magniez et al. [MNRS07] developed a new scheme for quantum search, based
on any ergodic Markov chain. Their work generalizes previous results by Ambai-
nis [Amb04a] and Szegedy [Sze04a]. They extend the class of possible Markov
chains and improve the query complexity as follows.
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Theorem 3.3.1 [MNRS07] Let δ > 0 be the eigenvalue gap of an ergodic

Markov chain P and let |M |
|X| ≥ ε. Then there is a quantum algorithm that

determines if M is empty or finds an element of M with cost

s+
1√
ε

(
1√
δ
u+ c

)
.

In the most practical applications (see [Amb04a, MSS05, BŠ06, DT07]) the
quantum walk takes place on the Johnson graph which is defined as follows:
the vertices are subsets of {1, . . . , n} of size r, and two vertices are connected
iff they differ in exactly one number. It is well known that the spectral gap δ
of J(n, r) is Θ(1/r) for 1 ≤ r ≤ n

2 (see e.g. [Knu03]).

Theorem 3.3.2 [Amb04a] Let P be a random walk on the Johnson graph
J(n, r), where r = o(n). Let M be either empty, or the class of all r subsets
that contain a fixed subset of constant size k ≤ r. Then, there is a quantum
algorithm that determines if M is non-empty or finds a k-subset of M with cost

min
k≤r≤n

{
s+

(n
r

)k/2 (√
ru+ c

)}
.

Proof . We apply Theorem 3.3.1. Suppose there is at least one marked k-subset,
then there are

(n−k
r−k
)

marked vertices of the Johnson graph, and therefore

ε ≥
(n−k
r−k
)

(n
r

) = Ω

(
rk

nk

)
.

�

Theorem 3.3.3 Let P ⊂ [N ]k be a search problem with search space [N ],
whereby P is associate by its characteristic function fP : [N ]k → {0, 1}. The
quantum query complexity for finding a subset U ⊂ [N ] of constant size k with
fP (U) = 1 is O(Nk/(k+1) · t), where t is the number of queries to the input for
the computation of fP .

Proof . We apply the quantum walk search in the Johnson graph of Theorem
3.3.2. Let A be a subset of [N ] of size r > k. We will determine r later. A
vertex A of the Johnson graph J(N, r) is marked, if there is a subset A′ ⊆ A
of size k with fP (A′) = 1. The database is the set D(A) = {(i, d(i)) | i ∈ A},
where d(i) is the part of the input corresponding to the i’th element in the
search space which we need to verify if the vertex A is marked. The setup cost
for the database D(A) is rt and the update cost is t. To check whether there are
i1, . . . , ik ∈ A such that (i1, . . . , ik) ∈ P requires no queries. Then the quantum
query complexity for finding a k-subset is

O(r · t+

(
N

r

)k/2
· √r · t).

This expression is minimal for r = Nk/(k+1), therefore we have O(Nk/(k+1)t).
�

Now we present several applications of the quantum walk search.
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Grover search. Grover [Gro96] discovered a quantum search algorithm,
which is quadratic faster than a classical search. By using Theorem 3.3.3,
we can implement this algorithm by a quantum walk in the Johnson graph.
Then the quantum query complexity for finding a solution x of a search
problem P ⊂ [N ] is O(

√
N · t), where t is the number of queries for the

verification if x is a solution of P .

Element distinctness. Ambainis [Amb04a] presented the first algorithm
which uses quantum walk search and that went beyond the capability of
Grover search. He considered the element distinctness problem: Given N
numbers x1, . . . , xN , find two distinct indices i, j ∈ [N ] with xi = xj . By
using Theorem 3.3.3, we search for a tupel (i, j) ∈ [N ]2 with (i, j) ∈ P iff
xi = xj. Then the element distinctness problem can be solved in O(N2/3)
quantum queries, which is optimal (see [AS04, Kut05]). The quantum
query complexity for finding k equal numbers is O(Nk/(k+1)). The best
lower bound for this general case is only Ω(N2/3) (see [Amb04a]).

Matrix Verification. Buhrman and Špalek [BŠ06] constructed an O(n5/3)
quantum algorithm for the matrix verification problem. We have given
three n × n matrices A,B,C, one has to decide whether AB = C. Their
algorithm uses the quantum walk by Szegedy [Sze04a] in the graph cate-
gorical product of two Johnson graphs. By using Theorem 3.3.3 we can
simplify their algorithm. We search for a tupel (i, j) ∈ [n]2 with (i, j) ∈ P
iff Ai,∗ · B∗,j − Ci,j 6= 0. Then k = 2 and t = O(n), since we need O(n)
queries to the input matrices for the verification if (i, j) ∈ P .

Triangle finding. Magniez, Santha and Szegedy [MSS05] presented an
O(n1.3) quantum algorithm for triangle finding. They used the quan-
tum walk search of Theorem 3.3.2 for finding two vertices u, v ∈ V , such
that {u, v} is an edge of a triangle in G. The database is the vertex-
induced subgraph G[A], where A ⊂ V of size r. The setup cost is r2 to
determine G[A] and the update cost is r. For checking if a vertex A in the
Johnson graph J(n, r) is marked, we have to search for a vertex w ∈ V ,
such that there is an edge {u, v} in G[A] which forms a triangle with w.
This step can be done with Grover search and a special form of element
distinctness procedure by Ambainis [Amb04a], therefore the checking cost
is O(

√
nr2/3). Then the quantum query complexity of triangle finding is

r2 +
n

r

(√
rr +

√
nr2/3

)
= O(n13/10) for r = n3/5.

Graph copy. The triangle finding algorithm can be generalised for find-
ing in a graph G a copy of a given graph H. Magniez, Santha and
Szegedy [MSS05] showed that the quantum query complexity for find-
ing such a copy is O(n2−2/k), where k is the number of vertices H with
k > 3.
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3.3.2 Quantization of Markov Chains

In this subsection we define the quantum analogue of an irreducible Markov
chain. Let P = (pxy) be the transition matrix of any irreducible Markov chain
on a finite space X of size n. By the Perron-Frobenius theorem, the chain has
a unique stationary distribution π = (πx). Let P ∗ = (p∗yx) be the time-reversed
Markov chain defined by the equations πxpxy = πyp

∗
yx. The Markov chain P is

said to be reversible if P ∗ = P .
Let I denote the identity operator on Hilbert space H. For a state |ψ〉 ∈ H,

let Πψ = |ψ〉〈ψ| be the orthogonal projector on Span(|ψ〉), and ref(ψ) = 2Πψ−I
the reflection through the line generated by |ψ〉. Let K be a subspace of H, and
ref(K) the respective reflections through subspaces K.

We denote with A = Span(|x〉|px〉 | x ∈ X) and B = Span(|p∗y〉|y〉 | y ∈ X)

vector subspaces of H = C
X×X , where

|px〉 =
∑

y∈X

√
pxy |y〉 and |p∗y〉 =

∑

x∈X

√
p∗yx |x〉.

Definition 3.3.4 The unitary transformation

W (P ) := ref(B) · ref(A)

is called the quantum walk based on the classical Markov chain P .

Definition 3.3.5 Let P be a Markov chain, the discriminant matrix is defined
by

D(P ) :=
(√

πx
πy
pxy

)
= diag(π)1/2 · P · diag(π)−1/2,

where diag(π) is the invertible diagonal matrix with the coordinates of the
distribution π in its diagonal.

The singular values of D(P ) (roots of eigenvalues of D(P )TD(P )) all lie in the
range [0, 1], we may express them as cos θ, for some angles θ ∈ [0, π2 ].

Let ∆(P ) be the phase gap of W (P ) which is 2θ, where θ is the smallest
angle in (0, π2 ) such that cos θ is a singular value of D(P ). The angular distance
of 1 from any other eigenvalue is at least ∆(P ).

Proposition 3.3.6 [MNRS07] Let P be an ergodic reversible classical Markov
chain, then:

1. The singular values and absolute values of its eigenvalues of D(P ) are
equal.

2. The spectra of P and D(P ) are the same, and the eigenvalue 1 is the only
eigenvalue of P with absolute value 1.

3. The eigenvector of D(P ) with eigenvalue 1 is π = (
√
πx ), and every

singular (or eigen-) vector of D(P ) orthogonal to this has singular value
strictly less than 1.

4. The operator W (P ) has a unique eigenvector |π〉 in A + B with eigen-
value 1, and the remaining eigenvalues in A+B are bounded away from 1.
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3.3.3 Quantum Walk Search Technique

In this subsection we present the quantum walk search algorithm by Magniez et
al. [MNRS07]. The main idea of this search is the application of the quantum
phase estimation [CEMM98] to the quantum walk in order to implement an
approximate reflection operator. This operator is then used in an amplitude
amplification [BHMT02] scheme.

The work by [MNRS07] generalizes previous results by Ambainis [Amb04a]
and Szegedy [Sze04a]. They extend the class of possible Markov chains and
improve the quantum complexity. The general ideas of the quantum walk
search are the following:

1. Let H := C
X×X be the Hilbert space of the algorithm, and

|π〉 =
∑

x∈X
√
πx |x〉|px〉

the initial state, which corresponds to starting in the stationary distribu-
tion π.

2. Assume that there is at least one marked element, let M = C
M×X denote

the subspace with marked items in the first register, and let

ΠM :=
∑

x∈M,y∈X
|xy〉〈xy|

be the projector onto this subspace.

3. The task is to transform the initial state |π〉 to the target state |µ〉, which
is the (normalized) projection of |π〉 onto the “marked subspace”M. The
state |µ〉 is given by

|µ〉 =
ΠM|π〉

||ΠM|π〉|| =
1√
ε

∑

x∈M

√
πx |x〉|px〉,

where ε := ||ΠM|π〉||2 =
∑

x∈M π(x) is the probability of a set M of
marked states under the stationary distribution π.

4. The transformation is implemented by a Grover rotation in the two-
dimensional subspace spanned by the states |π〉 and |µ〉. The Grover
operator is the transformation

ref(π) · ref(µ⊥),

where |µ⊥〉 is orthogonal to |µ〉. From the Grover algorithm [Gro96]
follows that after O(1/

√
ε) iterations of this rotation starting with the

state |π〉, we will have approximated the target state |µ〉.

5. For the implementation of the ref(π) operator we use the phase estimation
procedure on W (P ).

6. For the implementation of the ref(µ⊥) operator, we check whether an item
in the first register is marked, which incurs some checking cost c.
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The main idea in the implementation of ref(π) is to use phase estimation with
the quantum walk operator W (P ).

Theorem 3.3.7 [MNRS07] Let P be an ergodic Markov chain on a state space
of size n, and let m = n2. Then there is a constant c > 0 such that for any
integer k, there exists a quantum circuit R(P ) that acts on m+ks qubits, where
s = log( 1

∆(P )) +O(1), and satisfies the following properties:

1. The circuit R(P ) uses 2ks Hadamard gates, O(ks2) controlled phase ro-
tations, and makes at most k 2s+1 calls to the controlled quantum walk
W (P ), and its inverse.

2. If |π〉 is the unique 1-eigenvector of W (P ) as defined above, then
R(P )|π〉|0ks〉 = |π〉|0ks〉.

3. If |ψ〉 lies in the subspace of A + B orthogonal to |π〉, then

||(R(P ) + I)|ψ〉|0ks〉|| ≤ 21−ck, i.e. R(P )|ψ〉 ≈ −|ψ〉.

Moreover the family of circuits R(P ) parametrized by n and k is uniform.

Now we describe the quantum walk search algorithm.

Algorithm 4 Quantum Walk Search

Input: Markov chain P with state space X.
Output: Marked state x ∈M (if there is one).

1: Initialisation:
|π〉 =

∑

x

√
π(x)|x,D(x)〉|px〉

2: Repeat O(1/
√
ε) times:

1. Phase flip:

|x,D(x)〉|y,D(y)〉 → (−1)χM (x)|x,D(x)〉|y,D(y)〉

2. Apply circuit R(P ) with k = O(log(1/
√
ε))

3: Measure the first register
4: Output x, if x ∈M ; otherwise output ‘no marked element exists’.

Theorem 3.3.8 [MNRS07] Let δ > 0 be the eigenvalue gap of a reversible,

ergodic Markov chain P , and let ε > |M |
|X| . Then the Quantum Walk Search

algorithm determines if M is empty or finds an element of M with cost

s+
1√
ε

(
1√
δ

log
1√
ε
u+ c

)
.
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Proof . The algorithm rotates the state |π〉 near the target state |µ〉 by using
amplitude amplification with O(1/

√
ε) invocations. We prove that the Quan-

tum Walk Search algorithm simulates with an arbitrarily small error the
Grover algorithm, and therefore finds a marked element with high proba-
bility, if such an element exists.

For i ≥ 0, we define |φi〉 as the result of i Grover iterations applied to |π〉,
and |ψi〉 as the result of i iterations of step 2 in Quantum Walk Search
applied to |π〉. It is not difficult to show by induction on i that |||ψi〉 − |φi〉|| ≤
i21−ck. This implies that |||ψk〉 − |φk〉|| is an arbitrarily small constant when
k = O(c−1 log(1/

√
ε)).

Let λ0, ..., λn−1 be the eigenvalues of P such that 1 = λ0 > |λ1| ≥ . . . ≥
|λn−1| and the spectral gap δ(P ) = 1 − |λ1| > 0. Since the discriminant D(P )
is similar to P , their spectra are the same, and therefore the singular values of
D(P ) are |λ0|, |λ1|, . . .. By definition, ∆(P ) = 2θ1, where cos θ1 = |λ1|, then

∆(P ) ≥ |1 − e2iθ1 | = 2
√

1 − |λ1|2 ≥ 2
√
δ(P ).

The total number of cost in each iteration is
√

1

ε
· k · 2s =

1√
εδ

· log 1√
ε
.

�

Remark 3.3.9 Magniez et al. [MNRS07] showed how an approximate reflec-
tion operator derived from a quantum walk may be incorporated into a search
algorithm without incurring additional cost for reducing its error.



Chapter 4

Methods for Quantum Lower

Bounds

In this Chapter we present several tools for the computation of quantum query
lower bounds. First we present the quantum adversary method, which was
initiated by Ambainis [Amb02]. This tool is very useful to prove lower bounds
for the bounded error quantum query complexity of graph and algebra problems.
The second method is the polynomial method, which was introduced by Beals et
al. [BBCMW01]. The quantum query lower bound follows from a lower bound
on the degree of a polynomial. We present some facts about the polynomial
method in connection with some general lower bounds for graph problems.
The polynomial method and the adversary method are generally incomparable.
There are examples which show that the polynomial method gives better bounds
than the quantum adversary and vice versa.

4.1 Adversary Method

An important method to prove lower bounds for the bounded error quantum
query complexity of Boolean functions is the quantum adversary method. The
original version of the quantum adversary method is called unweighted method
and was invented by Ambainis [Amb02]. This method starts with choosing a
set of pairs of inputs, on which the Boolean function f takes different values.
Then the quantum query lower bound for computing f is determined by some
combinatorial properties of the input.

First we present a special case of the unweighted method, which is in many
cases sufficient to prove tight lower bounds for the quantum query complexity
of graph and algebra problems.

Theorem 4.1.1 [Amb02] Let A ⊆ {0, 1}n, B ⊆ {0, 1}n and f : {0, 1}n →
{0, 1} such that f(x) = 1 for all x ∈ A, and f(y) = 0 for all y ∈ B. Let m
and m′ be numbers such that

1. for every (x1, . . . , xn) ∈ A there are at least m values i ∈ {1, . . . , n} such
that (x1, . . . , xi−1, 1 − xi, xi+1, . . . , xn) ∈ B,
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2. for every (x1, . . . , xn) ∈ B there are at least m′ values i ∈ {1, . . . , n} such
that (x1, . . . , xi−1, 1 − xi, xi+1, . . . , xn) ∈ A.

Then every bounded-error quantum algorithm that computes f has quantum
query complexity Ω(

√
m ·m′).

Example 4.1.2 We can use Theorem 4.1.1 to prove the Ω(
√
N) quantum query

lower bound for quantum search. Suppose we have an array of Boolean values
of size N . We show that deciding whether it contains an entry with value one
requires Ω(

√
N) quantum queries. The set A consists of all arrays of length N ,

which contains exactly one entry with value one. The set B consists of the zero
array of length N . From each x ∈ A, we can obtain x′ ∈ B by changing the
entry from 1 to 0, then m = 1. From each x′ ∈ B, we can obtain x ∈ A by
changing one entry from 0 to 1, then m′ = n. Therefore the query complexity
of quantum search is Ω(

√
N).

For some special problems, we need a stronger version than Theorem 4.1.1
for proving quantum query lower bounds.

Theorem 4.1.3 [Amb02] Let A ⊆ {0, 1}n, B ⊆ {0, 1}n and
f : {0, 1}n → {0, 1} such that f(x) = 1 and f(y) = 0 for all x ∈ A and
y ∈ B. Let R ⊂ A×B and m,m′, l, l′ be numbers such that

1. for every x ∈ A, there are at least m different y ∈ B such that (x, y) ∈ R.

2. for every y ∈ B, there are at least m′ different x ∈ A such that (x, y) ∈ R.

3. for every x ∈ A and i ∈ [n], there are at most l different y ∈ B such that
(x, y) ∈ R and xi 6= yi.

4. for every y ∈ B and i ∈ [n], there are at most l′ different x ∈ A such that
(x, y) ∈ R and xi 6= yi.

Then every bounded-error quantum algorithm that computes f has quantum

query complexity Ω

(√
m·m′

ll′

)
.

Remark 4.1.4

1. If we choose (x, y) ∈ R iff x and y differ in exactly one position, then
l = l′ = 1, and we get Theorem 4.1.1 as a special case of Theorem 4.1.3.

2. We can also prove quantum query lower bounds for general functions or
matrices. Let F = {f : [n] × [n] → [n]} be the set of all possible input
function and Φ : F → {0, 1}. Then A,B ⊂ F such that Φ(f) = 1 and
Φ(g) = 0 for all f ∈ A and g ∈ B. The lower bound for the computation
of Φ follows similar to Theorem 4.1.3. For further application, we define

d(f, g) := |{x, y ∈ [n] | f(x, y) 6= g(x, y) }|.
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In the following, we give the proof of Theorem 4.1.3. We consider a quantum
algorithm that runs on a superposition of inputs S ⊆ {0, 1}n. Let HA be the
workspace of the algorithm, and HI the input subspace spanned by the basis
vectors |x〉 corresponding to inputs x ∈ S. We consider the bipartite system
H := HA ⊗HI .

Let UTOUT−1 . . . U0 be the sequence of unitary transformations on HA per-
formed by the algorithm, where U0, . . . , UT are the transformations that do not
depend on the input, and O is the query transformation. A unitary transfor-
mation Ui on HA corresponds to a transformation U ′

i = Ui⊗I on H. The query
transformation O corresponds to a transformation O′ that is equal to Ox on the
subspace HA ⊗ |x〉.

Now we perform the sequence of U ′
TO

′U ′
T−1 . . . U

′
0 on the starting state

|ψstart〉 = |0〉 ⊗
∑

x∈S
αx|x〉.

The final state is
|ψend〉 =

∑

x∈S
αx|ψx〉 ⊗ |x〉,

where |ψx〉 is the final state after the application of UTOUT−1 . . . U0 on the input
x. In the starting state, the parts HA and HI of the superposition are unentan-
gled, but In the final state they must be entangledWe prove the lower bound
by showing that, given an unentangled start state, then we cannot get a highly
entangled end state with less than a certain number of query transformations.

Let ρstart and ρend be the density matrices describing the states |ψstart〉 and
|ψend〉, i.e. ρstart is a m ×m matrix with the entries (ρstart)xy = α∗

xαy, where
m = |S|.

Lemma 4.1.5 [Amb02] Let A be an algorithm that computes f with probability
at least 1 − ε. Let x, y be such that f(x) 6= f(y), then,

|(ρend)xy| ≤ 2
√
ε(1 − ε)|αx||αy|.

Proof Theorem 4.1.3. We consider the set of inputs S = A ∪ B and the
superposition state

|ψstart〉 = |ψ0〉 =
1√
2|A|

∑

x∈A
|x〉 +

1√
2|B|

∑

y∈B
|y〉.

Let ρi be the density matrix of |ψi〉, define the value

Si :=
∑

x,y:(x,y)∈R
|(ρi)xy|.

The Theorem 4.1.3 follows from the two facts:

1. S0 − ST ≥ (1 − 2
√
ε(1 − ε))

√
m ·m′

2. Sk−1 − Sk ≤
√
l · l′.
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For the proof of the first part, let (x, y) ∈ R, then we have

(ρ0)xy =
1√

|A||B|
and |(ρT )xy| ≤

2
√
ε(1 − ε)√
|A||B|

,

and

|(ρ0)xy| − |(ρT )xy| ≥
1 − 2

√
ε(1 − ε)√

|A||B|
.

The number of (x, y) ∈ R is at least max(|A|m, |B|m′), since for every x ∈ A,
there are at least m possible y ∈ B, and for every y ∈ B, there are at least m′

possible x ∈ A. Therefore we have

max(|A|m, |B|m′) ≥ |A|m+ |B|m′

2
≥
√

|A||B|m ·m′,

and

S0 − ST ≥
√

|A||B|mm′ 1 − 2
√
ε(1 − ε)√

|A||B|
= (1 − 2

√
ε(1 − ε))

√
m ·m′.

For the second fact, we represent

|ψk−1〉 =
∑

i,z

√
pi,z|i, z〉 ⊗ |ψi,z〉, and |ψi,z〉 =

∑

x∈S
αi,z,x|x〉.

Then a quantum query change the sign of all components with xi = 1, and it
transforms |ψi,z〉 to

|ψ′
i,z〉 =

∑

x∈S
xi=0

αi,z,x|x〉 −
∑

x∈S
xi=1

αi,z,x|x〉.

We define ρi,z = |ψi,z〉〈ψi,z | and ρ′i,z = |ψ′
i,z〉〈ψ′

i,z | and

Si,z :=
∑

(x,y)∈R
|(ρi,z)xy − (ρ′i,z)xy|.

If xi = yi, then (ρi,z)xy and (ρ′i,z)xy are equal. In case one of xi, yi is 0 and the
other is 1, then (ρi,z)xy = −(ρ′i,z)xy and

|(ρi,z)xy − (ρ′i,z)xy| = 2|(ρi,z)xy| = 2|αi,z,x||αi,z,y|.

Therewith we have

Si,z =
∑

(x,y)∈R
xi 6=yi

2|αi,z,x||αi,z,y| ≤
∑

(x,y)∈R
xi 6=yi

√
l′

l
|αi,z,x|2 +

√
l

l′
|αi,z,y|2

≤
∑

x∈A
l

√
l′

l
|αi,z,x|2 +

∑

y∈B
l′
√
l

l′
|αi,z,y|2 =

√
l · l′

∑

x∈A∪B
|αi,z,x|2 =

√
l · l′.

�
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4.2 Polynomial Method

The polynomial method for proving quantum query lower bounds was intro-
duced by Beals et al. [BBCMW01]. This method is based on the observation
that the measurement probabilities can be described by low degree polynomials
in the input bits. It was shown that, if t queries have been done, then the degree
of the polynomials is at most 2t.

The polynomial method has been successfully applied to obtain tight
lower bounds for the collision problem and the element distinctness problem
(see [AS04][Kut05]). The quantum adversary method is unable to prove such
lower bounds. With the polynomial method we can also prove lower bounds
for the exact and zero-error quantum complexity. The adversary method com-
pletely fails in this setting, here we get only bounded-error lower bounds. On
the other hand, the adversary method gives for some functions better lower
bounds than the polynomial method. The biggest proved gap between the two
methods is n1.321 (see [Amb03]). The polynomial method did not yet succeed in
proving lower bounds that are very simple to prove by the adversary method.

Definition 4.2.1 Let f : {0, 1}N → {0, 1} be a Boolean function and
p : R

N → R be an N -variate polynomial. If p(x) = f(x) for all x ∈ {0, 1}N ,
then we say p represents f . We denote by deg(f) the degree of a minimum-
degree polynomial p that represents f . If |p(x)−f(x)| ≤ 1/3 for all x ∈ {0, 1}N ,

we say p approximates f , and d̃eg(f) denotes the degree of a minimum-degree
p that approximates f .

By using the quantum query model, it is not difficult to show the following fact:

Lemma 4.2.2 [BBCMW01] Let |ϕ〉 =
∑

x α(x1, . . . , xN ) |x〉 be the state of
a quantum algorithm after T queries. Then α(x1, . . . , xN ) being polynomials
of degree at most T , and the probability of the measurement of value x is
α(x1, . . . , xN )2.

Then we can write the acceptance probability of a quantum algorithms with T
queries as a polynomial p(x) of degree ≤ 2T , therefore we have

Theorem 4.2.3 [BBCMW01]

QE(f) ≥ deg(f)/2 and Q2(f) ≥ d̃eg(f)/2.

A simple tool for proving lower bounds can be done by computing the sen-
sitivity of a Boolean function.

Definition 4.2.4 The sensitivity of f : {0, 1}N → {0, 1} on input x is

sx(f) = |{i | f(x) 6= f(x⊕ ei)}|,

where ei is the i’th unit vector. The average sensitivity of f is

s(f) =
1

2N

∑

x∈{0,1}N

sx(f).
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Beals et al. [BBCMW01] showed that

Ω(s(f)) = d̃eg(f)

Example 4.2.5 In combination with Theorem 4.2.3 it is not difficult to see
for example that the computation of the parity function fp(x1, . . . , xN ) = x1 ⊕
. . . ⊕ xN requires Ω(N) quantum queries, since sx(fp) = n for all x ∈ {0, 1}N
and therefore s(fp) = n.

Now we are interested in the number of queries to the adjacency matrix,
which we need to determine if a given graph has a certain property. By using
the polynomial method we can prove lower bounds for the exact, zero error and
bounded error quantum query complexity of such general graph problems.

Definition 4.2.6 A graph property P is a subset of the set of all graphs that
is closed under permutation of the nodes, i.e. if G1, G2 represent isomorphic
graphs, then G1 ∈ P iff G2 ∈ P . A graph property called monotone, if adding
edges cannot destroy the property.

Example 4.2.7 Let G = (V,E) be a graph, a monotone graph property is for
example: “G contains a clique of size k”, since if we add edges in G we cannot
destroy the clique. On the other hand, the property “G contains a independent
set of size k” is not monotone.

Theorem 4.2.8 [BCWZ99] For all monotone graph properties P hold:

QE(P ) ∈ Ω(n2), Q0(P ) ∈ Ω(n) and Q2(P ) ∈ Ω(
√
n).

Furthermore, there exists graph properties P1, P2, P3, such that
QE(P1) < n(n− 1) for every n > 2, Q0(P2) ∈ O(n3/2) and Q2(P3) ∈ O(n).

The complexity of monotone graph properties has been well-studied clas-
sically. Researchers suppose that for every monotone graph property P , it
holds that D(P ) = n(n − 1), see [LY94]. This is called the Aanderaa-Karp-
Rosenberg conjecture and is still open. The best known general bound is
D(P ) ∈ Ω(n2), see [Kin88]. For the classical zero-error complexity, the best
known general result is R0(P ) ∈ Ω(n4/3) [Haj91], but it has been conjectured
that R0(P ) ∈ Θ(n2).

For the bounded error quantum query complexity, we can easily verify that
Q2(P ) ∈ Ω(

√
n), since we have quadratic gaps between quantum and classi-

cal complexity. For the property P =“the graph has at least one edge” holds
Q2(P ) ∈ O(n) by quantum search. Combining this with D(P ) ∈ Ω(n2) and
D(f) ∈ O(Q2(f)4) for all monotone Boolean functions f (see [BBCMW01]), we
obtain the general lower bound.
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Graph Problems
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Chapter 5

Fundamental Graph Problems

In this Chapter we present fundamental quantum graph algorithms. First we
give quantum algorithms for basic graph problems, like depth first search,
breadth first search and topological numbering. Then we present a uniform
and simplified description of known quantum graph algorithms. We give the
quantum algorithms by Dürr et al. [DHHM04] for the minimum spanning tree,
graph connectivity, strong graph connectivity and the single source shortest
path problem. Furthermore we present a quantum algorithm by Ambainis
and Špalek [AS06] for determining a maximum flow in a directed graph with
bounded edge weight. We use some of these quantum algorithms as a black box
to speed up other graph algorithms.

5.1 Basic Graph Algorithms

For many quantum graph algorithms in this thesis we use Grover’s algo-
rithm [Gro96] for searching of edges in the graph. The following proposition
gives the quantum query complexity of this search:

Proposition 5.1.1 Given an undirected graph G = (V,E).

1. The existence of an edge {u, v} in G can be tested by a single query to
the adjacency matrix and O(

√
min{dG(u), dG(v)}) quantum queries to the

adjacency list of G.

2. All neighbours of a vertex v of G can be found in O(
√
n · dG(v)) quantum

queries to the adjacency matrix of G.

3. All neighbours of a vertex v of G with a special property can be found
in O(

√
dG(v) · av) quantum queries to the adjacency list, where av is the

number of adjacent vertices of v with the special property.

Proof . The three facts follows immediately from Theorem 3.1.8. �

Many graph algorithms use depth first search, breadth first search and topo-
logical numbering as subroutines. Classically these searches can be done in lin-
ear time in the number of edges of the graph. With the application of quantum
search, we can speed up these subroutines.

43
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Depth First Search (DFS): Given a graph G = (V,E) and a vertex s ∈ V ,
compute a depth-first tree T from s, such that T is rooted at s and contains all
the vertices of G that are reachable from s.

Lemma 5.1.2 The quantum query complexity of DFS is O(n1.5 log n) in the
adjacency matrix model and O(

√
nm log n) in the adjacency list model.

Proof . In DFS, we construct a tree T that contains all the vertices of G that are
reachable from the root s. We can construct this tree by the following simple
procedure: For each edge (s,w) ∈ E in which w has not been discovered by T ,
make w the next child of s in T , and recall the procedure with s = w.

We use the Grover search to construct the tree T . Every vertex is discovered
by T at most once. In the adjacency matrix model, every vertex is found in
O(

√
n) quantum queries. In total we are using O(n1.5) quantum queries in

the adjacency matrix model. In the list model, finding an adjacent vertex of
s which has not been discovered uses O(

√
dG(s)) quantum queries. In total

we have
∑

s

√
dG(s) = O(

√
mn) quantum queries in the adjacency list model.

In order to get a constant success probability, we need to amplify the success
probability of each subroutine by repeating it O(log n) times, see Remark 3.1.9.

�

Breadth First Search (BFS): Given a graph G = (V,E) and a vertex s ∈ V ,
compute a breadth-first tree T from s, such that T is rooted at s and contains
all the vertices of G that are reachable from s.

Lemma 5.1.3 The quantum query complexity of BFS is O(n1.5 log n) in the
adjacency matrix model and O(

√
nm log n) in the adjacency list model.

Proof . In BFS, we construct a tree T that contains all the vertices of G that
are reachable from the root s by the following simple procedure: Let V0 = {s}
and i = 0. While Vi 6= ∅ we construct the set Vi+1: First we set Vi+1 = ∅, and
for each v ∈ Vi and each edge (v,w), make w the next child of v in T , if w has
not been discovered by T . We add w to Vi+1 and repeat this loop with i = i+1.

In the adjacency matrix model a vertex is found in O(
√
n) quantum queries.

Every vertex is processed at most once. In the list model, processing a vertex
v costs O(

√
dG(v) · nv) quantum queries, where nv is the number of adjacent

vertices to v, which has not been discovered. Since
∑

v nv ≤ n, then the total
quantum query complexity is upper-bounded by the Cauchy-Schwarz inequality:

∑

v

√
dG(v) · nv ≤

√∑

v

dG(v)

√∑

v

nv = O(
√
mn).

By using Remark 3.1.9, the error probability of this algorithm is constant.
�

Topological Numbering (TN): Given a directed acyclic graph G = (V,E),
compute a numbering I : V → [n], such that each edge is directed from lower
number to higher number, i.e. if (u, v) ∈ E then I(u) < I(v).
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Lemma 5.1.4 The quantum query complexity of topological numbering is
O(n1.5 log n) in the adjacency matrix model and O(

√
nm log n) in the adjacency

list model.

Proof . We grow a DFS path P until a sink t (vertex with outdegree 0) is
reached. Then we set I(t) = n, decrease n by 1 and delete t from the path P
and the graph G. We continue with the DFS procedure until G has no vertices.

In each iteration we grow the DFS path P by starting with the previous
P and extending it, if possible. Since we use DFS, we apply Lemma 5.1.2 to
obtain the quantum query complexity of topological numbering. �

Corollary 5.1.5 The quantum time complexity of BFS, DFS and TN is
O(n1.5 log2 n) in the adjacency matrix model and O(

√
nm log2 n) in the ad-

jacency list model.

5.2 Graph Connectivity

In this Section we present a short description of the quantum query algorithms
by Dürr et al. [DHHM04] which decide if an undirected resp. directed graph is
connected. At first we consider the connectivity problem for undirected graphs.

Graph Connectivity: Given an undirected graph G, decide if G = (V,E) is
connected.

We compute a spanning tree, provided the graph G is connected. First
we consider the adjacency matrix model. The algorithms starts with n con-
nected components, one for each vertex. Then we construct a spanning tree
by repeatedly choosing an edge that connects two of the components. Let T
be a subgraph of G, for the application of quantum search, we define a search
function fT : E → {0, 1} with

fT (e) :=

{
1, if c(T+e) < c(T )
0, otherwise,

where c(G) is the number of connected components of the graph G. The quan-
tum query algorithm for the graph connectivity problem in the adjacency matrix
model is the following:

Algorithm 5 Graph Connectivity-M

Input: Undirected graph G = (V,E) in the adjacency matrix model.
Output: Spanning tree T = (V,A), if G is connected.
Complexity: M: O(n1.5) quantum queries.

1: A := ∅, T := (V,A)
2: while c(T ) > 1 do
3: e := Quantum Search[fT ]
4: A := A ∪ {e}

Theorem 5.2.1 [DHHM04] The expected quantum query complexity of the
Graph Connectivity-M algorithm is O(n1.5) in the adjacency matrix model.



46 CHAPTER 5. FUNDAMENTAL GRAPH PROBLEMS

Proof . The algorithm searches an edge that connects two different components
in T . This step can be done in O(

√
n2/k) quantum queries, if there are k > 0

edges that connect two different components in A. Suppose the graph is con-
nected, then there are exactly n− 1 iterations, and the expected total number
of quantum queries is

n∑

k=2

√
n2

k − 1
= O(n1.5).

We may choose to stop the algorithm after twice the expected number of quan-
tum queries, then we have bounded one-sided error algorithm. �

Theorem 5.2.2 [DHHM04] The graph connectivity problem requires Ω(n1.5)
quantum queries to the adjacency matrix.

Proof . We use Theorem 4.1.3. Let A be the set of all graphs G = (V,E) with
n vertices and an unique cycle. Let B be the set of all graphs G′ = (V,E′)
with n vertices and exactly two cycles, each of length between n/3 and 2n/3.
We define the relation (G,G′) ∈ R, if there exist four vertices v1, v2, v3, v4 ∈ V
such that the only difference between G and G′ is that (v1, v2), (v3, v4) ∈ E but
not in E′ and (v1, v3), (v2, v4) ∈ E′ but not in E. Then it holds m = O(n2),
since there are n choices for the first edge and n/3 choices for the second edge.
Analog m′ = O(n2), since from each cycle one edge must be chosen. We have
lG,(i,j) = 4, iff (i, j) /∈ E, since in G′ we have the additional edge (i, j) and
the endpoints of the second edge must be neighbours of i and j. On the other
hand lG,(i,j) = O(n) iff (i, j) ∈ E since then (i, j) is one of the edges to be
removed and there remains n/3 choices for the second edge. The values lG′,(i,j)

are similar, such that lmax = O(n). Then the quantum query complexity of
graph connectivity is Ω(

√
l · l′/lmax) = Ω(n1.5). �

Now we determine the quantum query complexity of the graph connectivity
problem in the adjacency list model. We need the following simple fact from
graph theory:

Lemma 5.2.3 [DHHM04] Let G = (V,E) be a graph in the adjacency list
model. The construction of a partition of V into a set of connected components
{C1, . . . , Ck} for some integer k with the property

mCj :=
∑

i∈Cj

dG(i) ≤ |Cj|2, ∀j ∈ [k],

can be done in O(n) classical queries.

We denote with Connected Components[G] the classical algorithm of
Lemma 5.2.3, which computes a set of connected components {C1, . . . , Ck}.
Let T be a subgraph of G = (V,E), C ⊆ V and fG,T,C : E → {0, 1} a search
function with

fG,T,C(e) :=

{
1, if c(T+e) < c(T ) and e ∈ C ×NG(C)
0, otherwise.
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Algorithm 6 Graph Connectivity-L

Input: Undirected graph G = (V,E) in the adjacency list model.
Output: Spanning tree T , if G is connected.
Complexity: L: O(n) quantum queries.

1: C := Connected Components[G]
2: A := ∅, T := (V,A)
3: while c(T ) > 1 do
4: Choose C ∈ C with mC = min{mC1 , . . . ,mCk

}
5: e := Quantum Search[fG,T,C]
6: A := A ∪ {e}

Theorem 5.2.4 [DHHM04] The expected quantum query complexity of the
Graph Connectivity-L algorithm is O(n) in the adjacency list model.

Proof . Suppose that the graph G is connected. First we construct a set of
k connected components of Lemma 5.2.3 in O(n) classical queries. In every
iteration of the algorithm, we choose a component with smallest total degree.
Then we use Grover’s algorithm for searching an edge out of C. This step can
be done in O(

√
mC) ≤ O(|C|) quantum queries to the adjacency list. Summing

over all k components, the total number of expected quantum queries is O(n).
�

The quantum query lower bound of Ω(n) for the graph connectivity in the
adjacency list model can be proved by a straightforward reduction from parity,
see [DHHM04].

Now we consider the graph connectivity problem for directed graphs.
We simplify the analysis of the strong connectivity algorithm by Dürr et
al. [DHHM04].

Strong Graph Connectivity: Given a directed graph G, decide if there is a
directed path between every pair of vertices of G.

Theorem 5.2.5 [DHHM04] The quantum query complexity of the strong
graph connectivity problem is O(n1.5 log n) in the adjacency matrix model and
O(

√
nm log n) in the adjacency list model.

Proof . The algorithm consists of two steps: First we construct a directed depth
first spanning tree T = (V,A), where the vertices are labeled according to the
order which they are added to T . Second we search for every vertex of V the
neighbour with smallest label. The result of this search is a set of edges B ⊆ E.
The following fact can be showed:

Claim: G = (V,E) is strongly connected iff G′ = (V,A ∪ B) is strongly con-
nected.

In the first step, the set A can be computed in O(
√
n1.5 log n) resp.

O(
√
nm log n) quantum queries by DFS (Lemma 5.1.2). The second step can

be done with O(
√
nm) quantum queries by using minima finding (Theorem

3.1.10). �
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By a more detailed analysis of the algorithm, it can be shown that the
quantum query complexity of the strong graph connectivity problem is O(n1.5)
in the adjacency matrix model and O(

√
nm log n) in the adjacency list model.

The quantum query lower bound can be proved with Theorem 4.1.3.

Theorem 5.2.6 [DHHM04] The strong graph connectivity problem requires
Ω(n1.5) quantum queries to the adjacency matrix and Ω(

√
nm) quantum queries

to the adjacency list.

5.3 Minimum Spanning Tree and Shortest Paths

In this Section we present the quantum algorithms by Dürr et al. [DHHM04] for
the minimum spanning tree and the shortest paths problem. These quantum
algorithms use the Minimum Type Finding quantum algorithm of Section
3.1.4 for finding the smallest values of different types.

Minimum Spanning Tree: Given a weighted undirected graph G, compute
a spanning tree in G with minimal total edge weight.

Let G = (V,E) be a directed graph with vertex set V = {v1, . . . , vn}. The
minimum spanning tree algorithm starts with n trees T1 = {v1}, . . . , Tn = {vn}.
In each iteration of the algorithm, we search a minimum weight edge out of each
tree, and add the edges to the trees. The algorithm stops, if there is only one
tree left, which is a minimum spanning tree. The correctness of the algorithm
follows from the fact that if U is a set of vertices of a connected graph G and
e ∈ (U × (V \U)) ∩ E is a minimum weight edge, then there is a minimum
spanning tree containing e.

We define two function f and g for using the Minimum Type Finding
algorithm. We replace every undirected edge {u, v} ∈ E by two directed edges
(u, v) and (v, u), and enumerate the edges from 1 to 2m. We denote with:

• f : [2m] → N∪∞ the function that maps every directed edge (u, v) to its
weight, if u and v belong to different trees of the current spanning forest,
and to ∞ otherwise.

• g : [2m] → [d] the function that maps every directed edge (u, v) to the
index j of the tree Tj containing u, where d is the current number of trees.

Now we can summarize the quantum algorithm:
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Algorithm 7 Minimum Spanning Tree

Input: Undirected weighted graph G = (V,E).
Output: Minimum spanning tree T = (V,A).
Complexity: M: O(n3/2), L: O(

√
nm) quantum queries.

1: d := n, A := ∅
2: while d > 1 do
3: Ed := Minimum Type Finding[f, g, d]
4: A := A ∪ Ed
5: d := c(T )
6: Recompute f, g
7: T = (V,A)

Theorem 5.3.1 [DHHM04] The quantum query complexity of the Minimum
Spanning Tree algorithm is O(n1.5) in the adjacency matrix model and
O(

√
nm) in the adjacency list model.

Proof . The Minimum Type Finding algorithm useO(
√
dm) quantum queries.

At the beginning of the l’th iteration, the number of trees is d = n/2l−1, and
thus we use at most O(

√
nm/2l−1) quantum queries to the adjacency list. In

total the number of queries is at most

∑

l≥1

O

(√
nm

2l−1

)
= O(

√
nm).

The matrix model is an instance of the list model with m = n(n − 1) edges.
The overall error probability is bounded by 1/4. �

Now we consider the problem of finding all shortest paths from a vertex.

Shortest Paths: Given a weighted graph G with edge weight c : E → R and
a source vertex vs, compute a tree T such that the shortest paths from vs to all
the other vertices is in T .

Classically the shortest path problem can be solved by Dijkstra’s algorithm.
The quantum algorithm by Dürr et al. [DHHM04] constructs a tree T , such
that for every vertex v of G, the shortest path from vs to v is in T . We denote
with d(vs, v) the shortest path length from vs to v. We called an edge (u, v) ∈ E
border edge of T , if u ∈ T (source vertex ) and v /∈ T (target vertex ). Then it
holds d(vs, v) = d(vs, u)+c(u, v). The Dijkstra’s algorithm starts with T = {vs}
and iteratively adds the cheapest border edge to it.

Let Pl be a set of vertices of G, we compute |Pl| cheapest border edges with
disjoint target vertices. For this task we using the Minimum Type Finding
quantum algorithm. Let N :=

∑
v∈Pl

dG(v), and number all edges with source
in Pl from 1 to N . We denote with:

• g : [N ] → V the function, where g(i) is the target vertex of the i′th edge.

• f : [N ] → R
+ the function, where f(i) := c(ei) if g(i) /∈ T , and ∞

otherwise.
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Algorithm 8 Shortest Paths

Input: Directed graph G = (V,E), edge weight c : E → R
+, root vs ∈ V .

Output: Shortest path tree T with root vs.
Complexity: M: O(

√
nm log2 n), L: O(n1.5 log2 n).

1: T := ({vs}, ∅), l := 1, P1 := {vs}
2: while V (T ) 6= V (G) do
3: d := |Pl|
4: Al := Minimum Type Finding[f, g, d]
5: Choose (u, v) ∈ E: c((u, v)) = min{c((x, y)) | (x, y) ∈ ⋃iAi, y /∈

⋃
i Pi}

6: V (T ) := V (T ) ∪ {v}
7: E(T ) := E(T ) ∪ {(u, v)}
8: Pl+1 := {v}
9: l := l + 1

10: if l ≥ 2 ∧ |Pl−1| = |Pl| then
11: Pl−1 := Pl−1 ∪ Pl
12: l := l − 1

Theorem 5.3.2 [DHHM04] The quantum query complexity of the Shortest
Path algorithm is O(

√
nm log2 n) in the adjacency list model and O(n1.5 log2 n)

in the adjacency matrix model.

By using a reduction from minima finding, it is simple to show a lower bound:

Theorem 5.3.3 [DHHM04] The minimum spanning tree and the shortest path
problem requires Ω(n1.5) quantum queries to the adjacency matrix and Ω(

√
nm)

quantum queries to the adjacency list.

Remark 5.3.4 The quantum time complexity of the algorithms in this Chap-
ter are by a log n factor bigger than its query complexity (see Remark 3.1.9).

5.4 Maximum Flow

In this Section we present a quantum maximum flow algorithm by Ambainis
and Špalek [AS06]. We simplify and correct an error of their analysis.

Definition 5.4.1 A (flow) network N = (G, s, t, c) is a directed graph
G = (V,E) which the capacity function c : V × V → R

+ and two distinct
vertices s, t ∈ V which are called the source and the sink vertex. If (u, v) /∈ E,
then c(u, v) = 0. A flow on N is a function f : V × V → R that satisfies the
following three properties:

1. Capacity constraint : For all u, v ∈ V : f(u, v) ≤ c(u, v).

2. Skew symmetry : For all u, v ∈ V : f(u, v) = −f(v, u).

3. Flow conservation: For all u ∈ V \{s, t} :
∑

v∈V f(u, v) = 0.

The value f(u, v) called the flow from vertex u to vertex v. The size |f | of the
flow f is defined as |f | =

∑
v∈V f(s, v).
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Here we consider the following maximum flow problem:

Maximum Flow: Given an integer flow network N with capacities bounded
by U , compute a flow of N with maximum size.

Definition 5.4.2 Let N = (G, s, t, c) be a network:

• Given a flow f on N , the residual capacity for f is
r(u, v) := c(u, v) − f(u, v) for each pair of vertices u, v ∈ V (G). The resid-
ual graph for the flow f is R = (V,Ef ) with Ef = {(u, v) | r(u, v) > 0}.
A residual flow is the difference between an optimal flow f∗ and the
current flow f : if f∗(a) ≥ f(a) then the residual flow on a is f∗(a)−f(a),
and otherwise the residual flow is f(a) − f∗(a).

• An augmenting path in a network is a path p from the source to the sink
whose residual capacity is bigger than zero. The bottleneck capacity of p
is the minimum residual capacity along p.

• A blocking flow in a subgraph H of G containing s and t, is a flow where
every directed s-t-path contains an arc with zero residual capacity.

• The level of a vertex v, denoted by level(v), is the least number of edges
in a path from s to v. The layered network of N is the directed subgraph
L = (V,E′) of G, where E′ = {(u, v) ∈ E | level(v) = level(v) + 1}.

The layered network contains all shortest length augmenting paths from the
source to the sink, which are of the same length. The construction of the layered
network can be done with quantum breadth first search.

Lemma 5.4.3 [AS06] There is a quantum algorithm that computes a lay-
ered network in time O(n3/2 log2 n) in the adjacency matrix model and
O(

√
nm log2 n) in the adjacency list model.

Lemma 5.4.4 [AS06] There is a quantum algorithm for computing a
blocking flow in the layered network of depth j with running time of
O((
√
jmAjU +

√
nm) log2 n) in the adjacency list model, where Aj is the size

of its blocking flow.

Proof . The classical algorithm for determining a blocking flow in the layered
network of depth j is the following:

1. Compute the layered network L of G, and mark all vertices as enabled.

2. While the bottleneck capacity ∆p is greater than zero:

(a) DFS a path p over enabled vertices in L from s to t.

(b) Disable all vertices from which there is no path to t.

(c) Augment f by ∆p along p.

(d) Update L along p.



52 CHAPTER 5. FUNDAMENTAL GRAPH PROBLEMS

Now we analyse the running time complexity of this procedure in the quan-
tum case. Let av be the number of augmenting paths going through vertex v.
Finding the edges of the augmenting paths during v can be done with quantum
search in time

av∑

i=1

√
UdG(v)

i
= O(

√
UdG(v)av).

It holds
∑

v av ≤ jAj , then the total time for finding a blocking flow is

∑

v

√
UdG(v)av ≤

√
U

√∑

v

dG(v) ·
√∑

v

av = O(
√
UmjAj).

Disabling all vertices from which there is no path to t can be done by the
quantum BFS procedure in O(

√
nm) steps. �

Now we are able to present the quantum algorithm by [AS06] for the max-
imal flow problem, by using the following simple fact from flow theory:

Lemma 5.4.5 [ET75] Given an integer flow network with capacities bounded
by U , whose layered residual network has depth j, then the size of the residual
flow is at most min((2n/j)2,m/j) · U .

Theorem 5.4.6 [AS06] Let U ≤ n1/4. There is a quantum algorithm for the
maximum flow problem with running time of O(n13/6 · U1/3 log4 n) in the adja-
cency matrix model and O(min{n7/6√m ·U1/3,m

√
nU} log4 n) in the adjacency

list model.

Proof . The algorithm consists of the following two parts (analog to [ET75]):

1. Iteratively augment the current flow by blocking flows in the layered resid-
ual networks, until the depth of the network is k = min(n2/3U1/3,

√
mU).

2. Search single augmenting paths, while there are some.

We determine the quantum running time complexity of this algorithm. By using
Lemma 5.4.4, the first part can be done in

√
mU ·

k∑

j=1

√
jAj + k

√
nm.

After the first part, the algorithm has constructed a layered network of depth
k. By Lemma 5.4.5, the residual flow has size O(min((n/k)2,m/k) · U) =
O(k). Therefore the search for augmenting paths terminates in O(k) more
iterations, and part two can be done in time O(k

√
nm) by using the quantum

DFS procedure. Then the total running time of the maximum flow algorithm
is

O


√

mU ·
k∑

j=1

√
jAj + k

√
nm


 .
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Now we prove that
∑

j

√
jAj = O(k3/2 log2 k). By Lemma 5.4.5, the residual

flow after l = k/2i iterations is at most O(min((n/k)2 · 22i,m/k · 2i) · U) ≤
O(22ik) = O(k3/l2). Then it follows that

∑2l−1
j=l Aj = O(k3/l2), and we get

k∑

j=1

√
jAj =

log k∑

i=0

2i+1−1∑

j=2i

√
jAj ≤

log k∑

i=0

√√√√√
2i+1−1∑

j=2i

j

√√√√√
2i+1−1∑

j=2i

Aj

≤
log k∑

i=0

√
2i · 2i+1

√√√√√
2i+1−1∑

j=2i

Aj ≤
√

2

log k∑

i=0

2i
√
k3

22i
= O(k3/2 log2 k).

Since U ≤ n1/4 then kU ≤ n. Then the total running time is

O(k
√
m(

√
kU log2 k+

√
n)) = O(k

√
nm log2 k) = O(min(n7/6√m·U1/3,

√
nUm) log2 n).

The time complexity for the adjacency model follows from setting m = n2. In
order to get the success probability of 1 − 1/n, we need to amplify the success
probability of each subroutine by repeating it O(log n) times, see Remark 3.1.9.
Considering this, we obtain the indicated quantum time complexity. �

Remark 5.4.7 If m = Ω(n1+ε) for some ε > 0 and U is small, then the
algorithm is polynomially faster than the best known classical algorithm. For
constant U and m = O(n), it is slower by at most a log-factor.





Chapter 6

Matching Problems

In this Chapter we present quantum algorithms for matching problems. A
matching in a graph is a set of edges such that for every vertex at most one
edge of the matching is incident on the vertex. The task is to find a matching of
maximum cardinality. The matching problem has many important applications
in graph theory and computer science. We study the complexity of algorithms
for matching problems on quantum computers and compare these to the best
known classical algorithms. We will consider different versions of the matching
problems, depending on whether the graph is bipartite or not and whether the
graph is unweighted or weighted. The results of this Chapter are published
in [Doe08].
In Section 6.1 we present quantum algorithms for unweighted matching prob-
lems. First we give a quantum algorithm for computing a maximal matching in
general graphs in time O(

√
nm log2 n). Then we consider the maximum match-

ing problem. The best classical algorithms for finding a matching of maximum
cardinality based on augmenting paths with running time O(

√
nm) (Micali

and Vazirani [MV80]) and on matrix multiplication with running time O(nω)
(Mucha and Sankowski [MS04]) where ω ≤ 2.38. Ambainis and Špalek [AS06]
published an O(n2(

√
m/n+log n) log2 n) quantum time algorithm for comput-

ing a maximum matching. But this quantum algorithm is in no case better than
the best classical algorithm from [MV80] and [MS04]. The authors of [AS06]
state as an open question, to improve with a quantum algorithm the fastest
known classical algorithm by Micali and Vazirani [MV80]. We solve this ques-
tion by presenting an O(n

√
m log2 n) quantum time algorithm for finding a

maximum matching in general graphs. Our algorithm is faster than the best
classical algorithms for graphs with m > n log4 n.
In Section 6.2 we give quantum algorithms for weighted matching problems.
The best classical algorithms for computing a maximum weight matching
in bipartite graphs were developed by Gabow and Tarjan [GT89] with run-
ning time O(

√
nm log(nN)) and Kao et al. [KLST01] with time complexity

O(
√
nW/k(n,W/N)), where k(x, y) = log x/ log(x2/y), N is the largest edge

weight and W is the total edge weight of G. We construct a quantum al-
gorithm using the decomposition theorem of [KLST01] with running time of
O(n

√
mN log2 n) for maximum weight matching in bipartite graphs.

55
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6.1 Unweighted Matchings

Definition 6.1.1 Let G = (V,E) be an undirected graph, a matching is a
subset M ⊆ E such that for all vertices v ∈ V , at most one edge of M is
incident on v. We say that a vertex v ∈ V is matched by M if some edge in M
is incident on v, otherwise v is called unmatched or free. A matching is called
perfect, if all vertices of G are matched. The set M is called maximal, if there
is no matching M ′ ⊆ E with M ⊂M ′. A maximum matching is a matching of
maximum cardinality. For a matching M , a path P in G is called alternating
in M if edges in P are alternately in M and not in M . An alternating path P
is called augmenting path for the matching M if the two end vertices of P are
unmatched by M .

We regard the following matching problems in unweighted graphs:

Maximal Matching: Given a graph G, compute a maximal matching.

Maximum Matching: Given a graph G, compute a maximum matching.

6.1.1 Maximal Matching

In this subsection we construct a quantum query algorithm for the maximal
matching problem. Then we prove that this algorithm is nearly optimal in the
adjacency matrix model.

Theorem 6.1.2 The quantum query complexity of the maximal matching prob-
lem is O(n1.5 log n) in the adjacency matrix model and O(

√
nm log n) in the

adjacency list model.

Proof . Let G = (V,E) be a graph with vertex set V = {v1, . . . , vn} and k = 1
an integer. We compute a set M of matching edges which is maximal in G.
At the beginning M = ∅ and we mark every vertex of G as enabled. While
there are some enabled vertices of G, we search with the Grover algorithm an
adjacent edge of the vertex vk in G. If there is no such edge, we mark the vertex
vk as disabled. Otherwise we use the edge {vk, v} for the matching M , and we
mark the two vertices vk and v as disabled. Then we increase the value of k at
one.

In the matrix model, one search can be done in O(
√
n) quantum queries. In

total we use O(n1.5) quantum queries to the adjacency matrix for computing
a maximal matching. In the list model

√
dG(vk) queries are required for every

vertex vk, and in total we use
∑n

k=1

√
dG(vk) = O(

√
nm) quantum queries.

In order to get a constant success probability, we need to amplify the success
probability of each subroutine by repeating it O(log n) times, see Remark 3.1.9.
Then we obtain a maximal matching M in the indicated quantum query com-
plexity. �

Corollary 6.1.3 The quantum time complexity of the maximal matching prob-
lem is O(n1.5 log2 n) in the adjacency model and O(

√
nm log2 n) in the adjacency

list model.
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Berzina et al. [BDFLS04] and Zhang [Zha04] showed that Ω(n3/2) quantum
queries to the adjacency matrix are required for computing a maximum match-
ing in a bipartite graph. This implies a quantum lower bound of Ω(n3/2) for
the quantum time complexity. Since the bipartite maximum matching problem
is a special case of the other maximum matching problems, it follows that the
Ω(n3/2) lower bound holds for all the maximum matching problems considered
here. We show that the same lower bound holds also for the maximal matching
problem. Therefore we have determined the exact quantum query complexity
of the maximal matching problem.

Theorem 6.1.4 The maximal matching problem requires Ω(n1.5) quantum
queries to the adjacency matrix.

Proof . We construct the sets A and B for the usage of Theorem 4.1.1. Let f
be the Boolean function which is one, iff there is a maximal matching set of size
n. The set A consists of all graphs G = (V,E) with |V | = 3n+ 1 satisfying the
following requirements: 1. There are n mutually not connected red vertices. 2.
There are 2n green vertices not connected with the red ones. Green vertices are
grouped in pairs and each pair is connected by edge. 3. There is a black vertex
which is connected to all red and green vertices. Let M be the set of edges
between every pair of green vertices of G. Then M is a maximal matching in
G of size n. The value of the function f for all graphs G ∈ A is 1.

The set B consists of all graphs G′ = (V,E) with |V | = 3n + 1 satisfying
the following requirements: 1. There are n − 2 mutually not connected red
vertices. 2. There are 2n+ 2 green vertices not connected with red ones, green
vertices are grouped in pairs and each pair is connected by edge. 3. There is a
black vertex which is connected to all red and green vertices. The value of the
function f for all graphs G′ ∈ B is 0, since there no maximal matching of size
n in G′.

From each graph G ∈ A, we can obtain G′ ∈ B by adding one edge between
two red vertices (then the two vertices become green), then l = Ω(n2). From
each graph G′ ∈ B, we can obtain G ∈ A by deleting an edge between two green
vertices, then l′ = Ω(n). By Theorem 4.1.1, the quantum query complexity is
Ω(

√
l · l′) = Ω(n1.5). �

6.1.2 Maximum Matching

The best classical algorithm for finding a matching of maximum cardinality in
general graphs is based on augmenting paths and has running time O(

√
nm),

see Micali and Vazirani [MV80]. Mucha and Sankowski [MS04] presented an
algorithm based on matrix multiplication that finds a maximal matching in
general graphs in time O(nω), where 2 ≤ ω ≤ 2.38 is the exponent of the best
matrix multiplication algorithm.

Ambainis and Špalek [AS06] constructed a O(n2(
√
m/n + log n) log2 n)

quantum algorithm for computing a maximum matching. Unfortunately this
quantum algorithm is in no case better than the best classical algorithm
from [MV80] and [MS04].
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In this subsection we present an O(n
√
m log2 n) quantum time algorithm

for finding a maximum matching in a general graphs. This algorithm is faster
than the best classical one for computing a maximum matching in a graph
with m > n log4 n. For bipartite graphs the best classical matching algorithm
has running time O(

√
nm) (see Hopcroft and Karp [HK73]). Ambainis and

Špalek [AS06] improved this bound with an O(n
√
m log2 n) quantum algorithm

for computing a maximum matching in these graphs. The algorithm is polyno-
mially faster than the best classical algorithm, but not necessarily optimal. The
time complexity of our quantum algorithm for the maximum matching problem
in general graphs matches the complexity given in the algorithm from [AS06]
for the restricted case of bipartite graphs.

We speed up the O(
√
nm) algorithm by Micali and Vizirani [MV80]. This

algorithm works in phases. In each phase a maximal set of disjoint minimum
length augmenting paths is found, and the existing matching is increased along
this paths. We implement such a phase in time O(

√
mn log2 n) with quantum

search. Only O(
√
n) such phases are needed for finding a maximum matching,

see [HK73], [MV80]. Before we explain the maximum matching algorithm, we
give some important definitions.

Definition 6.1.5 Let G = (V,E) be a graph and M be a matching in G.

• The evenlevel (oddlevel) of a vertex v is the length of a minimum even
(odd) length alternating path from v to a free vertex, if there is one, and
infinite otherwise.

• The level is the length of a minimum alternating path from v to a free
vertex.

• A vertex is outer (inner) iff its level is even (odd). If v is outer (inner)
then its oddlevel (evenlevel) will be refered to as the other level of v.

• An edge (u, v) in a graph G with matching M is called a bridge if either
both evenlevel(u) and evenlevel(v) are finite, or both oddlevel(u) and
oddlevel(v) are finite.

• A blossom B in a matched graph G is a cycle of odd length k, in which the
edges are maximally matched. In every blossom there is one free vertex,
called basis of B. The two vertices at distance ⌊k/2⌋ from the basis are
called peaks of B.

• Let u be a vertex of G which is not matched. If u is inner and
oddlevel(u) = 2i+ 1 then v is called a predecessor of u iff evenlevel(v) = 2i
and (u, v) ∈ E. If u is outer then v is a predecessor of u iff (u, v) is a
matched edge.

• The ancestor is the transitive closure of the relation predecessor.

The classical algorithm by [MV80] for computing a maximal matching in
a general graph consists of a main routine SEARCH, and three subroutines:
BLOSS-AUG, FINDPATH and TOPOLOGICAL ERASE. We describe shortly
the four parts of the algorithm, for details see [MV80]:
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SEARCH:
Given a graph G = (V,E) and a matching M , SEARCH constructs si-
multaneously for every free vertex v of G a Breadth First Search (BFS)
tree which is rooted at v, to find the oddlevel and evenlevel of each vertex
in G. At the start of the subroutine the two levels of each vertex of G are
set to infinity. Then SEARCH grows the BFS trees by incrementing the
search level by one each time.

When SEARCH detects that a certain edge (u, v) is a bridge, it calls the
subroutine BLOSS-AUG with the parameter u and v.

BLOSS-AUG:
This subroutine is called with vertices u and v such that the edge (u, v)
is a bridge. The result is either the formation of a new blossom, or a
minimum augmenting path. A new blossom is formed if and only if the
following condition holds:

1. There exist a vertex z such that z is an ancestor of vertex u and v.

2. The vertices u and v do not have any ancestors, other than z, whose
level is equal to the level of z.

If the condition holds for bridge (u, v) and b is the vertex whose level is
maximum, then the new blossom is the set of vertices w such that:

1. Vertex w does not belong to any other blossom when B is formed.

2. Either w = u or w = v or w is an ancestor of u or w is an ancestor
of v.

3. The vertex b is an ancestor of w.

From this follows that b is the base of B and u and v are the peaks of B.

BLOSS-AUG performs a Double Depth First Search (DDFS), consisting
in growing two DFS trees T1 and Tr simultaneously, i.e. if at a certain
stage, the centers of activities of T1 and Tr are at v1 and vr, then the
DDFS grows T1 if level(v1) ≥ level(vr), and its grows Tr otherwise. T1

and Tr are rooted at u and v.

For the special details of the DDFS see [MV80, page 21]. During the
DDFS, the two trees can find two different free vertices, then an augmen-
tation of the matching is possible.

FINDPATH:
When BLOSS-AUG finds the presence of a minimum augmenting path,
we use FINDPATH to search for such a path P . FINDPATH is called
with two vertices vh and vl and a blossom B as parameters. It holds
level(vh) ≥level(vl) and they both belong to a common minimum aug-
menting path.

The procedure returns a path between vl and vr with a DFS starting
at vh to find vl. The present matching is increased along the minimum
augmenting path P .



60 CHAPTER 6. MATCHING PROBLEMS

TOPOLOGICAL ERASE:
After FINDPATH has found the minimum augmenting path P and the
matching has been increased along this path, this subroutine deletes from
the graph the path P and all those edges which cannot be part of a
minimum augmenting path disjoint from P .

This subroutine uses a topological sort. Each vertex has a counter which
at any stage indicates the number of its unerased predecessor edges. A
vertex is deleted with all incident edges, either when its counter is zero
or when it enters a minimum augmenting path detected by FINDPATH.
The counter of the free vertices is one at the start and during the phase,
since they have no predecessor.

Theorem 6.1.6 There is a quantum algorithm for the maximum matching
problem with running time of O(n2 log2 n) in the adjacency matrix model and
O(n

√
m log2 n) in the adjacency list model.

Proof . We show that a phase consisting of the four subroutines SEARCH,
BLOSS-AUG, FINDPATH and TOPOLOGICAL ERASE can be implemented
with quantum search in time O(n1.5 log2 n) in the adjacency matrix model and
in time O(

√
nm log2 n) in the adjacency list model. Only O(

√
n) such phases

are needed for finding a maximum matching, see [HK73], [MV80]. We regard
the above four subroutines.

In the SEARCH procedure we perform a Breadth First Search to find the
evenlevel and oddlevel of each vertex in G as follows: All free vertices of G get
the evenlevel 0 and the other levels are infinite. SEARCH constructs simulta-
neously for every free vertex v of G a BFS tree to find the two level numbers
of each vertex in G. In the adjacency matrix model a vertex is found in O(

√
n)

quantum queries. Every vertex is processed at most twice, since we have two
level numbers for each vertex. In the list model, processing a vertex v costs
O(
√
dG(v) · nv) quantum queries, where nv is the number of vertices adjacent

to v with a infinite level number. Since
∑

v nv ≤ 2n, then the total quantum
query complexity is upper-bounded by the Cauchy-Schwarz inequality:

∑

v

√
dG(v)nv ≤

√∑

v

dG(v)

√∑

v

nv = O(
√
mn).

The procedure BLOSS-AUG performs a Double Depth First Search, con-
sisting of growing two DFS trees. With quantum search we perform these two
DFS in O(n1.5) quantum queries to the adjacency matrix model and in O(

√
nm)

quantum queries to the adjacency list model, see Lemma 5.1.2.
The subroutine FINDPATH returns a path with a DFS starting at vh to

find vl. Clearly with Lemma 5.1.2, the quantum query complexity is O(n1.5) in
the adjacency matrix model and O(

√
nm) in the adjacency list model.

The quantum query complexity of the TOPOLOGICAL ERASE procedure
is the same as the above three subroutines, by using Lemma 5.1.4

In order to get a constant success probability, we need to amplify the success
probability of each subroutine by repeating it O(log n) times. �
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6.2 Weighted Matchings

In this Section, we look at weighted matchings in bipartite graphs. Let
G = (V,E) be a graph, w(u, v) is the weight of an edge {u, v} ∈ E, if u is
not adjacent to v, let w(u, v) = 0. We denote by N the largest edge weight and
with W the total edge weight of G.

We regard the following two matching problems in weighted graphs:

Maximum Weight Bipartite Matching: Given a bipartite graph G with
positive integer weights on the edges and without isolated vertices, compute a
matching M in G such that the sum of the weights of the edges in M is maxi-
mum over all possible matchings.

Minimum Weight Perfect Bipartite Matching: Given a weighted bipar-
tite graph G, compute a perfect matching M in G such that the sum of the
weights of the edges in M is minimum over all possible perfect matchings.

6.2.1 Maximum Weight Bipartite Matching

The best classical algorithms for computing a maximum weight matching
in bipartite graphs with positive integer weights have been developed by
Gabow and Tarjan [GT89] with running time O(

√
nm log(nN)) and by Kao,

et al. [KLST01] with time complexity O(
√
nW/k(n,W/N)), where k(x, y) =

log x/ log(x2/y).

We give a quantum algorithm with running time O(n
√
mN log2 n) for com-

puting a maximum weight matching in bipartite graphs. If the largest edge
weight N is constant, then we get an O(n

√
m log2 n) time algorithm. For the

construction of our quantum algorithm we use the decomposition theorem of
[KLST01]. First we need some definitions and facts about a minimum weight
cover in a bipartite graph.

Definition 6.2.1 Let G = (X ∪ Y,E) be a bipartite graph. A cover of G is
a function C : X ∪ Y → N such that C(x) + C(y) ≥ w(x, y) for all x ∈ X
and y ∈ Y . Let w(C) :=

∑
z∈X∪Y C(z) be the weight of C. The cover C is of

minimum weight, if w(C) is the smallest possible value.

The algorithms for computing a maximum weight matching in bipartite
graphs use the following problem:

Minimum Weight Cover: Given a bipartite graph G with positive integer
weights, compute a minimum weight cover of G.

Remark 6.2.2 A minimum weight cover is dual to the maximum weight
matching in a bipartite graph G, i.e. from a maximum matching in G we
can find a minimum weight cover of G in time O(m), see [BM76].

Definition 6.2.3 Let G = (X ∪Y,E) be a bipartite graph and h ∈ {1, . . . , N}
be an integer. Define Gh as the graph which is formed by the edges {u, v} of G
with w(u, v) ∈ [N−h+1, N ] and the edge weight {u, v} ofGh is w(u, v)−(N−h).
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Let Ch be a minimum weight cover of Gh and G∗
h is formed by the edges

{u, v} of G with w(u, v) −Ch(u)−Ch(v) > 0 and the edge weight {u, v} of G∗
h

is w(u, v) − Ch(u) − Ch(v).

Now we present the Decomposition theorem of [KLST01].

Theorem 6.2.4 [KLST01] Let h,G,Gh, Ch, G
∗
h as in Definition 6.2.3 and let

C∗
h be any minimum weight cover of G∗

h. If D : X ∪ Y → N is a function such
that for every u ∈ V (G),

D(u) = Ch(u) + C∗
h(u),

then D is a minimum weight cover of G.

Using this theorem, a minimum weight cover of G can be computed with the
following recursive procedure, see [KLST01].

Algorithm 9 Minimum Weight Cover

Input: Bipartite graph G = (X ∪ Y,E) with positive integer weights.
Output: Minimum weight cover D : X ∪ Y → N.
Complexity: M: O(n2N log2 n), L: O(n

√
mN log2 n) quantum steps.

1: Construct G1 from G.
2: Find a minimum weight cover C1 of G1.
3: Construct G∗

1 from G and C1.
4: if G∗

1 = ∅ then
5: return[C1]
6: else
7: C∗

1 := Minimum Weight Cover[G∗
1]

8: D(u) := C1(u) + C∗
1 (u) for all u in G

9: return[D]

The correctness of the algorithm follows from Theorem 6.2.4. We use our
maximum matching quantum algorithm for computing a minimum weight cover
of the graph G.

Theorem 6.2.5 The quantum time complexity of the Minimum Weight
Cover algorithm is O(n

√
mN log2 n) in the adjacency list model and

O(n2N log2 n) in the adjacency matrix model.

Proof . We analyse the running time in the adjacency list model. We initialize a
maximum heap in O(m) time to store the edges of G according to their weights.
Let T (n,W,N) be the running time of the Minimum Weight Cover quantum
algorithm. Let L be the set of all edges in G1, i.e. the heaviest edges in G.
Then Step 1 takes O(|L| logm) time. In Step 2, we can compute a maximum
matching of G1 in O(n

√
|L| log2 n) time steps, by using the maximum matching

quantum algorithm. From this matching, C1 can be found in O(|L|) time, see
[BM76]. Let L1 be the set of the edges of G adjacent to some vertex u with
C1(u) > 0. Step 3 updates every edge of L1 in O(l1 logm) time, where l1 = |L1|.
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The total running time of steps 1 to 3 is O(n
√
l1 log2 n), since L ⊆ L1. The

total weight of G∗
1 is at most W − l1. Step 7 uses then at most T (n,W − l1, N ′)

time, where N ′ < N is the maximum edge weight of G∗
1 and it follows

T (n,W,N) = O(n
√
l1 log2 n) + T (n,W − l1, N

′),

where T (n, 0, N ′) = 0. We apply the procedure recursively for some positive
integers l1, l2, . . . , lp with p ≤ N and

∑
1≤i≤p li = W , it follows

T (n,W,N) = O

(
n log2 n

p∑

i=1

√
li

)
.

Since
∑p

i=1

√
li ≤

√
p
∑p

i=1 li, then

T (n,W,N) = O


n log2 n

√√√√p

p∑

i=1

li


 = O

(
n log2 n

√
NW

)
.

Since W ≤ Nm it follows T (n,W,N) = O(n
√
mN log2 n) in the list model.

The running time for the matrix model follows setting m = n2. �

Now we use the algorithm by [KLST01] to recover a maximum weight match-
ing of a bipartite graph G from a minimum weight cover of G.

Algorithm 10 Maximum Weight Matching

Input: Bipartite graph G = (X ∪ Y,E) with positive integer weights.
Output: Maximum weight matching M .
Complexity: M: O(n2N log2 n), L: O(n

√
mN log2 n) quantum steps.

1: D :=Minimum Weight Cover[G]
2: A := {{u, v} ∈ E | w(u, v) = D(u) +D(v)}
3: H := (V,A)
4: Make two copies of H, call them Ha and Hb. For each vertex u of H, let
ua and ub denote the corresponding vertex in Ha and Hb.

5: Union Ha and Hb to form Hab, and add to Hab the set of edges
{(ua, ub) | u ∈ V (H), D(u) = 0}.

6: Find a maximum matching K of Hab.
7: M = {(u, v) | (ua, va) ∈ K}

Theorem 6.2.6 There is a quantum algorithm for computing a maximum
weight matching in a bipartite graph with running time of O(n

√
mN log2 n)

in the adjacency list model and O(n2N log2 n) in the adjacency matrix model.

Proof . We use the above algorithm. The graph Hab has at most 2n nodes
and at most 3m edges. The maximum matching K can be constructed by a
quantum algorithm in time O(n

√
m log2 n) in the adjacency list model and in

time O(n2 log2 n) in the adjacency matrix model. �
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Corollary 6.2.7 There is a quantum algorithm for computing a maximum
weight matching in a bipartite graph with constant edge weight with running
time of O(n

√
m log2 n) in the adjacency list model and O(n2 log2 n) in the ad-

jacency matrix model.

6.2.2 Minimum Weight Perfect Bipartite Matching

Now we give the quantum time complexity for computing a minimum weight
perfect matching in a bipartite graph. The best classical algorithm for comput-
ing a minimum weight perfect matching in a bipartite graph computes shortest
paths in a graph, see Cook et al. [CCPS98]. The time complexity for such an
algorithm is given by the following Theorem.

Theorem 6.2.8 [see CCPS98] There is an algorithm for the minimum weight
perfect matching problem for bipartite graphs with running time O(nS(n,m)),
where S(n,m) is the time needed to solve the shortest path problem on a digraph
with n vertices and m arcs.

For the shortest path problem we can use the quantum algorithm by Dürr et
al. [DHHM04], and it follows:

Theorem 6.2.9 There is a quantum algorithm for the minimum weight perfect
bipartite matching problem with running time of O(n2.5 log2 n) in the adjacency
matrix model and O(n

√
nm log2 n) in the adjacency list model.



Chapter 7

Graph Traversal Problems

In this Chapter we study the quantum complexity of algorithms for graph
traversal problems. More precisely, we look at eulerian tours, hamiltonian tours,
optimal postman tours, travelling salesman problem and project scheduling.
The results of this Chapter are published in [Doe07b] and [Doe07c].
In Section 7.1 we study the quantum query complexity of the eulerian graph
problem. In this problem we have to decide if a graph G has an eulerian cycle,
this is a closed walk that contains every edge of G exactly once. We compute
the precise quantum query complexity of the eulerian graph problem in the
adjacency matrix and the list model.
In Section 7.2 we consider the optimal postman tour problem. We have given a
weighted graph G, and compute a closed walk with minimum total edge weight
that uses each edge of G at least once. There is a classical algorithm by Ed-
monds and Johnson [EJ73], which solves this problem in O(n3 +m) time steps.
We improve this upper bound by a quantum algorithm with running time of
O(n

√
nm log2 n). Furthermore, we show an Ω(n2) quantum query lower bound

for the optimal postman tour problem.
In Section 7.3 we consider the hamiltonian cycle problem, an important NP-
complete graph problem. A hamiltonian cycle of a graph G is a cycle which
contains all the vertices of G exactly once. Berzina et al. [BDFLS04] proved
that the hamiltonian cycle problem requires Ω(n1.5) quantum queries to the
adjacency matrix. We show an O(n2n/(n+1)) quantum query upper bound for
this problem by using the quantum walk technique.
In Section 7.4 we study the travelling salesman problem in graphs with max-
imal degree three, four and five. Eppstein [Epp03] constructed algorithms for
the travelling salesman problem on graphs with bounded degree three and four
which are faster than O(2n). We show that with a quantum computer we can
solve the travelling salesman problem on graphs with maximal degree three,
four and five quadratically faster than in the classical case.
In Section 7.5 we consider a project scheduling problem. A digraph model can
be used to schedule projects consisting of several interrelated tasks. Some of
these tasks can be executed simultaneously, but some tasks cannot begin until
certain others are completed. We present an optimal quantum query algorithm
for computing the earliest completion time for every vertex of the network.

65
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7.1 Eulerian Tour

In this Section we consider the following problem:

Eulerian Graph: Given a connected graph G, decide if G has a closed walk
that contains every edge of G once.

It is a well known fact in graph theory that a graph G is eulerian iff the
degree of every vertex in G is even.

Theorem 7.1.1 The quantum query complexity of the eulerian graph problem
is O(

√
n) in the adjacency list and O(n1.5) in the adjacency matrix model.

Proof . In the adjacency list model, the degree of every vertex is given. We
search an odd number in the degree list. If there is a vertex in the graph G
with odd degree, then G is not eulerian. This simple quantum search can be
done in O(

√
n) quantum queries to the degree list.

In the adjacency matrix model, we search a vertex with odd degree (if there
is one). We use Grover search in combination with a classical algorithms for
computing the parity in every row in the adjacency matrix of G. The total
quantum query complexity of the eulerian graph problem is O(n1.5) in the
adjacency matrix model. �

Corollary 7.1.2 There is a quantum algorithm for the eulerian graph problem
with time complexity of O(

√
n log n) in the adjacency list and O(n1.5 log n) in

the adjacency matrix model.

Now we show that our upper bounds are tight in the matrix and list models.

Theorem 7.1.3 The eulerian graph problem requires Ω(
√
n) quantum queries

to the adjacency list and Ω(n1.5) quantum queries to the adjacency matrix.

Proof . In the adjacency matrix model, we reduce OR of n parities of length n
to the eulerian tour problem. We define

z := (x1,1 ⊕ . . .⊕ x1,n) ∨ . . . ∨ (xn,1 ⊕ . . .⊕ xn,n).

It is a well known fact that the computation of z requires Ω(n1.5) quantum
queries (see [Amb02]). Then it is z = 0 iff the graph G with adjacency matrix
A = (xi,j) has an eulerian tour. In the adjacency list model, the Ω(

√
n) lower

bound follows by a simple reduction from the Grover search. �

Since the upper and the lower bounds match, we have determined the precise
quantum query complexity of the eulerian graph problem.

7.2 Optimal Postman Tour

The chinese mathematician Guan [Gua62] introduced the following problem:

Optimal Postman Tour: Given a weighted graph G, compute a closed walk
of minimum total edge weight that uses each edge at least once.
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In the case that each vertex of the graph has even degree, then any eulerian
tour is an optimal postman tour. Otherwise, some edges must be used more
than once. Every postman tour in G corresponds to an eulerian tour of a graph
G∗ formed from G, by adding to G as many additional copies minus one of an
edge as the number of times it was used during the postman tour.

We use the classical algorithm by Edmonds and Johnson [EJ73], and speed
up this algorithm by the following two quantum graph subroutines (see Chapter
5.3 and 6.2):

• Shortest Path[G,u, c] is the quantum algorithm to compute a tree Pu,
such that the shortest paths with respect to the edge weight function
c : E → R

+ from u to all the other vertices of G are contained in the tree
(we denote by Pu,v the shortest path from u to v in Pu).

• Minimum Weight Perfect Bipartite Matching[G, c] is the quantum
algorithm to compute a minimum weight perfect matching in a bipartite
graph G with edge weight function c : E → R

+.

The classical optimal postman algorithm by Edmonds and Johnson [EJ73]
has running time of O(n3 + m). We improve the running time to
O(n

√
nm log3 n) by the following quantum algorithm:

Algorithm 11 Optimal Postman Tour

Input: Graph G = (V,E), edge weight c : E → R
+.

Output: Optimal postman tour ω.
Complexity: M: O(n2.5 log3 n), L: O(n

√
nm log3 n) quantum steps.

1: S := {v ∈ V | number of adjacent vertices of v is odd}
2: for u ∈ S do
3: Pu := Shortest Path[G,u, c]
4: K := Complete graph on the vertices of S with edge weight wu,v := |Pu,v|
5: B := Complete bipartite graph of K
6: M := Minimum Weight Perfect Bipartite Matching[B,w]
7: H := G
8: for {u, v} ∈M do
9: for f ∈ Pu,v do

10: H := H+f

11: ω := Eulerian Tour of H

Theorem 7.2.1 The quantum time complexity of the Optimal Post-
man Tour algorithm is O(n2.5 log3 n) in the adjacency matrix model and
O(n

√
nm log3 n) in the adjacency list model.

Proof . We consider the adjacency matrix model. First we determine the set
S of all vertices with odd degree, this can be done in time O(n2). Then we
compute the shortest paths between all the vertices in S. For this part we
use the Shortest Path quantum algorithm with running time complexity of
|S|·O(n1.5 log3 n). LetK be the complete graph on all the vertices of S with edge
weight |Pu,v|. The minimum weight perfect matching problem in a complete
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graph can be transformed into the problem of finding a minimal weight perfect
matching of an associate complete bipartite graph. In a bipartite graph, the
computation of such a matching can be done in O(n2.5 log2 n) time steps (see
Chapter 6.2). The computation of the graph H and the eulerian tour in H can
be computed in O(n2). In total, the running time complexity for the worst case
(|S| = n) of the above algorithm is O(n2.5 log3 n) in the matrix model. The
quantum time complexity for the list model follows with similar analysis. �

The algorithm can be applied equally to the digraph version. But for mixed
graphs, having both undirected and directed edges the problem becomes NP-
hart [Pap76].

Theorem 7.2.2 The optimal postman tour problem requires Ω(n2) quantum
queries to the adjacency matrix.

Proof . We define a graph G = (V,E) with n vertices and m = Θ(n2) edges.
Let l := n

2 − 1, G satisfies the following requirements:

1. There are two designate vertices s and t which are not connected.

2. There are l mutually not connected red vertices and l mutually not con-
nected blue vertices.

3. The vertex s is connected to every red vertex, and t is connected to every
blue vertex. The weight for every edge is zero.

4. The red and blue vertices are connected by either l2

2 or l2

2 + 1 edges with
weight one chosen at random.

Suppose l2

2 is even. We have to decide whether the weight of the optimal

postman tour is l2

2 or l2

2 + 2. Therefore we must compute the majority on l2

bits. There is an Ω(l2) quantum query lower bound for majority. Hence the
optimal postman tour problem requires Ω(n2) quantum queries. �

From this result follows that with quantum computation we can’t speed up the
optimal postman tour problem in the query model.

7.3 Hamiltonian Circuit

In this Section, we consider the hamiltonian circuit problem, a well known NP-
hard problem.

Hamiltonian Circuit (HC): Given a directed graph G, decide if G contains
a cycle of length n.

A hamiltonian graph is one containing a hamiltonian cycle. The hamilto-
nian cycle problem is analogous to the eulerian graph problem, but a simple
characterization of a hamiltonian graph does not exist. The hamiltonian circuit
problem is a well known NP-complete problem.

There is a quantum query lower bound of Ω(n1.5) for the hamiltonian cycle
problem in the matrix model, proved by Berzina et al. [BDFLS04]. We show
an upper bound for this problem by using the quantum walk search technique.
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Theorem 7.3.1 The quantum query complexity of the hamiltonian cycle prob-
lem is O(n2n/(n+1)) in the adjacency matrix model.

Proof . We use Theorem 3.3.1. To do so, we construct a Markov chain and a
database for checking if a vertex of the chain is marked.

Let G = (V,E) be a directed input graph with n vertices. Let A be a subset
of [n] × [n] of size r > n. We will determine r later. The database is the
edge-induced subgraph G[A] := (V,E ∩A). Our quantum walk takes place on
the Johnson graph J(n2, r). The marked vertices M of J(n2, r) correspond to
subsets of [n] × [n] with size r, where G[A] contains a hamiltonian cycle in G
for all A ∈M . In every step of the walk, we exchange one element of A.

We determine the quantum query costs for setup, update and checking.
The setup cost for the database is O(r), the update cost is O(1), and the
checking cost is zero. The spectral gap of the walk on J(n2, r) is δ = O(1/r)

for 1 ≤ r ≤ n2

2 , see e.g. [BŠ06]. If there is a hamiltonian cycle in G, then there

are at least
(n2−n
r−n

)
marked sets, since a hamilonian cycle contains n edges.

Therefore it holds

ε ≥ |M |
|X| ≥

(n2−n
r−n

)
(
n2

r

) ≥ Ω
(( r
n2

)n)
.

Then the quantum query complexity of the hamiltonian cycle problem is

O(r +

(
n2

r

)n/2
· √r) = O(n2n/(n+1))

iff r = n2n/(n+1). �

7.4 Travelling Salesman Tour

Here we look for exact and approximation quantum algorithms for the travelling
salesman problem.

Travelling Salesman Problem (TSP): Given a weighted graph G, compute
a hamiltonian cycle in G with minimum total edge weight.

Bounded Degree Graphs

In this subsection we consider the travelling salesman problem in graphs with
maximal degree three, four and five. There is a simple algorithm by Held and
Karp [HK62] for computing a travelling salesman tour with running time O(2n).
Today, this is the fastest known algorithm for the TSP.

Eppstein [Epp03] constructed an algorithm for the TSP on graphs with
bounded degree three and running time O(2n/3). The general idea of this al-
gorithm is the following (see Figure 7.1): Let G be a directed weighted graph
with maximum degree three. Let F be the set of edges that must be used in
the travelling salesman tour, denoted as the forced edge. In every step of the
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Figure 7.1: Travelling salesman tour in graphs with maximal degree three

algorithm, we choose an edge (t, v) or (t, y) which are adjacent to a forced edge
(s, t). If we add (t, v) to F , we delete (t, y) from G, and add the two edges (x, y)
and (y, z) to F . Therewith the number of forced edges is increased by three.
The subproblem in which we add (t, y) to F is symmetric.

This procedure is the main subroutine of the Eppstein algorithm. It is not
difficult to see that we can transform this deterministic algorithm with run-
ning time of O(2n/3) in a probabilistic polynomial time algorithm with success
probability of 1/2n/3.

From this classical algorithm we obtain a quantum algorithm by the follow-
ing two modifications: We use Grover search for finding the edges of the graph,
and we apply the quantum amplitude amplification [BHMT02] in order to get
an algorithm which computes a travelling salesman tour with constant success
probability. Then we obtain the following result:

Theorem 7.4.1 There is a quantum algorithm for the TSP on graphs with
bounded degree three and expected running time of O(2n/6).

Now we use an idea of Eppstein [Epp03] to compute the quantum time
complexity for finding a travelling salesman tour in graphs with maximal de-
gree four. In classical computation, the fastest algorithm for this problem has
running time O(1.890n), see [Epp03].

Theorem 7.4.2 There is a quantum algorithm for the TSP on graphs with
bounded degree four and expected running time of O((27/4)n/6) = O(1.375n).

Proof . Let k be the number of degree four vertices in the graph G with
maximum degree four. The algorithm consists of the following steps: For each
degree four vertex v with adjacent edges a, b, c and d, let a be the incoming edge
of the tour. We choose randomly among the three possible partitions {a, b},
{a, c} and {a, d}. We divide the vertex v into two vertices, and connect the
two vertices by a forced edge. The new graph has maximum degree three, and
therefore we can apply the quantum algorithm of Theorem 7.4.1.

Each such divide step preserves the travelling salesman tour, if the two
edges of the tour do not belong to the same set of the partition. This happens
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with probability 2/3. We apply the quantum amplitude amplification, and
after

√
(3/2)k invocations the algorithm finds the correct solution. In total, the

quantum time complexity of the algorithm is

O
(
1.5k/2 · 2n/6

)
= O((27/4)n/6) = O(1.375)n.

�

There is no classical travelling salesman algorithms with running time faster
than O(2n) in graphs with maximal degree five. We present a quantum al-
gorithm for the TSP on graphs with maximal degree five and running time
O(1.5874n). We use the same strategy as for bounded degree four graphs.

Theorem 7.4.3 There is a quantum algorithm for the TSP on graphs with
bounded degree five and expected running time of O(1.5874n).

Proof . We use the proof of Theorem 7.4.2. Here we choose randomly among
four possible partitions, and divide a vertex with degree five into two vertices,
which we connect by a forced edge. Then the new graph has maximum degree
four, and we can apply Theorem 7.4.2. In total, the quantum time complexity
of the TSP algorithm for bounded degree five is

O
(
(4/3)k/2 · (27/4)n/6

)
= O(1.5874n).

�

By using similar arguments we can construct quantum algorithms for the TSP
on graphs with bounded degree six, seven, etc.

Approximation TSP

An application of the results in the previous sections is an approximation quan-
tum query algorithm for TSP. There is a well known classical algorithm for
approximation TSP (see for example Gross and Yellen [GY99]), which uses the
minimum spanning tree and the eulerian tour problem. This algorithm has an
approximation factor 2 that means that the total edge weight of the hamiltonian
cycle is never worse than twice the optimal value.

Theorem 7.4.4 There is an 2-approximation algorithm for TSP with quantum
query complexity of O(n1.5) in the adjacency matrix model and O(

√
nm) in the

adjacency list model.

The proof of the theorem follows by a combination of the classical 2-
approximation algorithm for TSP with some quantum graph subroutines
(see [Doe07c]).

7.5 Project Scheduling

A digraph model can be used to schedule projects consisting of several inter-
related tasks. Some of these tasks can be executed simultaneously, but some
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tasks cannot begin until certain others are completed. The goal is to compute
the minimal project completion time. One way to represent scheduling projects
is to use a digraph model, which is called AOA network.

Definition 7.5.1 An AOA network N = (G, c) is a digraphG = (V,E) with an
edge weight c : V ×V → R

+. Each edge in the digraph represents a task of the
project, the direction of the edge is the direction of progress in the project. Each
vertex in the AOA network represents an event that signifies the completion of
one or more activities and the beginning of a new one. An activity A called
predecessor of activity B, if B cannot begin until A is completed.

We compute the quantum query complexity of the project scheduling problem:

Project Scheduling: Given an AOA networkN = (G, c), compute the earliest
completion time for every vertex in G.

The AOA network must be an acyclic digraph, otherwise none of the tasks
corresponding to the edges on the cycle could ever begin. We are interested on
the earliest time point at which each event can occur. Let ET (i) denote the
earliest time point in which the event corresponding to vertex i can occur. A
vertex j is called immediate predecessor of a vertex i if there is an edge from j
to i. Let P (i) be the set of all immediate predecessors of vertex i.

Lemma 7.5.2 It holds E(1) = 0 and E(i) = maxj∈P (i){ET (j) + c(j, i)}.

The earliest time ET (i) for every event i to occur is the length of the longest
directed path in the network from vertex 1 to vertex i.

Theorem 7.5.3 There is a quantum algorithm for the project scheduling prob-
lem with query complexity of O(n1.5) in the adjacency matrix model and
O(

√
nm) in the adjacency list model.

Proof . We use Lemma 7.5.2 to compute the earliest time ET (i) for every vertex
i ∈ {2, 3, . . . , n} in order, since the vertices are numbered in a topological way.
We use the quantum algorithm by Dürr and Hoyer [DH96] (see Theorem 3.1.10)
to compute the maximum of ET (j) + c(j, i) for all immediate predecessors of
vertex i. The quantum query complexity for this step is O(

√
n) in the adjacency

matrix model and O(
√
d−G(i)) in the adjacency list model. The total number

of quantum queries to the adjacency matrix is O(n1.5) and

n∑

i=1

√
d−G(i) ≤ √

n

√√√√
n∑

i=1

d−G(i) = O(
√
nm)

in the adjacency list model. �

Theorem 7.5.4 The project scheduling problem requires Ω(n1.5) quantum
queries to the adjacency matrix and Ω(

√
nm) quantum queries to the adjacency

list.
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Proof . The proof is a reduction from maximum finding. Let k be an integer
and M be a matrix with n rows, k columns and with N = kn positive entries.
The quantum query lower bound for finding the maximum value in every row
is Ω(

√
nN), see [DHHM04].

We construct a weighted graph G = (V,E), where the set of vertices is
V = {s, v1, . . . , vk, u1, . . . , un, t}. The edges (s, vi) and (uj , t) have the weight 0
for all i ∈ [k] and j ∈ [n]. The edges (vi, uj) get the weight Mji. The graph G
has n+ k + 2 vertices and m = kn+ k + n edges.

The earliest time ET (vi) is zero for all vertices vi, and the earliest time
ET (uj) is the maximal weighted edge of (v, ui) with v ∈ {v1, . . . , vk}. Then the
project scheduling problem requires Ω(

√
nm) quantum queries to the adjacency

list. Setting m = n2, the quantum query lower bound for the adjacency matrix
follows. �





Chapter 8

Independent Set Problems

In this Chapter we present quantum complexity lower and upper bounds for
independent set problems. An independent set is a set of vertices of a graph
in which no two of these vertices are adjacent. A maximal independent set in
a graph is an independent set which is contained in no other independent set.
A maximum independent set is a largest independent set of a graph G. The
results of this Chapter are published in [Doe07a].
In Section 8.1 we prove quantum query lower and upper bounds for finding a
maximal independent set in a graph. We present an O(

√
nm) quantum query

algorithm for computing a maximal independent set in a graph. We prove
that this quantum algorithm is optimal in the adjacency matrix model. The
quantum time complexity of our algorithm is O(

√
nm log2 n), which is better

than the best classical algorithm.
In Section 8.2 we present a quantum time algorithms for finding a maximum
independent set, an NP-hart problem. The development of algorithms for the
maximum independent set problems is one of the most applicable problem in
graph theory. The maximum independent set problem is closely related to
the maximum clique and the minimum vertex cover problem. The first exact
algorithms for computing a maximum independent set were given by Tarjan and
Trojanowski [TT77] with running time of O(1.2599n). Jian [Jia86] improved the
time complexity to O(1.2346n), Beigel [Bei99] to O(1.2227n) and Fomin et al.
to O(1.2209n) [FGK06]. Today, the fastest known algorithm is the one given by
Robson [Rob01] with running time of O(1.1844n). This algorithm is based on
a detailed computer generated subcase analysis. We construct an O(1.1488n)
quantum time algorithm for computing a maximum independent set. This
algorithm is faster than the best classical algorithm by [Rob01].
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8.1 Maximal Independent Set

Definition 8.1.1 A set of vertices V ′ ⊆ V is called independent, if for all
distinct vertices u, v ∈ V ′ it holds {u, v} /∈ E(G) . The set V ′ is called maximal,
if there is no independent set V ′′ ⊆ V with V ′ ⊂ V ′′. A maximum independent
set is a largest independent set of G. By α(G) we denote the independence
number of G, i.e. the size of a maximum independent set in G.

We study the quantum query complexity of the following problem:

Maximal Independent Set: Given a graph G = (V,E), compute a maximal
independent set in G.

We present an O(
√
nm) quantum query algorithm for computing a maximal

independent set in a graph. Then we show that this algorithm is optimal in the
adjacency matrix model, by proving a lower bound of Ω(n1.5). Let G = (V,E)
be a graph, S ⊆ V and v ∈ V . For the application of quantum search, we define
a search function fG,S,v : V → {0, 1} with

fG,S,v(x) :=

{
1, if x ∈ NG(v) and x ∈ S
0, otherwise.

Algorithm 12 Maximal Independent Set

Input: Graph G = (V,E).
Output: Maximal independent set V ′.
Complexity: M: O(n1.5 log n), L: O(

√
nm log n) quantum queries.

1: V ′ := ∅, S := V
2: while S 6= ∅ do
3: Choose v ∈ S
4: V ′ := V ′ ∪ {v}
5: W :=All Quantum Search[fG,S,v] ∪ {v}
6: S := S\W

Theorem 8.1.2 The expected quantum query complexity of the Maximal In-
dependent Set algorithm is O(n1.5 log n) in the adjacency matrix model and
O(

√
nm log n) in the adjacency list model.

Proof . Let G = (V,E) be a undirected graph, we compute a set V ′ of indepen-
dent vertices which is maximal in G. At beginning V ′ = ∅ and we mark every
vertex of G as enabled. While there are some enabled vertices of G, we choose
an enabled vertex v, add it to V ′ and use Grover search to find all neighbours
of v, which we mark as disabled.

In the adjacency matrix model, every vertex is found in O(
√
n) quantum

queries to the adjacency matrix. In total we use O(n1.5) quantum queries in
the adjacency matrix model. In the adjacency list model, processing a vertex v
costs O(

√
dG(v)av) quantum queries, where av is the number of vertices in F

which are adjacent to v. Since
∑

v av ≤ n, then the quantum query complexity
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is upper-bounded by the Cauchy-Schwarz inequality:

∑

v

√
dG(v)av ≤

√∑

v

dG(v)

√∑

v

av = O(
√
mn).

In order to get a constant success probability, we need to amplify the success
probability of each subroutine by repeating it O(log n) times, see Remark 3.1.9.
Then we obtain a maximal independent set V ′ in the indicated quantum query
complexity. �

Corollary 8.1.3 The expected quantum time complexity of the Maximal In-
dependent Set algorithm is O(n1.5 log2 n) in the adjacency matrix model and
O(

√
nm log2 n) in the adjacency list model.

Now we prove a Ω(n1.5) quantum query lower bound for the maximal in-
dependent set problem with the method of Ambainis [Amb02] and analog to
Berzina et al. [BDFLS04]. Consequently the Maximal Independent Set
quantum algorithm is nearly optimal in adjacency matrix model.

Theorem 8.1.4 The maximal independent set problem requires Ω(n1.5) quan-
tum queries to the adjacency matrix.

Proof . We construct the sets A and B for the usage of Theorem 4.1.1. Let f be
the Boolean function which is one, iff there is a maximal independent set of size
2n. The set A consists of all graphs G = (V,E) with |V | = 3n+1 satisfying the
following requirements: 1. There are n mutually not connected red vertices. 2.
There are 2n green vertices not connected with the red ones. Green vertices are
grouped in pairs and each pair is connected by edge. 3. There is a black vertex
which is connected to all red and green vertices. Let V ′ be the set of n red
vertices and one green vertex of each pairs. Then V ′ is a maximal independent
set in G. The value of the function f for all graphs G ∈ A is 1.

The set B consists of all graphs G′ = (V,E) with |V | = 3n + 1 satisfying
the following requirements: 1. There are n + 2 mutually not connected red
vertices. 2. There are 2n− 2 green vertices not connected with red ones, green
vertices are grouped in pairs and each pair is connected by edge. 3. There is a
black vertex which is connected to all red and green vertices. The value of the
function f for all graphs G′ ∈ B is 0, since there is no maximal independent of
size 2n in G′.

From each graph G ∈ A, we can obtain G′ ∈ B by deleting one edge be-
tween two green vertices, then l = n = O(n). From each graph G′ ∈ B,
we can obtain G ∈ A by adding an edge between two red vertices, then
l′ = (n + 2)(n + 1)/2 = O(n2). By Theorem 4.1.1, the quantum query com-
plexity of the maximal independent set problem is Ω(

√
l · l′) = Ω(n1.5).

�
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8.2 Maximum Independent Set

Now we are interested in the quantum time complexity for computing a largest
independent set in a graph. This is a well known NP-hard problem, which is
important for many other applications in computer science and graph theory.

Maximum Independent Set: Given a graph G = (V,E), compute an inde-
pendent set V ′ ⊆ V with |V ′| = α(G).

The first exact algorithms for the maximum independent set problem was
given by Tarjan and Trojanowski [TT77] with running time of O(1.2599n).
Jian [Jia86] improved the time complexity to O(1.2346n), Beigel [Bei99] to
O(1.2227n), and Robson [Rob01] to O(1.1844n). The algorithm by Robson is
today the fastest algorithms, it based on a detailed computer generated subcase
analysis (number of subcases is in the tens of thousands). We construct a quan-
tum algorithm which is faster than the best classical algorithm. Our quantum
algorithm has a running time of O(1.1488n). This is no query algorithm, in
this algorithm we count the time steps to compute a maximum independent
set. Our algorithm combines a classical probabilistic algorithm with the quan-
tum amplitude amplification. First we need two simple facts from the maximal
independent set theory.

Lemma 8.2.1 For a path Pn and a cycle Cn with n vertices, it holds

α(Pn) =
⌈n

2

⌉
and α(Cn) =

⌊n
2

⌋
.

Lemma 8.2.2 Let G be a simple graph with ∆(G) ≤ 2. Then all the compo-
nents of G are paths and cycles.

With the application of the above two Lemmas we can construct a quantum
time algorithm for the maximum independent set problem. If the maximum
degree of the graph is at most two, we denote with Paths(G) and Cycles(G)
the set of all paths and cycles in graph G. The computation of the maximum
independent set of a path or a cycle is then a simple task. We denote with
MIS(G′) the maximum independent set in a graph G′, which is a path or a
cycle.
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Algorithm 13 Maximum Independent Set

Input: A graph G = (V,E).
Output: Maximum independent set (MIS) V ′.
Complexity: M, L: O(1.1488n) quantum steps.

1: F := G, V ′ := ∅
2: while V (F ) 6= ∅ do
3: if ∆(F ) ≤ 2 then
4: V ′ :=

⋃
P∈Paths(F ) MIS(P ) ∪⋃C∈Cycles(F ) MIS(C)

5: return[V ′]
6: Find v ∈ V (F ) with ∆(F ) = degF (v)
7: a ∈R {0, 1}
8: if a = 0 then
9: F := F−{v}

10: else
11: V ′ := V ′ ∪ {v}
12: F := F−NF [v]

13: Apply Amplitude Amplification

Theorem 8.2.3 The expected quantum time complexity of the Maximum In-
dependent Set algorithm is O(2n/5) = O(1.1488n).

Proof . The Maximum Independent Set algorithm combines a classical
probabilistic algorithm with the quantum amplitude amplification [BHMT02].
We show that the probability for computing a maximum independent set with
the classical algorithm is at least ε = (1/2)2n/5. To obtain a quantum algorithm,
we just use quantum amplitude amplification like [Amb04b]. We search for
a largest independent set, which can be modelled by the maximum finding
algorithm by Dürr and Høyer [DH96]. Then we increase the success probability
to a constant, by repeating the algorithm O( 1√

ε
) = O(2n/5) times. Considering

this, we obtain the indicated quantum time complexity.

Now we prove that the probability for computing a maximum independent
set with the classical algorithm is at least ε = (1/2)2n/5. In the first steps of
this algorithm, we check if the maximal degree of the graph is smaller or equal
than two. If this is true, we apply Lemma 8.2.1 and Lemma 8.2.2, and compute
the maximal independent set V ′. Otherwise we choose a vertex v with maximal
degree, and a random variable a ∈ {0, 1}. If a = 0, we assume that v is not in
the maximum independent set V ′, and then we delete the vertex v from F . In
the other case, the vertex v is in the maximum independent set V ′. We delete
v and the set of all neighbours NF (v) from F . Since ∆(G) ≥ 3, we delete at
least four vertices.

The task is now to determine the expected number of steps x when F is
empty. We choose the value of a with uniform distribution from {0, 1}. If a = 0
we delete one vertex and if a = 1 we delete at least four vertices of F , such that
n ≥ 1

2 (1x+ 4x). Then it is x ≤ 2n/5 and

Prob(V ′ is a MIS) ≥ (1/2)2n/5.
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Now we apply the amplitude amplification, and repeat the procedure

O(1/
√

Prob(V ′ is a MIS)) = O(2n/5) = O(1.1488n)

times, to compute a maximum independent set V ′ of G. �

Theorem 8.2.4 The maximum independent set problem requires Ω(n1.5) quan-
tum queries to the adjacency matrix.

Proof . Every maximum independent set is a maximal independent set, and
this requires Ω(n1.5) quantum queries to the adjacency matrix. �

The upper bound for the quantum query complexity of the maximum inde-
pendent set problem follows immediately from graph copy (see Chapter 3.3.1).

Theorem 8.2.5 The quantum query complexity of the maximum independent
set problem is O(n2−2/α(G)), where α(G) is the size of a maximum independent
set in G.

We can use our maximum independent set algorithm and a decomposi-
tion theorem of Raman and Saurabh [RS05] for finding a minimum odd cycle
transversal, which is a subset of vertices whose deletion makes the graph bipar-
tite. Therefore we can speed up the classical algorithm by [RS05] from O(1.62n)
to O(1.58n), see [Doe07a].
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Algebraic Problems
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Chapter 9

Testing Algebraic Properties

In this Chapter we study the quantum complexity for testing algebraic proper-
ties. For a set S and a binary operation on S represented as operation table,
we consider the decision problem whether a given structure with the promise of
being groupoid, semigroup, monoid or quasigroup is a group. We also present
upper and lower bounds for testing associativity, distributivity and commuta-
tivity. Testing of algebraic properties are fundamental problems in algebra and
computer science, which have many important applications. For example, the
verification whether a black box is a group is very useful in cryptography. The
results of this Chapter are published in [DT07] [DT08a] and [DT08c].
In Chapter 9.1 we consider the semigroup problem, that is, whether the oper-
ation on S is associative. Rajagopalan and Schulman [RS00] developed a ran-
domized algorithm for this problem that runs in time O(n2). As an additional
parameter, we consider the binary operation ◦ : S × S → S′, where S′ ⊆ S.
We construct a quantum algorithm for this problem whose query complexity
is O(n5/4), if the size of S′ is constant. Our algorithm is the first application
of the new quantum random walk search scheme by Magniez, Nayak, Roland,
and Santha [MNRS07]. With the quantum random walk of Ambainis [Amb04a]
and Szegedy [Sze04a], the query complexity of our algorithm would not improve
the obvious Grover search algorithm for this problem. Furthermore we show a
quantum query lower bound for the semigroup problem of Ω(n), which holds
also if the size of S′ is constant.
In Chapter 9.2 we have given a finite set S of size n with a binary operation
◦ : S×S → S represented by a table. One has to decide whether S has an iden-
tity element or is a monoid. We show that the identity problem can be solved
with linearly many quantum queries. This is optimal, since we also prove a
tight lower bound for this problem. Moreover we show a linear lower bound of
the quantum query complexity for testing whether a groupoid is a monoid.
In Chapter 9.3 we consider several group problems. Given a groupoid, semi-
group, monoid or quasigroup S by its operation table, we have to decide
whether S is a group. We present a randomized algorithm for testing whether a
semigroup resp. monoid is a group with running time of O(n

3
2 ). This improves

the naive O(n2) algorithm that searches for an inverse in the operation table for
every element. Then we show that on a quantum computer the complexity can
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be improved to Õ(n
11
14 ). Furthermore we give nearly optimal quantum query

algorithms for testing whether a groupoid or quasigroup is a group.
In Chapter 9.4 we present several bounds for testing commutativity. We
prove that the quantum query complexity of the commutativity problem for
groupoids, semigroups and monoids is Θ(n). In addition, we show that the com-
mutativity problem can be solved in logarithmic number of quantum queries to
the operation table if it is a quasigroup resp. group.
In Chapter 9.5 we consider the distributive problem. We have given a set S and
two binary operations ⊕ : S×S → S and ⊗ : S×S → S represented by a table.
One has to decide whether (S,⊕,⊗) is distributive, i.e. we have to test whether
the two equations a⊗(b⊕c) = (a⊗b)⊕(a⊗c) and (a⊕b)⊗c = (a⊗c)⊕(b⊗c) are
satisfied. We show a linear lower bound on the quantum query complexity for
this problem. Moreover we prove that the distributive problem can be decided
with linear quantum query complexity if (S,⊕) is a commutative quasigroup.

9.1 The Semigroup Problem

In the semigroup problem we are given two sets S and S′ ⊆ S and a binary
operation ◦ : S × S → S′ represented by a table. We denote with n the size
of the set S. One has to decide whether S is a semigroup that is, whether the
operation on S is associative.

The complexity of this problem was first considered by Rajagopalan and
Schulman [RS00], who gave a randomized algorithm with time complexity of
O(n2 log 1

δ ), where δ is the error probability. They also showed a lower bound
of Ω(n2). The previously best known algorithm was the naive O(n3)-algorithm
that checks all triples.

In the quantum setting, one can do a Grover search over all triples
(a, b, c) ∈ S3 and check whether the triple is associative. The quantum query
complexity of the search is O(n3/2). We construct a quantum algorithm for
the semigroup problem that has query complexity O(n5/4), if the size of S′ is
constant. Furthermore we give a quantum query lower bound of Ω(n) for this
problem. Our algorithm is the first application of the recent quantum random
walk search scheme by Magniez et al. [MNRS07]. The quantum random walk of
Ambainis [Amb04a] and Szegedy [Sze04a] doesn’t suffice to get an improvement
of the Grover search mentioned above.

Theorem 9.1.1 Let k = nα be the size of S′ with 0 < α ≤ 1. The quantum
query complexity of the semigroup problem is





O(n
5+α

4 ), for 0 < α ≤ 1
3 ,

O(n
6+2α

5 ), for 1
3 < α ≤ 3

4 ,

O(n
3
2 ), for 3

4 < α ≤ 1.

Proof . We use the quantum walk search scheme of Theorem 3.3.1. To do so,
we construct a Markov chain and a database for checking if a vertex of the chain
is marked.
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Our quantum walk is done on the categorical graph product GJ of two
Johnson graphs J(n, r). Let A and B two subsets of S of size r. We will
determine r later. We search for a pair (a, b) ∈ S2, such that a, b are two
elements of a nonassociative triple. Then the marked vertices of GJ correspond
to pairs (A,B) with (A ◦ B) ◦ S 6= A ◦ (B ◦ S). In every step of the walk, we
exchange one row and one column of A and B.

The database of our quantum walk is the set

D(A,B) = { (a, b, a ◦ b) | a ∈ A ∪ S′ and b ∈ B ∪ S′ }.

Now we compute the quantum query costs for the setup, update and checking.
The setup cost for the database D(A,B) is O((r + k)2) and the update cost is
O(r + k).

To check whether a pair (A,B) is marked, we have to test if (A ◦B) ◦ S 6=
A ◦ (B ◦ S). We claim that the quantum query cost to check this inequality is
O(

√
nrk): fix a pair (b, c) ∈ B×S. We check whether (A◦b)◦c 6= A◦(b◦c). To

get (b◦c) we make one query to the oracle. Because (b◦c) ∈ S′, the computation
of A ◦ (b ◦ c) can be done by using our database. We obtain r values which we
denote by (y1, . . . , yr). The evaluation of (A ◦ b) needs no queries by using our
database, let (z1, . . . , zr) be the result. Note that zi ∈ S′ for all i. Now we use
Grover’s algorithm for searching a s ∈ S′ such that s ◦ c 6= yj for a j ∈ [r] with
s = zj . This search can be done in O(

√
k) quantum queries. The outer loop is

a Grover search for a pair (b, c) ∈ B × S. Therefore, the total checking cost is
O(

√
nrk).

The spectral gap of the walk on GJ is δ = O(1/r) for 1 ≤ r ≤ n
2 , see [BŠ06].

If there is a triple (a, b, c) with (a ◦ b) ◦ c 6= a ◦ (b ◦ c), then there are at least(n−1
r−1

)2
marked sets (A,B). Therefore we have

ε ≥ |M |
|X| ≥

((
n−1
r−1

)
(
n
r

)
)2

=
r2

n2
.

Let r = nβ for 0 < β < 1. Assuming r > k, then the quantum query complexity
of the semigroup problem is

O
(
r2 +

n

r

(√
r · r +

√
nrk

))
= O

(
n2β + n1+ β

2 + n
3+α−β

2

)
.

Now we choose β depending on α such that this expression is minimal. Suppose
that 2β ≤ 1+ β

2 , i.e. β ≤ 2
3 . From the equation 1+ β

2 = 3+α−β
2 , we get β = 1+α

2 .

Then the quantum query complexity of the semigroup problem is O(n
5+α

4 ) for

r = n
1+α

2 and α ≤ 1
3 . Otherwise if 2β > 1+ β

2 , i.e. β > 2
3 , we get β = 3+α

5 from

the equation 2β = 3+α−β
2 . Then the quantum query complexity is O(n

6+2α
5 )

for r = n
3+α

5 and α > 1
3 . If α > 3

4 , the query complexity is bigger than O(n
3
2 ),

therefore we use Grover search instead of quantum walk search. �

For the special case that α = 0, i.e., only a constant number of elements
occurs in the operation table, we get
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Corollary 9.1.2 The quantum query complexity of the semigroup problem is
O(n

5
4 ), if S′ has constant size.

Note that the time complexity of our algorithm is O(n1.5 log n).

Theorem 9.1.3 The semigroup problem requires Ω(n) quantum queries.

Proof . Let S be a set of size n and ◦ : S × S → {0, 1} a binary operation
represented by a table. We apply Theorem 4.1.1. The set A consists of all
n×n matrices, where the entry of position (1, 1), (1, c), (c, 1) and (c, c) is 1, for
c ∈ S − {0, 1}, and zero otherwise. It is easy to see, that the operation tables
of A are associative, since (x ◦ y) ◦ z = x ◦ (y ◦ z) = 1 for all x, y, z ∈ {1, c} and
zero otherwise.

The set B consists of all n × n matrices, where the entry of position (1, 1),
(1, c), (c, 1), (c, c) and (a, b) is 1, for fixed a, b, c ∈ S − {0, 1} with a, b 6= c, and
zero otherwise. Then (a ◦ b) ◦ c = 1 and a ◦ (b ◦ c) = 0. Therefore the operation
tables of B are not associative.

From each T ∈ A, we can obtain T ′ ∈ B by replacing the entry 0 of T
at (a, b) by 1, for any a, b /∈ {0, 1, c}. Hence we have m = Ω(n2). From each
T ′ ∈ B, we can obtain T ∈ A by replacing the entry 1 of T ′ at position (a, b)
by 0, for a, b /∈ {0, 1, c}. Then we have m′ = 1. By Theorem 4.1.1, the quantum
query complexity is Ω(

√
m ·m′) = Ω(n). �

From our proof follows that the lower bound holds also for constant size of S′.

9.2 The Monoid Problem

In the monoid problem we are given a finite set S of size n with a binary
operation ◦ : S × S → S represented by a table. One has to decide whether S
is a monoid.

The monoid problem is an extention of the semigroup problem of the previ-
ous section. We have to verify whether the groupoid (S, ◦) is associative and has
an identity element. At first we consider the identity problem, i.e. we have to
decide whether there is an identity element. We show that the identity problem
requires linearly many quantum queries. We start by considering the 1-column
problem: given a 0-1-matrix of order n, decide whether it contains a column
that is all 1.

Lemma 9.2.1 The 1-column problem requires Ω(n) quantum queries.

Proof . We use Theorem 4.1.1. The set A consists of all matrices, where in
n − 1 columns there is exactly one entry with value 0, and the other entries
of the matrix are 1. The set B consists of all matrices, where in every column
there is exactly one entry with value 0, and the other entries of the matrix are 1.
From each matrix T ∈ A, we can obtain T ′ ∈ B by changing one entry in the
1-column from 1 to 0. Then we have m = n. From each matrix T ′ ∈ B, we can
obtain T ∈ A by changing one entry from 0 to 1. Then we have m′ = n. By
Theorem 4.1.1, the quantum query complexity is Ω(n). �
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Theorem 9.2.2 The identity problem requires Ω(n) quantum queries.

Proof . We reduce the 1-column problem to the identity problem. Given a
0-1-matrix M = (mi,j) of order n. We define S = {0, 1, . . . , n} and a operation
table T = (ti,j) with 0 ≤ i, j ≤ n for S as follows:

ti,j =

{
0, if mi,j = 0,

i, if mi,j = 1,

and t0,j = ti,0 = 0. Then M has a 1-column iff T has an identity element. �

Finding an identity element is simple. We choose an element a ∈ S and then
we test if a is the identity element by using Grover search in O(

√
n) quantum

queries. The success probability of this procedure is 1
n . By using the amplitude

amplification we get an O(n) quantum query algorithm for finding an identity
element (if there is one). Since the upper and the lower bound match, we have
determined the precise complexity of the identity problem.

Corollary 9.2.3 The quantum query complexity of the identity problem is
Θ(n).

Theorem 9.2.4 Whether a groupoid is a monoid requires Ω(n) quantum
queries.

Proof . We reduce the semigroup problem to the monoid problem for
groupoids. Let (S, ◦) be a groupoid represented as a operation table. We
define a groupoid M = S ∪ {e} with the identity element e 6∈ S, that is, with
a◦e = e◦a = a, for all a ∈ S. Then the groupoid (S, ◦) is a semigroup iff (M, ◦)
is a monoid. �

9.3 The Group Problem

In this section we consider the decision problems whether a given structure with
the promise of being a groupoid, semigroup, monoid or quasigroup S of size n
with a binary operation ◦ is in fact a group.

9.3.1 Group testing for Monoids

We consider the problem whether a given finite monoid M is in fact a group.
That is, we have to check whether every element of M has an inverse. The
monoid M has n elements and is given by its operation table and the identity
element e.

To the best of our knowledge, this special group problem has not been
studied before. The naive approach for the problem checks for every element a ∈
M , whether e occurs in a’s row in the operation table. The query complexity is
O(n2). We develop a (classical) randomized algorithm that solves the problem

with O(n
3
2 ) queries to the operation table. Then we show that on a quantum

computer the query complexity can be improved to Õ(n
11
14 ).
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Theorem 9.3.1 Whether a given monoid is a group can be decided with

1. O(n
3
2 ) queries by a randomized algorithm.

2. O(n
11
14 log n) by a quantum query algorithm.

At first we present our classical algorithm, then we prove the correctness of
this algorithm, and at last we show how to speed up this algorithm by quantum
tools.

Algorithm 14 Group Testing

Input: Multiplication table of a monoid (M, ◦).
Output: 1, if (M, ◦) is a group; 0 otherwise.

1: i := 0, r := n1/2

2: for a ∈M do
3: Compute Sr(a) := (a, a2, . . . , ar)
4: if e ∈ Sr(a) then
5: i := i+ 1
6: else if ∃x, y ∈ Sr(a) : x = y then
7: return[0]
8: if i = n then
9: return[1]

10: while n/r do
11: Choose a ∈R M
12: if a has no inverse then
13: return[0]
14: return[1]

Proposition 9.3.2 The Group Testing algorithm accepts with probability 1
if the monoid (M, ◦) is a group, otherwise it rejects with constant probability.

Proof . Let a ∈ M , we consider the sequence of powers a, a2, a3, . . . . Since M
is finite, there will be a repetition at some point. We define the order of a as
the smallest power t, such that at = as, for some s < t. Clearly, if a has an
inverse, s must be zero.

Lemma 9.3.3 Let a ∈M of order t. Then a has an inverse iff at = e.

Hence the powers of a will tell us at some point whether a has an inverse. On
the other hand, if a has no inverse, the powers of a provide more elements with
no inverse as well.

Lemma 9.3.4 Let a ∈M . If a has no inverse, then ak has no inverse, for all
k ≥ 1.

Our algorithm has two phases. In phase 1, it computes the powers of
every element up to certain number r. That is, we consider the sequences
Sr(a) = (a, a2, . . . , ar), for all a ∈ M . If e ∈ Sr(a) then a has an inverse by
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Lemma 9.3.3. Otherwise, if we find a repetition in the sequence Sr(a), then,
again by Lemma 9.3.3, a has no inverse and we are done.

If we are not already done by phase 1, i.e. there are some sequences Sr(a)
left such that e 6∈ Sr(a) and Sr(a) has pairwise different elements, then the
algorithm proceeds to phase 2. It selects some a ∈ M uniformly at random
and checks whether a has an inverse by searching for e in the row of a in the
operation table. This step is repeated n/r times.

For the correctness observe that the algorithm accepts with probability 1
if M is a group. Now assume that M is not a group. Assume further that
the algorithm does not already detect this in phase 1. Let a be some element
without an inverse. By Lemma 9.3.3, the sequence Sr(a) has r pairwise different
elements which don’t have inverses too by Lemma 9.3.4. Therefore in phase 2,
the algorithm picks an element without an inverse with probability of at least
r/n. By standard arguments, the probability that at least one out of n/r many
randomly chosen elements has no inverse, is constant. �

Proof of Theorem 9.3.1. First we determine the classical query complexity.
The query complexity of the algorithm is bounded by rn in phase 1 and by
n2/r in phase 2. Total the query complexity of the algorithm is

O
(
nr + n2/r

)
,

which is minimized for r = n
1
2 . Hence the query complexity for testing if a

semigroup is a group, is O(n
3
2 ).

For the quantum query complexity we use Grover search and amplitude
amplification. In phase 1, we search for an a ∈M , such that the sequence Sr(a)
has r pairwise different entries different from e. This property can be checked
by first searching Sr(a) for an occurance of e by a Grover search with

√
r log r

queries. Then, if e doesn’t occur in Sr(a), we check whether there is an element
in Sr(a) that occurs more than once. This is the element distinctness problem
and can be solved with r2/3 log r queries, see [Amb04a]. Therefore the quantum
query complexity of phase 1 is bounded by

√
n · r2/3 log r. In phase 2 we search

for an a ∈M such that a has no inverse. Therefore we actually search the row
of a in the operation table. Hence this takes

√
n queries. Since at least r of the

a’s don’t have an inverse, by amplitude amplification we get
√
n
√
n/r = n/

√
r

queries in phase 2. In summary, the quantum query complexity is

O(
√
n · r2/3 log r +

n√
r
),

which is minimized for r = n
3
7 . Hence we have a O(n

11
14 log n) quantum query

algorithm. �

The time complexity of our classical algorithm is O(n
3
2 ). Our quantum im-

plementation have nearly quadratic speed up over the classical algorithm. From
the analysis of the algorithm follows that we have used several Grover search
subroutines, one amplitude amplification and one application of the quantum
walk element distinctness procedure by Ambainis [Amb04a]. Therefore the

quantum time complexity is O(n
11
14 logc n) for a constant c, since the element

distinctness procedure has running time of O(n
2
3 logc n).
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Corollary 9.3.5 The running time complexity of the Group Testing algo-
rithm is O(n

3
2 ) in classical setting and O(n

11
14 logc n) in quantum setting.

9.3.2 Group testing for Semigroups

Now we consider the problem whether a finite semigroup (S, ◦) is in fact a group.
The naive approach for this problem searches first for an identity element e of S
and then checks whether e occurs in every row of the operation table. The query
complexity of this procedure is O(n2), resp. O(n) in the quantum case.

Theorem 9.3.6 Whether a given semigroup is a group can be decided with

1. O(n
3
2 ) queries by a randomized algorithm.

2. O(n
11
14 log n) by a quantum query algorithm.

Proof . Our input is a finite semigroup (S, ◦), and we want to decide whether
it is in fact a group. To do so, we first search for an identity element and then
use the algorithm of Theorem 9.3.1. To find the identity element, we start by
choosing an element a of S and search for an element e ∈ S such that a ◦ e = a.
Then e is our candidate for the identity element. Recall that we finally want to
decide whether S is a group. In this case, the identity element is unique. Hence
if our candidate e doesn’t work we can safely reject the input, even in the case
that S actually has an identity element. To test our candidate e, it suffices to
check whether b ◦ e = b for all b ∈ S. Obviously the two steps can be done in
O(n) queries classically and O(

√
n) quantum queries with Grover search. �

The result should be contrasted with the following: if we want to decide whether
a given semigroup is in fact a monoid, then the best known algorithms make
O(n2) queries classically and O(n) queries in the quantum setting.

9.3.3 Group testing for Quasigroups

Next we assume that the input (S, ◦) is a quasigroup. Rajagopalan and Schul-
man [RS00] showed that in a quasigroup we can deterministically compute a set
of generators of size log n in quadratic time. Light observed (see [CP61]) that if
R ⊂ S is a set of generators of S, then it suffices to test all triples a, b, c in which
b is an element of R. Therefore Light’s observation results in an O(n2 log n)
deterministic algorithm for verifying associativity of quasigroups.

Theorem 9.3.7 Whether a given quasigroup or a loop is a group can be decided
with expected quantum query complexity of Θ(n).

Proof . First we prove the upper bound. We have to verify if the quasigroup
(S, ◦) is associative. Therefore we choose three elements a, b, c ∈ S, and then
we verify if (a ◦ b) ◦ c 6= a ◦ (b ◦ c). Rajagopalan and Schulman [RS00] showed
that any nonassociative quasigroup has at least n − 2 nonassociative triples.
Then the success probability for finding a nonassociative triple (if there is one)
is at least n−2

n3 . By using the quantum amplitude amplification we have an O(n)
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quantum query algorithm for finding a nonassociative triple in a quasigroup (if
there is one).

For the lower bound, we apply Theorem 4.1.3 in connection with an idea
of [RS00] for proving an Ω(n2) lower bound for this problem in classical com-
puting. The set A consists of the operation table T of the group (Zm2 ,+), where
+ is the vector addition modulo 2. Let a, b, c ∈ Z

m
2 with a 6= 0. The set B

consists of all operation tables of (Zm2 , ◦), where ◦ is equal to + except in the
following four positions:

1. b ◦ c = b + (a + c),

2. b ◦ (a + c) = b + c,

3. (a + b) ◦ c = b + c,

4. (a + b) ◦ (a + c) = a + b + c.

All tables of B are quasigroups, because the above modifications simply ex-
change two elements in two rows of the table T , but they are not associative,
since

a + b = (c ◦ (a + b)) ◦ c 6= c ◦ ((a + b) ◦ c) = b.

The relation R is defined by

R = { (T, T ′) ∈ (A,B) | T ′ originates of the above four modifications of T }.

Then R satisfies m = Ω(n3), m′ = 1, l = Ω(n) and l′ = 1. �

9.3.4 Group testing for Groupoids

Now we consider the problem whether an arbitrary (S, ◦) is in fact a group.
There is a O(n2 log n) deterministic algorithm for this problem by [RS00]. We

develop a quantum algorithm that has time complexity O(n
13
12 log2 n). Further-

more, we present an O(n log n) query algorithm for this problem, that has a
time complexity O(n2 log n) however. The latter algorithm is nearly optimal
with respect to the query complexity, as we prove a linear lower bound for this
problem.

We need a generalization of a lemma from [RS00]. First we generalize the
notion of a cancellative operation.

Definition 9.3.8 Let (S, ◦) be a groupoid with n elements represented by its
operation table T . Let I, J ⊆ [n] be two index sets and let TI,J be the subtable
of T indexed by I and J . We call ◦ cancellative on TI,J , if every element occurs
at most once in every row and every column of TI,J .

Lemma 9.3.9 [RS00] Let ◦ be cancellative on a r×n subtable of its operation
table. If ◦ is non-associative, then it has at least r/4 non-associative triples.
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Proof . Let (a, b, c) be a non-associative triple and a = a′ ◦ a′′. Consider the
following cycle of equations:

(a′ ◦ a′′) ◦ (b ◦ c) = ((a′ ◦ a′′) ◦ b) ◦ c)
= (a′ ◦ (a′′ ◦ b)) ◦ c)
= a′ ◦ ((a′′ ◦ b)) ◦ c))
= a′ ◦ (a′′ ◦ (b ◦ c))
= (a′ ◦ a′′) ◦ (b ◦ c).

Every equation is an application of the associativity law. Since (a, b, c) is a non-
associative triple, the first equation fails. Therefore at least one of the other
equations must fail as well. Hence at least one of the following four triples must
be non-associative:

1. (a′, a′′, b),

2. (a′, a′′ ◦ b, c),

3. (a′′, b, c),

4. (a′, a′′, b ◦ c).

If ◦ is cancellative on a r × n subtable, then a can be written as a′ ◦ a′′ in r
different ways. Then the associativity fails in at least one of the four categories
for each of these r pairs. Hence there is a category for which there are at least
r/4 failures. Since each category identifies either a′ or a′′, there are no duplicate
triples in any category. �

Theorem 9.3.10 Whether a groupoid is a group can be decided by a quantum
algorithm within O(n

13
12 logc n) expected steps, for some constant c.

Proof . Let (S, ◦) be a groupoid represented by its operation table T . Recall
that if S is a group, then ◦ is cancellative. Our first step is to determine whether
the operation is associative. To do so, we choose an arbitrary subset A of S of
size r. We determine r later. Then we check whether ◦ is cancellative on the
subtable TA of T , where TA is the r × n table that consists of the rows of T
indexed by A. This is not the case, if we find a row or column in TA with two
equal elements. Hence we can solve this with a Grover search and the element
distinctness quantum algorithm by Ambainis [Amb04a]. The quantum query

complexity of this procedure is O(
√
rn

2
3 +

√
nr

2
3 ).

If any of the considered rows and columns are not cancellative then we
are done. Otherwise we randomly choose three elements a, b, c ∈ S and check
whether (a ◦ b) ◦ c 6= a ◦ (b ◦ c). If the operation is not associative, then the
probability of finding a non-associative triple is at least r

4n3 by Lemma 9.3.9.

By using the quantum amplitude amplification we have an O(n
3
2 /
√
r) quantum

query algorithm for finding a non-associative triple.
If there is no non-associative triple, then (S, ◦) is a semigroup. Whether

this semigroup is a group can be decided with O(n
11
14 log n) quantum queries by
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Theorem 9.3.6. The total expected quantum query complexity of this algorithm
we get

O

(
√
rn

2
3 +

√
nr

2
3 +

n
3
2√
r

+ n
11
14 log n

)
.

This expression is minimized for r = n
5
6 . Hence the expected time complexity

of this algorithm is O(n
13
12 logc n) for a constant c. �

By setting r = n in Lemma 9.3.9, we have

Corollary 9.3.11 Whether a groupoid is a quasigroup can be decided by a
quantum algorithm within O(n

7
6 log n) expected steps.

We can further improve the query complexity of the problem, if we allow a
larger running time.

Theorem 9.3.12 Whether a groupoid is a group can be decided with O(n log n)
expected quantum queries.

Proof . Let (S, ◦) be a groupoid represented by its operation table T . A well
known fact from algebra is, that if (S, ◦) is a quasigroup, then a random subset
R ⊂ S with c log n elements is a set of generators with probability at least
1 − exp(c) (see [RS00]). We choose a random subset R of O(log n) elements
of S. Then we check whether R is a generating set of (S, ◦). To do so, let
S0 = R. We compute inductively Si = Si−1 ∪ (R ◦Si−1). This adds at least one
element in a step, until we reach some k ≤ n such that Sk = S. In this case, R
is a set of generators. For each element a added to some set Si, we query the
log n elements R ◦ a to look for further elements. In total we query at most the
O(n log n) elements of the R×S submatrix of T . The quantum time is bounded
by O(n3/2 log n).

If R is a set of generators, we have to verify whether the multiplication table
is associative. Light observed (see [CP61]) that if R is a set of generators of S,
then it suffices to test all triples a, b, c in which b is an element of R. By using
Grover search, the quantum query for finding a nonassociative triple (if there is
one) is O(n

√
log n). By Theorem 9.3.6 we can decide whether this semigroup

is a group. The total quantum query complexity of is O(n log n). �

The upper bound of Theorem 9.3.12 almost matches the lower bound we
have.

Theorem 9.3.13 Whether a groupoid is a quasigroup or a group requires Ω(n)
quantum queries.

Proof . We apply the Theorem 4.1.3. Let A be the operation table T of Zn and
let ◦ be the addition modular n. Then T is a quasigroup resp. group. The set
B consists of all n×n matrices T ′, where one entry of T ′ is modified. Therefore
the tables of B forming no quasigroup resp. group. The relation R is defined
by

R = { (T, T ′) ∈ (A,B) | d(T, T ′) = 1 }.
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Then R satisfies that m = n2(n − 1), m′ = 1, l = n − 1 and l′ = 1. Therefore
the quantum query complexity to decide whether a groupoid is a quasigroup
resp. group is Ω(n). �

9.4 The Commutativity Problem

In the commutativity problem we are given a finite set S of size n with a binary
operation ◦ : S × S → S represented by a table. One has to decide whether S
is a commutative. In the quantum setting, one can solve the problem in linear
time by a Grover search over all tuples (a, b) ∈ S2 that checks whether the
tuples are commutative. We show that the commutativity problem requires
Ω(n) quantum queries, even when S is a monoid.

Theorem 9.4.1 The quantum query complexity of the commutativity problem
for groupoids, semigroups, and monoids is Θ(n).

Proof . We start by showing the lower bound for semigroups via Theorem 4.1.3.
Let S = {0, 1, . . . , n− 1}. The set A consists of the zero matrix of order n. The
set B consists of all n × n matrices, where the entry of position (a, b) is 1, for
a 6= b ∈ S−{0, 1}, and 0 otherwise. All operation tables of the sets A and B are
semigroups. Then we have m = Ω(n2), m′ = 1, and the quantum query lower
bound for testing if a given semigroup is commutative is Ω(n).

We reduce the commutativity problem for semigroups to the commutativity
problem for monoids. Let S be a semigroup represented as a operation table T .
We define a monoid M = S ∪{e} with the identity element e 6∈ S, that is, with
a ◦ e = e ◦ a = a, for all a ∈ S. Then the semigroup S is commutative iff the
monoid M is commutative. �

Magniez and Nayak [MN05] quantize a classical Markov chain for testing the
commutativity of a black box group given by the generators. They constructed
an O(k2/3 log k) quantum query algorithm, where k is the number of generators
of the group. In the case when (S, ◦) is a quasigroup, a random set of c log n
elements will be a set of generators with probability at least 1− exp(c) [RS00].
Therefore we obtain the following result:

Theorem 9.4.2 Whether a quasigroup, loop or group is commutative can be
decided with quantum query complexity O((log n)

2
3 log log n).

9.5 The Distributivity Problem

In the distributivity problem we are given a set S and two binary operations
⊕ : S × S → S and ⊗ : S × S → S represented by tables. One has to decide
whether (S,⊕,⊗) is distributive, i.e. we have to test whether the two equations
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) are satisfied. A
triple (a, b, c) ∈ S3 that fulfills both equations is called a distributive triple. In
classical computing, it is not known whether this problem can be solved in less
than cubic time. In the quantum setting, one can do a Grover search over all



9.5. THE DISTRIBUTIVITY PROBLEM 95

triples (a, b, c) ∈ S3 and check whether each triple is distributive. The quantum
query complexity of the search is O(n3/2). We show a linear lower bound on
the query complexity.

Theorem 9.5.1 The distributivity problem requires Ω(n) quantum queries.

Proof . Let S = {0, 1, . . . , n − 1}. We apply the Theorem 4.1.1. The set A
consists of all pairs of n× n matrices T⊕ and T⊗, where T⊗ is the zero-matrix,
and the entry at position (1, 0) in T⊕ is 1, and 0 otherwise. It is easy to see that
the tables of A are distributive, since x⊗ (y ⊕ z) = (x⊗ y) ⊕ (x⊗ z) = 0 for all
x, y, z ∈ S. The set B consists of all pairs of n× n matrices T ′

⊕ and T ′
⊗, where

the entry of position (1, 0) in T ′
⊕, and (a, b) in T ′

⊗ is 1, for a, b ∈ S − {0, 1},
and 0 otherwise. Then a ⊗ (b ⊕ c) = 0 and (a ⊗ b) ⊕ (a ⊗ c) = 1 with b 6= c.
Therefore the tables of B are not distributive.

From each (T⊕, T⊗) ∈ A, we can obtain (T ′
⊕, T

′
⊗) ∈ B by replacing the

entry 0 of T⊗ at (a, b) by 1, for any a, b /∈ {0, 1}. Hence we have m = Ω(n2).
From each (T ′

⊕, T
′
⊗) ∈ B, we can obtain (T⊕, T⊗) ∈ A, by replacing the entry 1

of T⊗ at position (a, b) by 0, for a, b /∈ {0, 1}. Thus we have m′ = 1. By
Theorem 4.1.1, the quantum query complexity is Ω(

√
m ·m′) = Ω(n). �

If (S,⊕) is a commutative quasigroup, then we can get a faster algorithm
to check distributivity. The key is that one nondistributive triple implies the
existence of more such triples. Similar to Lemma 9.3.9, we have the following
lemma.

Lemma 9.5.2 Let S be a set and ⊕,⊗ be two binary operations on S, such
that (S,⊕) is a commutative quasigroup. If (S,⊕,⊗) is nondistributive, then it
has at least Ω(n) nondistributive triples.

Proof . Let (a, b, c) be a nondistributive triple. Let a = a′ ⊕ a′′ and consider
the following cycle.

(a′ ⊕ a′′) ⊗ (b⊕ c) = ((a′ ⊕ a′′) ⊗ b) ⊕ ((a′ ⊕ a′′) ⊗ c)

= ((a′ ⊗ b) ⊕ (a′′ ⊗ b)) ⊕ ((a′ ⊕ a′′) ⊗ c)

= (a′ ⊗ b) ⊕ (a′′ ⊗ b) ⊕ (a′ ⊗ c) ⊕ (a′′ ⊗ c)

= (a′ ⊗ b) ⊕ (a′ ⊗ c) ⊕ (a′′ ⊗ (b⊕ c))

= (a′ ⊗ (b⊕ c)) ⊕ (a′′ ⊗ (b⊕ c))

= (a′ ⊕ a′′) ⊗ (b⊕ c).

Suppose that a ⊗ (b ⊕ c) 6= (a ⊗ b) ⊕ (a ⊗ c). Then at least one of the above
equations does not hold. Therefore at least one of the following triples must be
nondistributive:

1. (a′, a′′, b),

2. (a′, a′′, c),

3. (a′′, b, c),

4. (a′, b, c),

5. (a′, a′′, b⊕ c).

Since (S,⊕) is a quasigroup, a can be written as a′ ⊕ a′′ in n different ways.
For each of these, distributivity fails in at least one of the five categories from
above. Therefore there exists a category for which there are ≥ n/5 failures.
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The case that (a⊕ b) ⊗ c 6= (a⊗ c) ⊕ (b⊗ c) can be handled similarly �

By using Lemma 9.5.2 in combination with the amplitude amplification
(similar to Theorem 9.3.1) we have

Theorem 9.5.3 Let (S,⊕) be a commutative quasigroup and (S,⊗) a groupoid.
Whether (S,⊕,⊗) is distributive can be decided with expected quantum query
complexity of O(n).



Chapter 10

Linear Algebra Problems

In this Chapter we study the quantum complexity of some important linear al-
gebra problems. We consider matrix multiplication, matrix power, determinant,
rank and matrix inverse. The results of this Chapter are published in [DT08b].
In Chapter 10.1 we present an application of the quantum walk search schema
by Magniez et al. [MNRS07] for finding more than one solution of a search prob-
lem. We apply our quantum walk to matrix multiplication, thereby improving
a result by Buhrman and Špalek [BŠ06].
In Chapter 10.2 we determine the quantum query complexity of the matrix
power resp. matrix power element problem. In the matrix power problem we
are given two n × n matrices A and B and an integer m. One has to decide
whether the m’th power of A is the matrix B. In the matrix power element
problem we are given a n × n matrix A and integers i, j, a,m, the task is to
decide if the m’th power of A on position (i, j) is the element a. We show that
the quantum query complexity of these two problems is Θ(n2) .
In Chapter 10.3 we present quantum query bounds for matrix inverse, determi-
nant and rank. We use our results from Chapter 10.2 and give a reduction from
the matrix power element problem to determinant, matrix inverse and rank
problem. Then we get Ω(n2) quantum query lower bounds for these problems.
Therewith follows that with quantum computation we can not speed up these
linear algebra problems in the query model.

97
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10.1 Matrix Multiplication

10.1.1 Finding all Solutions by Quantum Walk

The quantum walk search algorithm of Theorem 3.3.1 finds only one solution
of a search problem. In many practical applications we are interested in more
solutions. In this subsection we apply the quantum walk search schema of
Theorem 3.3.1 to find more solutions of a search problem in a Johnson graph.

Theorem 10.1.1 Let S ⊆ [n] be a search problem and let P be a random walk
on the Johnson graph J(n, r), where r = o(n). Let M be the class of all r-
subsets that contain a solution of S. Then there is a quantum algorithm that
finds up to k of the solutions with cost

{
O
(
s · k +

√
k · nr (

√
ru+ c)

)
, kr

n ≤ 1,

O
(
s · k +

√
k · nr log n (

√
ru+ c)

)
, kr

n > 1.

Proof . Suppose our search problem contains at most k different solutions.
We use the quantum walk search schema of Theorem 3.3.1. The result of this
quantum search is an element of the marked states M . The marked state
contains a solution x of our search problem. We store this element x in a list.
Now we use the quantum walk search schema again for finding another solution.
For this task, we modify the oracle in the amplitude amplification, such that a
state of the Johnson graph is marked, if it contains a solution which is not yet
in the list. We repeat this quantum walk search step k − 1 times. The result
of this procedure is a list with k different solutions. In case that there are only
l < k solutions, possibly l = 0, then the algorithm will detect this after the
(l + 1)-th iteration and output the l solutions found.

Now we compute the quantum cost of this search algorithm. In the
(k − i+ 1)-th iteration of our algorithm, the search problem contains i different
solutions. Let Mi be the set of marked states of the Johnson graph with state
space X, when there are i different solutions. Let furthermore εi := |Mi|

|X| . By
Theorem 3.3.1, the cost for finding k solutions is

s · k +

k−1∑

i=0

1√
εk−i

(
1√
δ
u+ c

)
= s · k + ∆ε

(
1√
δ
u+ c

)

where

∆ε :=
1√
ε1

+ . . .+
1√
εk
.

The eigenvalue gap δ of the Johnson graph is Θ(1/r) for 1 ≤ r ≤ n
2 , therefore

the cost is bounded by
s · k + ∆ε

(√
ru+ c

)
.

Now we compute the value of ∆ε. The number of states in the Johnson graph
J(n, r) is |X| =

(n
r

)
. If there is one solution, then there are

(n−1
r−1

)
marked

vertices. Suppose there are i solutions of the search problem, then there are

|Mi| =

(
n

r

)
−
(
n− i

r

)
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marked vertices in the Johnson graph. Then we obtain

εi =
|Mi|
|X| = 1 −

(
n−i
r

)
(n
r

) ≥ 1 −
(
n− i

n

)r
.

Since (1 − x
n)n ≤ e−x, we get

εi ≥ 1 − e−
ir
n .

Now we get an upper bound for ∆ε

∆ε ≤
k∑

i=1

1√
1 − e−

ir
n

≤
k+1∫

1

1√
1 − e−

ir
n

di =
2n

r
arctanh

√
1 − e−

ir
n

∣∣∣∣
k+1

1

.

If kr
n ≤ 1, then arctanh

√
1 − e−

kr
n ∈ O

(√
kr
n

)
, by using the definition of

arctanh and a simple analysis estimation. Therefore it holds

∆ε ≤ O

(
n

r
·
√
kr

n

)
= O

(√
kn

r

)
.

Otherwise, if kr
n > 1, then arctanh

√
1 − e−

kr)
n ∈ O

(√
kr
n log

(
kr
n

))
, then

∆ε ≤ O

(√
kn

r
log n

)
.

�

Now we use the idea of the proof of Theorem 10.1.1 and combine it with
the bound on the number of marked state in the graph categorical product of
two Johnson graphs shown in [BŠ06].

Theorem 10.1.2 Let S ⊆ [n]× [n] be a search problem and let P be a random
walk on J(n, r)× J(n, r). Let M be the class of all (r× r)-subsets that contain
a solution of S. Then there is a quantum algorithm that finds up to k of the
solutions with r ≤ n2/3/min(k,

√
n)1/3 and cost




O
(
s · k + n

r

√
k (

√
ru+ c)

)
, k ≤ √

n,

O
(
s · k + n3/4

r k (
√
ru+ c)

)
, k >

√
n.

Proof . The eigenvalue gap δ of J(n, r) × J(n, r) is Θ(1/r), for 1 ≤ r ≤ n
2

(see [BŠ06]). Therefore the cost for finds up to k of the solutions is bounded by

s · k + ∆ε

(√
ru+ c

)
,
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where ∆ε := 1√
ε1

+ . . . + 1√
εk

. Now we use the estimation of the value of

εi by [BŠ06], which holds also for the general search problem in the graph
categorical product of two Johnson graphs J(n, r). Therefore

εi = Ω

(
r2

n2
qi

)
,

where qi ≥ min(i,
√
n). Then we get

∆ε ≤
√
n∑

i=1

n

r
√
i

+

k∑

i=
√
n+1

n

rn
1
4

≤
{
n
r

√
k, k ≤ √

n,
n3/4

r k, k >
√
n.

�

10.1.2 Matrix Multiplication Algorithm

Now we present an application of the Theorem 10.1.2 for matrix multiplication:

Matrix Multiplication: Given two n×n matrices A and B over any integral
domain, compute the product C = AB.

The fastest known classical algorithm for computing the product of two
matrices works in time O(n2.376), see Coppersmith and Winograd [CW90].
Buhrman and Špalek [BŠ06] presented a quantum algorithm which is faster
when the number of nonzero elements of the product matrix is o(n0.876). The
worst case quantum query complexity of their algorithm is n5/3w log n, where w
is the number of nonzero entries of the matrix C = AB. The expected quantum
time complexity of their algorithm is





O(n5/3w2/3 log n), 1 ≤ w ≤ √
n

O(n3/2w log n),
√
n ≤ w ≤ n

O(n2√w log n), n ≤ w ≤ n2.

We present a quantum algorithm that uses Theorem 10.1.2, which improves
the worst case quantum query complexity of [BŠ06]. For 1 ≤ w ≤ n, the worst
case complexity of our algorithm is even better than the expected time com-
plexity of [BŠ06] by a logarithmic factor. We formulate our theorem in terms
of the query complexity. By additionally multiplying with random verctors (see
[BŠ06]) one can achieve the same time complexity as the query complexity.

Theorem 10.1.3 There is a quantum algorithm for the matrix multiplication
problem with query complexity of

{
O(n5/3w2/3), 1 ≤ w ≤ √

n,

O(n3/2w),
√
n < w ≤ n2,

where w is the number of nonzero entries of the product matrix C.
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Proof . Given two n × n matrices A and B, we want to compute the matrix
C = AB. At the beginning we set C to the zero-matrix. Our algorithm consists
of two main steps. In the first step we search for all wrong entries in the
matrix C. In the second step we recompute all wrong entries.

For the first step, we apply Theorem 10.1.2 for finding all nonzero entries
in C. Let R,S be two subsets of [n] of size r. We will determine r later. The
database is the r × r matrix D(R,S) = A|R,∗ · B|∗,S. The quantum walk takes
place on the graph categorical product of two Johnson graphs J = J(n, r) ×
J(n, r). The marked vertices of J correspond to pairs (R,S) with A|R,∗ ·B|∗,S 6=
C|R,S . In every step of the walk, we exchange one row and one column of R
and S. The setup query cost for the database is O(rn) and the update query
cost is O(n). For checking if a vertex is marked, we use Grover search for finding
an entry (i, j) with (A|R,∗ ·B|∗,S −C|R,S)i,j 6= 0. Therefore the checking cost is
O(r).

Suppose w ≤ √
n, then the quantum query complexity of this step is

O
(
rnw+

n

r

√
w
(√
rn+ r

))
.

Let r = n2/3

w1/3 , then we satisfy the condition r ≤ n2/3/min(w,
√
n)1/3 of The-

orem 10.1.2, since min(w,
√
n) ≤ w. Since we do not know the number w of

nonzero entries, we search in ascending order for 1, 2, 4, . . . , 2logw−1 nonzero
entries. Then the total query complexity for w ≤ √

n of this iteration is

O

(
logw−1∑

i=0

n5/3 · 22i/3

)
= O(n5/3w2/3).

Otherwise, if w >
√
n, then the quantum query complexity is

O

(
rnw +

n3/4

r
w
(√
rn+ r

)
)

= O

(
rnw +

n7/4

√
r
w

)
= O(n3/2w)

for r =
√
n. The value of r satisfy the condition of Theorem 10.1.2. In the

second step of our algorithm we recompute all wrong entries of C, this can be
done in O(nw) queries. �

10.2 Matrix Power

We determine the quantum query complexity of the following two linear algebra
problems:

Matrix Power: Given two n× n matrices A and B and an integer m, decide
whether Am = B.

Matrix Power Element: Given a n×nmatrix A and integers i, j, a,m, decide
if (Am)i,j = a.



102 CHAPTER 10. LINEAR ALGEBRA PROBLEMS

We show that the quantum query complexity of this problem is Θ(n2). For
this task, we define the following problem for n variables x1, . . . , xn ∈ {0, 1} and
0 ≤ a ≤ n:

Exactn(x1, . . . , xn, a) :=

{
1, if

∑n
i=1 xi = a,

0, otherwise.

Using the quantum adversary lower bound method [Amb02], we have

Lemma 10.2.1 The quantum query complexity of Exactn is Θ(n).

We show in the following how to reduce Exactn2 to matrix power, in fact,
power of 3.

Theorem 10.2.2 The quantum query complexity of the matrix power and the
matrix power element problem is Θ(n2). This already holds for powers of 3.

Proof . Given x1, . . . , xn2 ∈ {0, 1} and 0 ≤ a ≤ n2 as input for Exactn2 ,
we construct a directed graph G as follows. G has 2n + 2 nodes. With nodes
1, . . . , 2n we construct a bipartite graph with nodes 1, . . . , n on the left side and
nodes n + 1, . . . , 2n on the right side. For the edges, we consider the variables
xk. Index k can be uniquely written as k = (i− 1)n+ j, for 1 ≤ i, j ≤ n. Edge
(i, n+ j) is present in G iff xk = 1. For the remaining two nodes, let s = 2n+1
and t = 2n + 2. Add edges from s to all the nodes 1, . . . , n and edges from all
nodes n+ 1, . . . , 2n to t. This completes the construction of graph G.

Observe that all paths from s to t in G have length 3 and each such path
uniquely corresponds to a variable xk with value 1. Moreover, there are no
further paths of length 3 in G. Let A be the adjacency matrix of G. We
conclude that the entry (s, t) of A3 is the number of paths from s to t in G, and
all other entries are 0. Hence we have

Exactn2(x1, . . . , xn2 , a) = 1 ⇐⇒ (A3)s,t = a⇐⇒ A3 = B,

where matrix B has (s, t) entry a and 0 elsewhere. �

10.3 Determinant and Inverse

Next, we consider the determinant, inverse and rank problem:

Determinant: Given a n× n matrix A, decide whether det(A) = 0.

Inverse: Given a regular n × n matrix A and integers i, j, a, decide whether
(A−1)i,j = a.

Rank: Given an n× n matrix A and integer k, decide whether rank(A) = k.

Theorem 10.3.1 The quantum query complexity of the determinant and the
inverse problem is Θ(n2).
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Proof . We slightly modify the standard reduction from matrix power element
to the determinant. Let A = (ai,j) be a n × n matrix and a be given. By
Theorem 10.2.2, we may assume that A is a 0-1-matrix and we consider the
problem whether (A3)1,n = a. We will construct a matrix B such that

(
A3
)
1,n

=

det(B).
Interpret A as representing a directed bipartite graph on 2n nodes. That

is, the nodes are arranged in two columns of n nodes each. In both columns,
nodes are numbered from 1 to n. If ai,j = 1 then we put an edge from node i
in the first column to node j in the second column.

Now, take 3 copies of this graph, put them in a sequence and identify each
second column of nodes with the first column of the next graph in the sequence.
We have 4 columns of n nodes each so far. Now we add a 5-th column of n
nodes as well and connect it by horizontal edges with the 4-th column.

Call the resulting graph G′. Graph G′ has N = 5n nodes, and the entry
at position (1, n) in A3 is the number of paths in G′ from node 1 in the first
column to node n in the last column. Call these two nodes s and t, respectively.

Next, we add an edge from t to s and put self-loops at all nodes except s
and t. Call the resulting graph G and let B be the adjacency matrix of G. From
combinatorial matrix theory we know that the determinant of B is the signed
sum of cycle covers of G. Any cycle cover of G consists of one cycle of length 5
which goes from s to t via the columns in G′ and then back to s. The remaining
cycles of the cover are self-loops. Therefore each cycle cover corresponds to one
path from s to t in G′. The sign of the cycle cover is (−1)N+k, where k is the
number of cycles in the cover. We have k = N − 4. Therefore the sign is 1. We
conclude that det(B) =

(
A3
)
1,n

.
Note that the size of B is linear in the size of A. Therefore the lower bound

for matrix powering carries over to the determinant.

In order to get a reduction to the matrix inverse problem, we modify graphG
from above and add self-loops to nodes s and t. Let H be the resulting
graph and C = (ci,j) be the adjacency matrix of H. The identity permu-
tation is an additional cycle cover of H compared to G. Therefore we have
det(C) =

(
A3
)
1,n

+ 1. If C has no inverse, then we have det(C) = 0 and con-

sequently
(
A3
)
1,n

= −1. In the following, assume that C has an inverse.
Note that ci,i = 1 since all nodes have self-loops. Furthermore, with the

convention s = 1 and t = N we have cN,1 = 1 because of the edge from t to s.
Note that except for position (N, 1) matrix C is an upper triangular matrix. We
consider the Laplace expansion of det(C). Let Ci,j denote the matrix obtained
from C by deleting row i and column j. We consider the expansion for the first
column:

det(C) = c1,1 det(C1,1) + (−1)N+1 det(CN,1)

= 1 + (−1)N+1 det(CN,1),

because det(C1,1) = 1. Let c be the entry at position (N, 1) in C−1. By Cramers
rule we have c = det(CN,1)/det(C). Hence we get

det(C) = 1 + (−1)N+1c · det(C).
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We replace det(C) by
(
A3
)
1,n

+ 1 and obtain

(
A3
)
1,n

((−1)N+1 − c) = c.

It follows that ((−1)N+1 − c) is non-zero and we have

(
A3
)
1,n

=
c

(−1)N+1 − c
.

The size of C is linear in the size of A. Therefore the lower bound for matrix
powering carries over to the inverse. �

For k = n we have rank(A) = n⇐⇒ det(A) 6= 0. Therefore the quantum
query complexity of the rank problem follows from the determinant problem.

Corollary 10.3.2 The quantum query complexity of the rank problem is Θ(n2).
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Conclusion

Quantum algorithms have the potential to demonstrate that for some problems
quantum computation is more efficient than classical computation. A goal of
quantum computing is to determine for which problems quantum computers
are faster than classical computers.

In this thesis we studied the quantum query and time complexity of sev-
eral graph and algebra problems. In the first part of our thesis we presented
quantum algorithms for important graph problems. We considered matching
problems [Doe08], graph traversal problems [Doe07b, Doe07c] and indepen-
dent set problems [Doe07a]. Our quantum algorithms improve the best known
classical complexity bounds. In particular we improved a maximum matching
quantum algorithm by Ambainis and Špalek [AS06].

In the second part of our work we presented quantum complexity bounds for
group testing problems [DT07, DT08b]. For a set S and a binary operation on S
represented as operation table, we considered the decision problem whether a
groupoid, semigroup, monoid or quasigroup is a group. We also proved upper
and lower bounds for testing associativity, distributivity and commutativity.
In particular, we gave the first application of the new quantum random walk
technique by Magniez, Nayak, Roland, and Santha [MNRS07] that improves the
previous bounds by Ambainis [Amb04a] and Szegedy [Sze04a]. Furthermore we
gave tight quantum query complexity bounds of some important linear algebra
problems, like the determinant, rank, matrix inverse and the matrix power
problem [DT08a].

In the Appendix we give a summary of the quantum query and the time
complexity of the regarded graph and algebra problems. We mention several
questions that remain open in this research area:

1. From the Ω(n2) lower bound for the determinant it is tempting to conjec-
ture the same bound for the perfect matching and the graph isomorphism
problem. Is there a quantum query lower bound of Ω(n2) for these prob-
lems?

2. Are we able to improve the O(n1.3) quantum algorithm for triangle find-
ing?

3. Is there a quantum algorithm for computing blocking flows with running
time O(

√
nm)? This would give us immediately a better algorithm for

the maximum flow problem.
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4. Are we able to construct a quantum algorithm which computes a travelling
salesman tour in O(cn) for c < 2?

5. Is there a quantum algorithm for the semigroup problem which is better
than O(n1.5) for |S′| = n?

6. Is there a classical or a quantum algorithm for the distributivity problem
which is faster than the trivial bounds of O(n3) resp. O(n1.5)?

7. Are we able to prove a nontrivial lower bound for the decision problem
whether a semigroup or monoid is a group?

8. Can we close the gap between the lower and upper bound of the matrix
verification problem.
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Appendix: Overview

Quantum Complexity

We give a summary of the quantum query (QQC) and the time complexity
(QTC) of the regarded graph and algebra problems.

1. General Problems

Problem Description QQC QTC

Element
distinctness

[Shi02]
[Amb04a]

Given are numbers
x1, . . . , xN , compute k
distinct i1, . . . , ik, such
that xi1 = . . . = xik .

Ω(N2/3)
O(Nk/(k+1))

O(Nk/(k+1) logcN)

Collision
[BHT98]
[Shi02]

Decide if a function
f : [N ] → [N ] is one to one
or r to one.

Θ((N/r)1/3) O((N/r)1/3 logN)

Minimum
finding

[DH96]

Find the smallest values of
f : [N ] → R.

Θ(
√
N) O(

√
N logN)

Minimum
type finding

[DHHM04]

Find d smallest values of
f : [N ] → R with different
type.

Θ(
√
dN) O(

√
dN logN)

Parity
[FGGS98]

Compute the parity of N
Boolean values.

Θ(N)

Sorting
[HNS01]

Given are numbers
x1, . . . , xN , compute
π ∈ SN with xπ1, . . . , xπN

is in nondecreasing order.

Θ(N logN)

Ordered
Searching

[HNS01]

Given are numbers
x1, . . . , xN in nonde-
creasing order and y < xN ,
find the minimal i such
that y ≤ xi.

Θ(logN)
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2. Graph Problems

Problem Description QQC QTC

Graph
Connectivity

[DHHM04]

Decide if G is con-
nected.

M: Θ(n1.5)
L: Θ(n)

M: O(n1.5 log n)
L: O(n log n)

Strong Graph
Connectivity

[DHHM04]

Decide if G has a di-
rected path between ev-
ery pair of vertices.

M: Θ(n1.5)
L: Ω(

√
nm)

O(
√
nm log n)

M: O(n1.5 log n)
L: O(

√
nm log1.5 n)

Minimum
Spanning Tree

[DHHM04]

Compute a minimum
spanning tree in G.

M: Θ(n1.5)
L: Θ(

√
nm)

M: O(n1.5 log n)
L: O(

√
nm log n)

Shortest Paths
[DHHM04]

Compute a tree T in G,
such that the shortest
paths from a vertex v to
all the other vertices is
in T .

M: Ω(n1.5)
O(n1.5 log2 n)

L: Ω(
√
nm)

O(
√
nm log2 n)

M: O(n1.5 log3 n)
L: O(

√
nm log3 n)

Eulerian
Graph

[Doe07b]

Decide if G has a closed
walk that contains every
edge of G once.

M: Θ(n1.5)
L: Θ(

√
n)

M: O(n1.5 log n)
L: O(

√
n log n)

Optimal
Postman
Tour

[Doe07c]

Compute a closed walk
of minimum total edge
weight that uses each
edge at least once.

M: Ω(n2) M: O(n2.5 log3 n)
L: O(n1.5√m log3 n)

Hamiltonian
Circuit

[BDFLS04]
[Doe07b]

Decide if G contains a
hamiltonian circuit.

M: Ω(n1.5)
O(n2n/(n+1))

Traveling
Salesman

[BDFLS04]

Decide if G has a hamil-
tionian tour with length
k or less.

M: Ω(n1.5)

Maximal
Matching

[Doe08]

Compute a maximal
matching in a graph.

M: Ω(n1.5)
O(n1.5 log n)

L: O(
√
nm log n)

M: O(n1.5 log2 n)
L: O(

√
nm log2 n)

Maximum
Matching

[Doe08]

Compute a maximum
matching in a graph.

M: Ω(n1.5) M: O(n2 log2 n)
L: O(n

√
m log2 n)

Max. Weight
Bip. Matching

[Doe08]

Compute a maximum
weight matching in a bi-
partite graph.

M: Ω(n1.5) M: O(n2N log2 n)
L: O(n

√
mN log2 n)

Min. Weight
Bip. Matching

[Doe08]

Compute a minimum
weight perfect matching
in a bipartite graph.

M: Ω(n1.5) M: O(n2.5 log3 n)
L: O(n

√
nm log3 n)
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Triangle
finding

[BDHHMSW]
[MSS05]

Decide if G contains a
triangle.

M: Ω(n)
O(n1.3)

M: O(n1.5 log n)
L: O(

√
nm log n)

Graph
Copy

[MSS05]

Decide if G contains a
copy of a graphH with
k vertices.

M: Ω(n)
O(n2−2/k)

Bipartiteness
[Zha04]

Decide if G is bipar-
tite.

M: Ω(n1.5)

Maximum
Flow

[AS06]

Compute a maximum
flow in a flow network
with integer capacities
at most U ≤ n1/4.

M: Θ(n2) M: O(n
13
6

3
√
U log2 n)

L: O(n
7
6
√
mU

1
3 log2 n)

O(
√
nUm log2 n)

Maximal
Independent Set

[Doe07a]

Compute a maximal
independent set in G.

M: Ω(n1.5)
O(n1.5 log n)

L: O(
√
nm log n)

M: O(n1.5 log2 n)
L: O(

√
nm log2 n)

Maximum
Independent Set

[Doe07a]

Compute a maximum
independent set in G.

M: Ω(n1.5) M, L: O(1.1488n)
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3. Algebraic Problems

Problem Description QQC QTC

Semigroup I
[DT07]
[DT08a]

Decide if S × S → S′ is a semi-
group for constant size of S′.

Ω(n)

O(n
5
4 )

O(n
3
2 log n)

Semigroup II
[DT07]
[DT08a]

Decide if S × S → S′ is a semi-
group.

Ω(n)

O(n
3
2 )

O(n
3
2 log n)

Monoid I
[DT07]

Decide if a groupoid is a
monoid.

Ω(n)

O(n
3
2 )

O(n
3
2 log n)

Monoid II
[DT07]

Decide if a semigroup is a
monoid.

O(n) O(n log n)

Quasigroup
[DT07]
[DT08a]

Decide if a groupoid is a quasi-
group.

Ω(n)

O(n
7
6 )

O(n
7
6 log n)

Group I
[DT08a]

Decide if a groupoid is a group. Ω(n)
O(n log n)

O(n
13
12 logc n)

Group II
[DT07]
[DT08a]

Decide if a semigroup/monoid is
a group.

O(n
11
14 log n) O(n

11
14 logc n)

Group III
[DT08a]

Decide if a quasigroup/loop is a
group.

Θ(n) O(n log n)

Commut. I
[DT08a]

Decide if a groupoid/ semi-
group/monoid is commutative.

Θ(n) O(n log n)

Commut. II
[DT08a]

Decide if a quasigroup/group is
commutative.

Õ((log n)
2
3 ) Õ((log n)

2
3 )
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4. Linear Algebra Problems

Problem Description QQC QTC

Matrix
Verification

[BŠ06]

Verify the matrix product
AB = C.

Ω(n
3
2 )

O(n
5
3 )

O(n
5
3 log n)

Matrix Vector
Verification

[DT08b]

Verify the matrix-vector product
Ab = c.

Θ(n
3
2 ) O(n

3
2 log n)

Matrix
Power

[DT08b]

Decide if Am = B for matrices
A,B and integer m.

Θ(n2)

Matrix Power
Element

[DT08b]

Decide if (Am)i,j = a for matrix A
and integer i, j, a,m.

Θ(n2)

Determinant
[DT08b]

Decide if det(A) = 0 for matrix A. Θ(n2)

Inverse
[DT08b]

Decide if (A−1)i,j = a for matrix
A and integers i, j, a.

Θ(n2)

Rank
[DT08b]

Decide if rank(A) = k for matrix
A and integer k.

Θ(n2)
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[AS06] A. Ambainis, R. Špalek, Quantum Algorithms for Matching and
Network Flows, Proceedings of STACS’06: pages 172-183, 2006.

[BBBV97] C.H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, Strengths
and weaknesses of quantum computing, SIAM Journal on Com-
puting 26(5): pages 1510-1523, 1997.

[BBCJPW93] C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.
Wootters, Teleporting an unknown quantum state via dual clas-
sical and EPR channels, Physical Review Letters: pages 1895-
1899, 1993.

[BBCMW01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf, Quantum
lower bounds by polynomials, Journal of ACM 48: pages 778-797,
2001.

[BBHT98] M. Boyer, G. Brassard, P. Høyer, A. Tapp, Tight bounds on quan-
tum searching, Fortschritte Der Physik 46(4-5): pages 493-505,
1998.

[BCWZ99] H. Buhrman, R. Cleve, R. de Wolf, Ch. Zalka, Bounds for
Small-Error and Zero-Error Quantum Algorithms, Proceedings
of FOCS’99: pages 358-368, 1999.

[BDFLS04] A. Berzina, A. Dubrovsky, R. Freivalds, L. Lace, O. Scegulnaja,
Quantum Query Complexity for Some Graph Problems, Proceed-
ings of SOFSEM’04: pages 140-150, 2004.
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Glossary of Notation

| · | Number of elements in a set
{·, ·} Undirected edge
(·, ·) Directed edge
‖ · ‖ l2-norm
\ Set difference
∅ Empty set
⊕ Direct sum
⊗ Tensor product
|·〉 Ket-vector
〈·| Bra-vector
[n] = {1, 2, . . . , n}
Prob(·) Probability
O(·) Complexity measure
Ω(·) Complexity measure
Θ(·) Complexity measure
N,Z,R,C Set of natural, integers, real and complex numbers
T Transpose of matrix
† Complex conjugate of matrix

A Quantum algorithm
α Rotation angle Grover iteration
c Checking cost quantum walk
c(G) Number of components in graph G
χ(A)(a) = 1, if a ∈ A; = 0 otherwise
dG(v) Degree of vertex v in G
d+
G(v) In-degree of vertex v in G
d−G(v) Out-degree of vertex v in G
D Database quantum walk search scheme
DN Diffusion operator of size N ×N
D(f), R0(f), R2(f) Exact, zero-error, bounded error query complexity
Q(f), Q0(f), Q2(f) Exact, zero-error, bounded error quantum query complexity
D(P ) Discriminate of Markov chain P
δ Spectral gap
δx,y = 1, if x = y; = 0 otherwise
ε Probability of a marked state
E(G) Edge set of graph G
fP Search function
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122 GLOSSARY OF NOTATION

G directed or undirected graph
G−e Deleting edge e of G
G−v Deleting vertex v of G
G−S Deleting vertex/edge set S of G
G[·] Vertex/edge induced subgraph of G
H,Hn Hadamard matrix with n Qubits
H Hilbert space
H2 Two dimensional space C2

I, IN Identity matrix of size N ×N
k Number of solution in a search problem
J(n, r) Johnson graph
M Set of marked states in Johnson graph
N Search space
P Search problem
Pi,j Transition matrix of Markov chain
π Stationary distribution
Π Orthogonal projector
Q Amplitude amplification operator
ref Reflection operator
s Setup cost quantum walk
sx(f), s(f) sensitivity, average sensitivity
(S, ◦) Groupoid
u Update cost quantum walk
Uf , U0 Phase flip or oracle transformation
V, V (G) Vertex set of graph G
W Quantum walk operator
x∗ Solution of search problem
X State space of Markov chain



Deutsche Zusammenfassung

Quantum Computing ist ein neues interdisziplinäres Forschungsgebiet zwischen
Theoretischer Informatik und Quantenphysik. Quantencomputer erlauben im
Gegensatz zu klassischen Computern das Rechnen mit Quantenbits, die einer
Superposition von Nullen und Einsen entsprechen. Mittels dieses Prinzips kön-
nen Quantencomputer Quantensysteme simulieren, für die es auf klassischen
Rechnern keine effizienten Verfahren gibt. Ein Beispiel ist Shor’s polynomi-
alzeit Quantenalgorithmus zur Faktorisierung von großen Zahlen. Es ist zur
Zeit noch völlig unklar, wie leistungsstark Quantencomputer sein können, und
ob Quantencomputer alle Probleme in der Komplexitätsklasse NP in polynomi-
naler Zeit lösen können. Ein zentrales Forschungsgebiet der Quanteninformatik
ist die Konstruktion und Analyse von Quantenalgorithmen, die effizienter als
klassische Algorithmen sind.

In dieser Dissertationsarbeit entwickeln wir neue Quantenalgorithmen für
Probleme in der Graphentheorie und Algebra. Unsere Quantenalgorithmen
sind schneller, als die bisher besten bekannten klassischen Verfahren. Wir be-
trachten zwei grundlegende Komplexitätsbegriffe für diese Algorithmen: die
Query- und die Zeit-Komplexität. Die Query Komplexität ist die minimale An-
zahl von Fragen an die Eingabe, um ein bestimmtes Problem zu lösen. Die Zeit
Komplexität zählt die gesamte Anzahl der Schritte die ein Quantenalgorithmus
benötigt.

Einige Graphenprobleme wurden bereits untersucht, so die Bestimmung
eines minimalen aufspannenden Baumes, testen ob ein Graph zusammenhän-
gend ist, oder auch die Berechnung kürzeste Wege in Graphen [DHHM04].
Aufbauend auf diesen bekannten Quantenalgorithmen untersuchen wir weitere
wichtige Probleme der Graphentheorie.

Wir entwickeln Quantenalgorithmen für Matching Probleme in
ungewichteten und gewichteten Graphen. Wir zeigen, dass auf einem
Quantencomputer ein Maximum Matching in einem ungewichteten Graphen
polynomial schneller berechnet werden kann. Dieses Ergebnis verbessert
auch einen Quantenalgorithmus von Ambainis and Špalek [AS06] für dieses
Matching Problem.

Weiterhin konstruieren wir Quantenalgorithmen für die Bestimmung
von unabhängigen Knotenmengen und für Rundreiseprobleme in gerichteten
Graphen. Für diese Aufgabenstellungen zeigen wir untere und obere Schranken
für die Quanten Query- und Zeit-Komplexität. Unsere Quantenalgorithmen
sind effizienter als die besten heute bekannten klassischen Algorithmen. Wir
zeigen beispielsweise, dass unsere Algorithmen für die Bestimmung einer maxi-
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malen unabhängigen Knotenmenge, oder für das Entscheidungsproblem ob ein
Graph einen Eulerkreis besitzt optimal sind im Quanten Query Model.

In der Algebra entwickeln wir Quantenalgorithmen für das Testen von alge-
braischen Eigenschaften. Gegeben ist eine Multiplikationstabelle. Die Aufgabe
ist es zu testen, ob diese beispielsweise eine Semigruppe, ein Monoid oder eine
Gruppe ist. Wir präsentieren Quantenalgorithmen für diese Probleme, welche
schneller sind, als die besten klassischen Algorithmen. Für viele dieser algebrais-
chen Probleme beweisen wir nichttriviale untere Schranken für die Query Kom-
plexität. Insbesondere zeigen wir für einige Algorithmen deren Optimalität.
Weiterhin stellen wir die erste Anwendung der neuen Quanten Random Walk
Technik von Magniez, Nayak, Roland, and Santha [MNRS07] vor. Mit dieser
Methode konstruieren wir einen Quantum Walk für das Entscheidungsproblem,
ob eine gegebene Multiplikationstabelle assoziativ ist.

Wir betrachten auch zahlreiche relevante Entscheidungsprobleme der lin-
earen Algebra. Im Matrix Potenz Problem haben wir zwei Matrizen A,B und
eine positive Zahl m gegeben. Zu entscheiden ist, ob die m’th Potenz von
A die Matrix B ist. Wir betrachten weiterhin das Entscheidungsproblem, ob
die Inverse von A die Matrix B ist. Ebenfalls interessieren wir uns, ob eine
gegebene Matrix singular ist, also die Determinante gleich null ist. Für alle
diese Probleme aus der linearen Algebra zeigen wir, dass im Query Model keine
Beschleunigung gegenüber klassischen Algorithmen zu erreichen ist.

Es gibt verschiedene Gründe für die Untersuchung der Quantum Komplex-
ität von Graphen und Algebraischen Problemen. Einerseits sind die von uns
untersuchten Probleme grundlegender Natur. Sie besitzen zahlreiche Anwen-
dungen in der Informatik. Zum Beispiel interessiert man sich in der Kryptogra-
phie für die Frage, ob eine Black Box eine Gruppe ist. Anderseits können wir an
Hand dieser Probleme die Mächtigkeit unsere Methoden für die Konstruktion
von unteren und oberen Schranken für die Quanten Query Komplexität unter-
suchen. Für zahlreiche algorithmische Probleme haben wir optimale Quantenal-
gorithmen aus einer Kombination von Grover Suche, Amplituden Amplifikation
und Quanten Walk gefunden. Aber für einige dieser Probleme scheint dies nicht
möglich zu sein. Vielleicht ist dies eine Motivation für die Entwicklung neuer
Quanten Techniken.


