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Abstract

In this paper we give tight quantum query complexity bounds of
some important linear algebra problems. We prove Θ(n2) quantum
query bounds for verify the determinant, rank, matrix inverse and the
matrix power problem.

1 Introduction

The computation of the quantum query complexity for special problems
is a fast growing area in quantum computing. For example, quantum
query algorithms have been presented for several problems from com-
puter science (see e.g. [BHT98, BDHHMSW01, Amb04]), graph theory (see
e.g. [DHHM04, BDFLS04, MSS05, AS06, Doe07a, Doe07b]) and algebra
(see e.g. [MN05, BS06, DT07, DT08]). In most cases the quantum query
complexity is better than the classical query complexity. Therefore quan-
tum algorithms have the potential to demonstrate that for some problems,
quantum computation is more efficient than classical computation.

In our paper we show that for some important problems from linear alge-
bra quantum computing is not better than classical computation. We prove
Ω(n2) lower bounds of the quantum query complexity for the verification of
the determinant, rank, matrix inverse and the matrix power problem. Since
O(n2) is a trivial upper bound for the (quantum) query complexity of these
problems, our bounds are tight.

There are several reasons for studying the query complexity of such linear
algebra problems. On the one hand side, these are fundamental and basic
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problems which have many applications in computer science. On the other
hand, our work shows that there are several problems for which quantum
computation is not faster than classical one. Furthermore there is some hope
that our reduction can be used to improve the quantum query lower bound
for other problems. For example, from the Ω(n2) quantum query lower
bound for the determinant it is tempting to conjecture the same bound for
the perfect matching problem. However, the known quantum lower bound
for the perfect matching problem is only Ω(n1.5) (see [Zha04]).

In Sections 3, we consider the matrix power problem. Given two n × n
integer matrices A and B and an integer m, we have to decide whether
the m’th power of A is equal the matrix B. In Section 4 we look at the
decision problem, whether the inverse of a matrix A is equal a matrix B.
Furthermore we are interested, whether a given matrix is singular.

2 Preliminaries

2.1 Quantum Query Model

In the query model, the input x1, . . . , xN is contained in a black box or oracle
and can be accessed by queries to the black box. As a query we give i as
input to the black box and the black box outputs xi. The goal is to compute
a Boolean function f : {0, 1}N → {0, 1} on the input bits x = (x1, . . . , xN )
minimizing the number of queries. The classical version of this model is
known as decision tree.

The quantum query model was explicitly introduced by Beals et
al. [BBCMW01]. In this model we pay for accessing the oracle, but un-
like the classical case, we use the power of quantum parallelism to make
queries in superposition. The state of the computation is represented by
|i, b, z〉, where i is the query register, b is the answer register, and z is the
working register.

A quantum computation with T queries is a sequence of unitary trans-
formations

U0 → Ox → U1 → Ox → . . .→ UT−1 → Ox → UT ,

where each Uj is a unitary transformation that does not depend on the in-
put x, and Ox are query (oracle) transformations. The oracle transformation
Ox can be defined as Ox : |i, b, z〉 → |i, b⊕ xi, z〉.

The computation consists of the following three steps:

1. Go into the initial state |0〉.
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2. Apply the transformation UTOx · · ·OxU0.

3. Measure the final state.

The result of the computation is the rightmost bit of the state obtained by
the measurement.

The quantum computation determines f with bounded error, if for every
x, the probability that the result of the computation equals f(x1, . . . , xN )
is at least 1− ε, for some fixed ε < 1/2. In the query model of computation
each query adds one to the query complexity of an algorithm, but all other
computations are free. The time complexity of the algorithm is usually
measured in terms of the total circuit size for the unitary operations Ui. All
quantum algorithms in this paper are bounded error.

The quantum query complexity of black box computation has become
a great interest in quantum computing. The black box model provides a
simple and abstract framework for the construction of quantum algorithms.
All quantum algorithms can be formulated in the black box model, we can
determine the speed up against classical algorithm, and we can prove lower
bounds for the quantum query complexity.

2.2 A tool for quantum query lower bounds

We use the following special case of the adversary method of Ambai-
nis [Amb02] to prove lower bounds for the quantum query complexity.

Theorem 2.1 [Amb02] Let D ⊆ {0, 1}n a decision problem. Let further-
more A,B ⊆ {0, 1}n such that A ⊆ D and B ⊆ D.

Let m and m′ be numbers such that

1. for every (x1, . . . , xn) ∈ A there are ≥ m values i ∈ {1, . . . , n} such
that (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn) ∈ B,

2. for every (x1, . . . , xn) ∈ B there are ≥ m′ values i ∈ {1, . . . , n} such
that (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn) ∈ A.

Then every bounded-error quantum algorithm that decides D has quantum
query complexity Ω(

√
m ·m′).

3 Matrix Power

In this section we determine the quantum query complexity of the matrix
power resp. matrix power element problem. In the matrix power problem we
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have given two n× n matrices A and B and an integer m. Decide whether
Am = B. In the matrix power element problem we have given a n×n matrix
A and integers i, j, a,m. Decide if (Am)i,j = a. We show tight bounds on
the quantum query complexity of these problems, namely Θ(n2). For this
task, we define the following problem for n variables x1, . . . , xn ∈ {0, 1} and
0 ≤ a ≤ n,

Sumn = { (x1, . . . , xn, a) |
n∑

i=1

xi = a }.

Lemma 3.1 The quantum query complexity of Sumn is Θ(n).

Proof . We apply Theorem 2.1 to the restriction of Sumn to a = bn/2c.
That is, we consider D = { (x1, . . . , xn) ∈ {0, 1}n |

∑n
i=1 xi = bn/2c }.

Define A = D and B = { (x1, . . . , xn) ∈ {0, 1}n |
∑n

i=1 xi = bn/2c+ 1 }.
For any sequence x ∈ A, if we change any of the m = bn/2c zeros of x to one,
the resulting sequence will be in B. Conversely, for any sequence x′ ∈ B,
if we change any of the m′ = bn/2c + 1 ones of x′ to zero, the resulting
sequence will be in A. Therefore the quantum query complexity of D, and
hence of Sumn, is Ω(

√
m ·m′) = Ω(n). �

We show in the following how to reduce Sumn2 to matrix power. In
fact, the reduction maps to matrix power of 3. The lower bounds for the
determinant and the matrix inverse that we show in the next section crucially
depend on the hardness of matrix powers already for constant powers.

Theorem 3.2 The quantum query complexity of the matrix power and the
matrix power element problem is Θ(n2). This already holds for powers of 3.

Proof . Given x1, . . . , xn2 ∈ {0, 1} and 0 ≤ a ≤ n2 as input for Sumn2 ,
we construct a directed graph G as follows. G has 2n + 2 nodes. With
nodes 1, . . . , 2n we construct a bipartite graph with nodes 1, . . . , n on the
left side and nodes n+1, . . . , 2n on the right side. For the edges, we consider
the variables xk. Index k can be uniquely written as k = (i − 1)n + j, for
1 ≤ i, j ≤ n. Edge (i, n + j) is present in G iff xk = 1. For the remaining
two nodes, let s = 2n + 1 and t = 2n + 2. Add edges from s to all the
nodes 1, . . . , n and edges from all nodes n + 1, . . . , 2n to t. This completes
the construction of graph G.

Observe that all paths from s to t in G have length 3 and each such
path uniquely corresponds to a variable xk with value 1. Moreover, there
are no further paths of length 3 in G. Let A be the adjacency matrix of G.
We conclude that the entry (s, t) of A3 is the number of paths from s to t
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in G, and all other entries are 0. Define matrix B with (s, t) entry a and 0
elsewhere. Then we have

Sumn2(x1, . . . , xn2 , a) = 1⇐⇒ (A3)s,t = a⇐⇒ A3 = B.

�

4 Determinant and Inverse

We consider the determinant and inverse problem. In the determinant prob-
lem we have given a n × n matrix A, decide whether det(A) = 0. In the
inverse problem we have given a regular n× n matrix A and integers i, j, a.
One has to decide whether (A−1)i,j = a.

Theorem 4.1 The quantum query complexity of the determinant and the
inverse problem is Θ(n2).

Proof . We slightly modify the standard reduction from matrix power ele-
ment to the determinant. Let A = (ai,j) be a n× n matrix and a be given.
By Theorem 3.2, we may assume that A is a 0-1-matrix and we consider
the problem whether (A3)1,n = a. We will construct a matrix B such that(
A3
)
1,n

= det(B).
Interpret A as representing a directed bipartite graph on 2n nodes. That

is, the nodes are arranged in two columns of n nodes each. In both columns,
nodes are numbered from 1 to n. If ai,j = 1 then we put an edge from node i
in the first column to node j in the second column.

Now, take 3 copies of this graph, put them in a sequence and identify
each second column of nodes with the first column of the next graph in the
sequence. We have 4 columns of n nodes each so far. Now we add a 5-th
column of n nodes as well and connect it by horizontal edges with the 4-th
column.

Call the resulting graph G′. Graph G′ has N = 5n nodes, and the entry
at position (1, n) in A3 is the number of paths in G′ from node 1 in the
first column to node n in the last column. Call these two nodes s and t,
respectively.

Next, we add an edge from t to s and put self-loops at all nodes except s
and t. Call the resulting graph G and let B be the adjacency matrix of G.
From combinatorial matrix theory we know that the determinant of B is the
signed sum of cycle covers of G. Any cycle cover of G consists of one cycle
of length 5 which goes from s to t via the columns in G′ and then back to s.
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The remaining cycles of the cover are self-loops. Therefore each cycle cover
corresponds to one path from s to t in G′. The sign of the cycle cover is
(−1)N+k, where k is the number of cycles in the cover. We have k = N − 4.
Therefore the sign is 1. We conclude that det(B) =

(
A3
)
1,n

.
Note that the size of B is linear in the size of A. Therefore the lower

bound for matrix powering carries over to the determinant.
In order to get a reduction to the matrix inverse problem, we modify

graph G from above and add self-loops to nodes s and t. Let H be the
resulting graph and C = (ci,j) be the adjacency matrix of H. The identity
permutation is an additional cycle cover of H compared to G. Therefore we
have det(C) =

(
A3
)
1,n

+ 1. If C has no inverse, then we have det(C) = 0
and consequently

(
A3
)
1,n

= −1. In the following, assume that C has an
inverse.

Note that ci,i = 1 since all nodes have self-loops. Furthermore, with the
convention s = 1 and t = N we have cN,1 = 1 because of the edge from t
to s. Note that except for position (N, 1) matrix C is an upper triangular
matrix. We consider the Laplace expansion of det(C). Let Ci,j denote the
matrix obtained from C by deleting row i and column j. We consider the
expansion for the first column:

det(C) = c1,1 det(C1,1) + (−1)N+1 det(CN,1)

= 1 + (−1)N+1 det(CN,1),

because det(C1,1) = 1. Let c be the entry at position (N, 1) in C−1. By
Cramer’s rule we have c = det(CN,1)/ det(C). Hence we get

det(C) = 1 + (−1)N+1c · det(C).

We replace det(C) by
(
A3
)
1,n

+ 1 and obtain(
A3
)
1,n

((−1)N+1 − c) = c.

It follows that ((−1)N+1 − c) is non-zero and we have(
A3
)
1,n

=
c

(−1)N+1 − c
.

The size of C is linear in the size of A. Therefore the lower bound for matrix
powering carries over to the inverse. �

In the rank problem we have given an n × n matrix A and integer
k. One has to decide whether rank(A) = k. For k = n we have
rank(A) = n⇐⇒ det(A) 6= 0. Therefore the quantum query complexity of
the rank problem follows from the determinant problem.
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Corollary 4.2 The quantum query complexity of the rank problem is Θ(n2).

Open problems

The current quantum query lower bound for the perfect matching problem
is Ω(n1.5) (see [Zha04]). Because the determinant is related to the perfect
matching problem, we conjecture that the Ω(n2) lower bound holds there as
well.
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[BDHHMSW01] H. Buhrman, C. Dürr, M Heiligman, P. Høyer, F. Mag-
niez, M. Santha, R. de Wolf, Quantum Algorithms for Element
Distinctness, Proceedings of CCC’01: pages 131-137, 2001.

[BHT98] G. Brassard, P. Høyer, A. Tapp, Quantum cryptanalysis of hash
and claw-free functions, Proceedings of LATIN’98: pages 163-169,
1998.
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[DHHM04] C. Dürr, M. Heiligman, P. Høyer, M. Mhalla, Quantum query
complexity of some graph problems, Proceedings of ICALP’04:
pages 481-493, 2004.

[Doe07a] S. Dörn, Quantum Complexity Bounds of Independent Set Prob-
lems, Proceedings of SOFSEM’07 (SRF): pages 25-36, 2007.

[Doe07b] S. Dörn, Quantum Algorithms for Graph Traversals and Related
Problems, Proceedings of CIE’07: pages 123-131, 2007.

[DT07] S. Dörn, T. Thierauf, The Quantum Query Complexity of Algebraic
Properties, Proceedings of FCT’07: pages 250-260, 2007.

[DT08] S. Dörn, T. Thierauf, The Quantum Complexity of Group Testing,
Proceedings of SOFSEM’08: pages 506-518, 2008.

[Gro96] L. Grover, A fast mechanical algorithm for database search, Pro-
ceedings of STOC’96: pages 212-219, 1996.

[MN05] F. Magniez, A. Nayak, Quantum complexity of testing group com-
mutativity, Proceedings of ICALP’05: pages 1312-1324, 2005.

[MSS05] F. Magniez, M. Santha, M. Szegedy, Quantum Algorithms for
the Triangle Problem, Proceedings of SODA’05: pages 1109-1117,
2005.

[Zha04] S. Zhang, On the power of Ambainis’s lower bounds, Proceedings of
ICALP’04, Lecture Notes in Computer Science 3142: pages 1238-
1250, 2004.

8


