
EagleUP: Solving Random 3-SAT
using SLS with Unit Propagation

Oliver Gableske1 and Marijn Heule2

1 Institute of Theoretical Computer Science, Ulm University, Germany
2 Algorithmics Group, Delft University of Technology, The Netherlands

Abstract. This paper introduces a novel approach which combines SLS
SAT solving and unit propagation to realize fast performance on huge
satisfiable uniform random 3-CNF formulas. Currently, applying unit
propagation within local search solvers was only beneficial for structured
formulas. We show how unit propagation can be combined with SLS
solvers to realize speed-ups on random formulas as well. Our novel ap-
proach includes techniques of systematic SAT solving, like a variable
selection heuristic that originates from a look-ahead solver. Addition-
ally, we developed a scheme using the Cauchy probability distribution to
decide when to perform unit propagation.
We present our SLS solver Eagle, which is three times faster compared
to TNM, the winner of the last SAT competition on satisfiable random
formulas. We also show that EagleUP, the enhanced version with unit
propagation, experiences an additional speed-up of about 15% to 22%.

Keywords: SLS, unit propagation, Cauchy distribution, RW heuristic

1 Introduction

SAT is one of the most studied combinatorial problems, and while the interest
in it was once only academic, the progress in the construction of practically
applicable SAT solvers has brought much attention to the topic of solving real-
world application and industrial problems with it. However, not all designs of
SAT solvers can compete equally well on all types of problems. While systematic
approaches that perform considerable amounts of reasoning are often more useful
on application and crafted instances, local search approaches that perform no
reasoning at all are superior on large satisfiable random instances that usually
do not contain any exploitable structure.

The most simple form of reasoning is called unit propagation (or Boolean
constraint propagation) [20], abbreviated with UP. It is based on propositional
logic and exploits the fact that in order to create a satisfying assignment for
a formula in conjunctive normal form (CNF), it is required to satisfy all the
clauses of such a formula. These formulas can contain unit clauses, i.e., clauses
that have all but one literal falsified. A unit clause can only be satisfied if its
last unassigned literal is made true, i.e., the assignment to the corresponding
variable is directly implied. UP discovers implications given by unit clauses and
forces the assignments to the corresponding variables.

2 EagleUP: SLS with Unit Propagation

While the application of UP is of vital importance in systematic search solvers
to solve structured problems of the SAT competitions [17], its application in
stochastic local search (SLS) solvers is rare. One of the few examples is the
UnitWalk solver [7] which assigns variables based on a random order and only
flips the truth values in case a variable occurs in a unit clause. In comparison
to pure SLS solvers, UnitWalk shows strong performance on many structured
formulas, yet it cannot compete on random ones. This observation inspired the
development of the QingTing [11] solver which switches between SLS and Unit-
Walk. A different approach of stochastic systematic search has been proposed in
[13], and applies randomization within backtrack search algorithms. Neverthe-
less, the application of UP in SLS solvers to solve random k-CNF formulas only
seemed to weaken the performance.

The goal of our work was to show how UP can be combined with SLS solvers
to boost their performance on random k-CNF formulas as well.

To do so, we apply UP if the SLS cannot improve the current assignment,
similar to the SatHys approach [2], which combines SLS with conflict-driven
clause learning (CDCL) solving. Furthermore, the order in which variables are
assigned is based on the recursive weight (RW) heuristic [1, 14], which is used to
solve small unsatisfiable random k-CNF formulas. Moreover, we modify the SLS
solvers current assignment by overriding it with the propagated assignments of
the UP. This partial modification is similar to both the approach of UnitWalk [7]
and the phase-saving heuristic, a value ordering heuristic used in CDCL solvers
[16]. Additionally, in contrast to other approaches, we directly return to SLS
when UP finds a conflict. Last, as opposed to most related work, we do not
perform UP after every flip of the SLS solver. Instead, we force the SLS solver
to search without another call to UP until a given number of flips, referred to as
cool-down periods, has passed. The computation of the lengths of the cool-down
periods is done using the Cauchy probability distribution. The application of
cool-down periods that are computed using a probability distribution has, to
our best knowledge, never been realized before to combine UP with SLS.

To provide evidence for the feasibility of our approach, we implemented an
SLS solver called Eagle following the Sparrow scheme [3]. Its extension EagleUP
is combined with UP based on the ideas above. We tested both solvers on numer-
ous large satisfiable uniform random 3-CNF formulas with a clause-to-variable
ratio of 4.2 (the hardest ratio from the SAT competition used for such formu-
las). The tests show that EagleUP is about 15% to 22% faster than Eagle, thus
showing that combining UP with SLS solvers can boost their performance on
large satisfiable random 3-CNF formulas. Moreover, we show that both Eagle
solvers clearly outperform TNM which was the best solver for satisfiable uniform
random formulas during the SAT 2009 competition.

The remainder of the paper is structured as follows. Section 2 briefly explains
SAT and UP. Section 3 gives an overview of the SLS solver Eagle. Section 4 ex-
plains how UP is combined with Eagle to yield EagleUP. It also explains the RW
heuristic, as well as the cool-down periods along with the Cauchy distribution.
Section 5 presents an empirical study that compares Eagle, EagleUP and TNM.
Section 6 concludes the paper.

EagleUP: SLS with Unit Propagation 3

2 Preliminaries

2.1 k-SAT

Given a set of n Boolean variables V = {x1, . . . , xn} and the set of corresponding
literals L = {x1,¬x1, . . . , xn,¬xn} we use the logical operation OR (∨) to create
clauses, i.e., ci = (x1 ∨¬x3 ∨ . . .∨ x8). In k-SAT, each clause contains exactly k
different literals. The set of clauses is denoted C. Using clauses and the logical
operation AND (∧) we can construct formulas, i.e., F = c1 ∧ . . .∧ cm. Formulas
of that type are in conjunctive normal form (k-CNF for short). Formulas can be
understood as sets of clauses, while clauses can be understood as sets of literals.
The number of clauses in a given formula is denoted m, and r = m/n is its ratio.

A (possibly partial) mapping α : V −→ {0, 1} is called an assignment. If α
maps all variables to a Boolean value it is called total. We write c(α) = 1 if
assignment α satisfies clause c. We say α satisfies F if it satisfies all clauses
in F , and denote this by F (α) = 1. A formula that has at least one satisfying
assignment is called satisfiable, and unsatisfiable otherwise. Assignments can
be understood as sets of assignments to single variables, e.g., α = {x2 = 0}
which assigns only variable x2 to false. We say a literal is assigned by α if the
corresponding variable is assigned by α. A clause is called falsified if it has all its
literals evaluate to false under a given assignment. A clause is called unsatisfied
if it has no literal evaluate to true under the given assignment but contains a not
yet assigned variable. The k-SAT problem is then the task to detect whether a
given k-CNF formula is satisfiable.

Before presenting our SLS solver Eagle, we discuss the iUP algorithm which
is used by systematic search SAT solvers.

2.2 Iterative Unit Propagation iUP

Let F be a k-CNF formula. For the remainder of this paper, let β be an assign-
ment that is used by the iterative unit propagation algorithm iUP (Fig. 1) as
follows. iUP starts with an empty assignment β and tries to extend it to satisfy
F . The extension of β is done in two ways.

In case unit clauses are present (yet unsatisfied clauses with only one unas-
signed literal), iUP will force an assignment to the last remaining variable in
that clause such that the clause becomes satisfied.

In case no unit clause is present, iUP selects an unassigned variable according
to a given variable selection heuristic VAR. There exists a vast body of work on
variable selection heuristics [9]. Most of these heuristics have been optimized for
random (unsatisfiable) k-SAT instances. Probably the most effective one, based
on the SAT 2009 competition, is the RW heuristic used in the look-ahead based
march solver [14]. Therefore, we decided to use this heuristic in our approach.
Details about this heuristic are discussed in Section 4.1.

After a variable is selected, a value selection heuristic VAL should decide the
preferred truth value for that variable. These value selection heuristics are po-
tentially very powerful: perfect value selection heuristics, which are computable
in polynomial time, would solve any SAT problem in a single iUP run – showing

4 EagleUP: SLS with Unit Propagation

that P = NP. However, little is known about effective value selection heuristics.
Currently the most commonly used heuristic, both in local search and complete
search, is known as phase-saving [16]. It selects the truth value based on a ref-
erence assignment. This assignment stores for each variable the last truth value
to which the variable was assigned. The local search solver UnitWalk [7] as well
as most CDCL solvers use this value selection heuristic, and we decided to use
it too. In the context of our work, the reference assignment for phase-saving is
provided by the SLS solver when a call to iUP is performed.

Ideally, iUP propagates all variables without detecting a conflict, i.e., it finds
a satisfying assignment. However, in most cases, conflicts arise. There are two
possible ways to deal with them. First, as done in UnitWalk [7], one can ignore
conflicts and keep propagating other variables. Second, as done by most complete
SAT solvers, one can stop UP and unassign those variables that are causing the
conflict. Additionally, CDCL solvers add a conflict clause to avoid hitting the
same conflict again. We decided to stop UP as soon as a conflict is detected, but
we do not add conflict clauses because that does not seem to work on random
formulas. Fig. 1 summarizes the functioning of iUP.

iUP(CNF formula F , variable sel. heur. VAR, value sel. heur. VAL, conflictStopFlag)

Initialize β := {}; //start with an empty assignment

REPEAT

IF there is an unsatisfied clause in F that has all but one literal assigned under β

THEN assign the corresponding variable in β such that it satisfies the clause;

ELSE use VAR to select a variable unassigned in β; use VAL to assign it in β;

UNTIL β assigns all variables OR (conflictStopFlag AND conflict is found)

return β;

Fig. 1. The algorithm performs iterative unit propagation on the CNF formula F using
heuristics VAR, VAL and a flag that determines whether to stop once conflicts emerge.

3 The Sparrow-like SLS Solver Eagle

The major goal of our work was to see if iUP, as explained in Fig. 1, is capable
of improving the performance of a given SLS solver. The SLS solver we used
for our studies is called Eagle and is a re-implementation of the Sparrow solver
as presented in [3]. In comparison, our from-scratch implementation Eagle ap-
plies improved data structures for computing performance critical values like
the Sparrow probabilities, but for the sake of simplicity we will not give any
implementation details here. This section covers the general functioning of a
Sparrow-like solver and gives an overview of how Eagle performs search.

A Sparrow-like SLS solver is quite similar to G2WSAT solvers. G2WSAT
solvers follow the approach in [10] and work in two modes. Starting from a
random total assignment α, they compute variable scores that basically reflect
how big the improvement in terms of satisfied clauses in the formula will be when
they invert a single variable assignment in α. The inversion of a single variable
assignment from xi = 1 to xi = 0 or vice versa is called a flip. The computation of
variable scores along with clause weighting schemes like PAWS [18] is complex
and requires numerous data structures. For the sake of simplicity we will not

EagleUP: SLS with Unit Propagation 5

cover these schemes here and refer the reader to [10] and [18]. Variables with
positive score can be promising variables. Briefly stated, a promising variable
is a variable that has a positive score because of flips made to other variables.
A variable with negative score that is flipped has positive score afterwards, but
re-flipping it will only undo a step made before and so these variables are not
considered promising. For a more detailed description see [10].

If promising variables are present, G2WSAT solvers will pick the one with
highest score and flip it (greedy mode), breaking ties in favor of the least recently
flipped variable. If no promising variable is present, the solver uses a heuristic
to decide which variable to flip despite the fact that this will not yield any
immediate improvement (random mode). We call this a dead end. There are
numerous heuristics that G2WSAT solvers can use when working in random
mode. A well-known one is Novelty+ [8] as used in the solver gNovelty+ [15].

Sparrow introduced a new heuristic that helps G2WSAT solvers to escape
from dead ends. Let us assume the following situation in order to explain the
Sparrow heuristic. The solver resides in a dead end α. At least one clause is
now falsified, and the solver picks one of the falsified clauses at random. Let this
clause be ui = (xi1 ∨ . . . ∨ xik

). For all the variables contained in ui, the solver
computes a probability to flip this variable as follows:

p(xij
) =

ps(xij) · pa(xij)∑k
l=1 ps(xil

) · pa(xil
)

with ps(xil
) = a

s(xil
)

1 , and pa(xil
) =

(
f(xil

)
a3

)a2

In the above equations, s(xil
) is the current score of variable xil

according to the
G2WSAT scheme. Furthermore, f(xil

) is the number of flips that passed since
variable xil

was flipped last. The constants a1 = 4, a2 = 4, and a3 = 26500
have been determined experimentally (used in Eagle and EagleUP). It is worth
noting that this randomized heuristic makes the application of tries and cutoffs
obsolete. Fig. 2 summarizes the functioning of Eagle.

Eagle(CNF formula F , timeout t)

Initialize random total assignment α; Set flips := 0;

WHILE α does not satisfy F AND timeout t is not yet reached

calculate scores for all variables;

IF promising variables exist

THEN //greedy mode

x := pick promising variable with highest score,

breaking ties in favor of the least recently flipped;

flip x; flips++;

ELSE //random mode

pick random unsatisfied clause u; compute sparrow probab. for all x ∈ u;

randomly pick a variable according to the computed probabilities;

flip the picked variable; flips++; adapt clause weights(smooth-prob. 0.347);

ENDWHILE

IF α satisfies F THEN output α; ELSE output UNKNOWN;

Fig. 2. The functioning of Eagle following the approach from [3].

6 EagleUP: SLS with Unit Propagation

Sparrow-like solvers have proven to be very competitive on large satisfiable
random 3-SAT instances. Both Sparrow implementations, the one given in [3]
and our own implementation Eagle, were about three times faster than TNM,
which was the winner of the SAT 2009 competition in that category. The Sparrow
scheme is therefore a good starting point if a fast new solver is to be implemented.
Additionally, improving algorithms that are very good by themselves is usually
much harder than improving algorithms with less good performance. Therefore,
improving the performance of a Sparrow-like solver with iUP is considered to be
a non-trivial task and a useful result. How this is done exactly will be covered
in the next section.

4 Enhancing Eagle with iUP

As already stated in the introduction, UP has the ability to improve the perfor-
mance of SLS solvers. In order to enhance a given SLS solver with UP, one must
answer five questions regarding iUP:

– Questions regarding the “What” (further covered in Section 4.1):
1. What variable selection heuristic VAR should one use? We decided to use

the RW heuristic to create a static ordering of the variables, and pick the
first variable according to this ordering that has not yet been propagated
during the current call of iUP.

2. What value selection heuristic VAL should one use? We picked phase-
saving using a dead end from the SLS as reference assignment.

3. What about conflicts? We decided to stop iUP if a conflict emerges.
– Questions regarding the “When” (further covered in Section 4.2):

4. When to perform iUP? We call iUP if the SLS is in a dead end. Further-
more, we use cool-down periods to control the frequency of such calls.
The lengths of the cool-down periods are computed using the Cauchy
probability distribution.

– Questions regarding the “How” (further covered in Section 4.3):
5. How to use the resulting assignment β of an iUP call? We modify the

current dead end assignment α of the SLS solver by partially overriding
it with β.

More elaborate answers to the above questions are given in the next sections.

4.1 Regarding the “What” – the VAR, VAL, and RW heuristics

This section presents the exact functioning of iUP in our solver EagleUP. It
explains how the variable selection heuristic VAR and the value selection heuristic
VAL are realized using the recursive weight (RW) heuristic.

The general idea of recursive weight heuristics is to help systematic search
SAT solvers identify variables with strong impact on the formula. Such solvers
usually pick a single variable in every node of their search tree and assign it to
a not yet explored value. Picking variables with strong impact will then give a
large reduction of the remaining formula, and therefore, a strong reduction in
the size of the remaining search space.

EagleUP: SLS with Unit Propagation 7

RW is based on the work by Mijnders et. al. [14] as well as Athanasiou et. al.
[1]. Before we explain how and why we use it, we will give a thorough explanation
on how it is computed.

Given a 3-CNF formula F with n variables in V and 2n literals in L. We write
(l ∨ l′ ∨ l′′) to denote a clause containing literal l ∈ L and two other arbitrary
literals l′, l′′ ∈ L. We compute the RW-score of a variable x ∈ V using the
functions hi : L 7→ R and RW : V 7→ R up to a recursion depth of 5 as follows:

h0(l) = 1

si+1 =
1

2n
·
∑
l∈L

hi(l)

hi+1(l) =
1
s2i
·

∑
(l∨l′∨l′′)∈F

hi(¬l′) · hi(¬l′′)

RW5(x) = h5(¬x) · h5(x)

We create a variable ordering θRW5 such that θRW5(xi) < θRW5(xj) ⇔
RW5(xi) > RW5(xj). The ordering θRW5 has to be computed exactly once (i.e.,
it is static) and prioritizes variables with high impact on F .

When no unit clause is present, the iUP algorithm must decide what vari-
able to propagate in the current iteration. This decision is made in the variable
selection heuristic VAR which will pick the first variable according to θRW5 that
has not yet been propagated by iUP (i.e., it is not assigned in β, see Fig. 1).

The reason why we prefer variables with high impact is that assigning these
variables first creates new unit clauses sooner. Creating new unit clauses sooner
then means that iUP relies less often on the reference assignment in future iter-
ations. Given a satisfiable formula, this is helpful since this reference, currently
not satisfying all clauses of the formula, must contain erroneous variable assign-
ments. The less often iUP relies on it, the smaller the chance of propagating one
of the contained errors. Fig. 3 summarizes the functioning of VAR.

VAR(variable ordering θRW5)

pick first variable x according to θRW5 that is unassigned in β;

return x; //This x has not yet been propagated in the current call of iUP.

Fig. 3. The functioning of VAR. See Fig. 1 for details on how it is used in iUP.

After the variable was selected by VAR it must be assigned a value to complete
the current iteration of iUP. The value selection heuristic VAL we use here is
phase-saving with the current dead end of the SLS solver as a reference. Fig. 4
summarizes the functioning of VAL.

VAL(reference assignment α)

for variable x that was picked by VAR, assign β(x) := α(x);

Fig. 4. The functioning of VAL. See Fig. 1 for details on how it is used in iUP.

8 EagleUP: SLS with Unit Propagation

The realization of iUP is now completely determined by the above definitions
of VAR, VAL, and the rule to stop as soon as a conflict emerges (see Fig. 1).
Before we can explain how this realization of iUP is embedded into Eagle to
yield EagleUP, we must clarify when and how often we want to call iUP during
the local search. This is done in the next sections.

4.2 Regarding the “When” – Cauchy distributed cool-down periods

In order to embed iUP into an SLS solver, it must be clarified when iUP is to take
place during the local search. A reasonable approach would be to have the SLS
solver perform its local search and call for iUP as soon as it gets stuck in a dead
end. Following this approach has two advantages. First, the SLS solver is allowed
to continue its search towards a satisfying assignment without interruption as
long as this search seems promising, e.g., is done greedily. Second, a call to iUP is
only performed in situations where the SLS solver could make use of additional
support in order to advance the search again, e.g., to escape from a dead end.

However, on 3-CNF instances with a ratio of 4.2, Eagle will encounter a dead
end in about every third flip (determined experimentally). Calling iUP in every
third flip would mean that multiple iUP calls rely on almost identical reference
assignments. Given the static variable ordering θRW5 , the chance for different
outcomes of these iUP calls is extremely small. Therefore, two calls of iUP should
be separated by more than three flips in order to not waste computational time.
We call this number of separating flips the cool-down period and denote it by c.

In short, a cool-down period c is to be computed after every call to iUP. The
necessity for cool-down periods raises the questions on how long they have to
be, what they depend on, and how they get computed. We have tried several
approaches in order to answer these questions. We first used fixed values for c.
This resulted in EagleUP having a performance that is worse than the perfor-
mance of Eagle. We then tried to compute c based on the number of variables
n. This worked for some formulas and we came to the conclusion that the for-
mula size must be part of any calculation for c. We then defined an interval,
based on n, from which c is drawn uniformly at random and were able to in-
crease the number of formulas where speedups could be found. Additionally, we
realized (empirically) that the performance gains for EagleUP where quite sta-
ble independent from the specific sizes of the intervals checked (we investigated
c ∈ [n±0.5n, 2.5n±0.5n]). However, due to space constraints we will not present
this here in detail. As a result of this, we conjectured that the size of the inter-
val is of less importance to the performance than the distribution of the values
picked from it. This lead us to the question whether any other distribution than
the uniform random one might work better.

We then tried the binomial and the Cauchy distribution with different in-
tervals, and extensive tests revealed that the Cauchy distribution gives the best
results. In comparison, the uniform distribution resulted in about 12% speedup,
the Cauchy distribution resulted in about 17% speedup. The remainder of this
section explains the details of the Cauchy distribution and how we use it to
compute the cool-down period c.

EagleUP: SLS with Unit Propagation 9

The Cauchy distribution is defined as follows. Let γ ∈ R, γ > 0 and ω ∈ R.
The Cauchy distribution is given by the probability density function (PDF)

c : R 7→ R, c(z) =
1
π
· γ

γ2 + (z − ω)2

Its cumulative distribution function (CDF) is

C : R 7→ R, C(z) = P (Z < z) =
1
2

+
1
π
· arctan

(
z − ω
γ

)
.

Since the density c is symmetric and has its mean in ω, the parameter ω is called
the center of the distribution. The parameter γ is called the width parameter
as it describes how strong the decay around the center is in the PDF. A width
parameter close to 0 will give a strong decay in the PDF and a strong increase
in the CDF (see Fig. 5). For more details about the Cauchy distribution see
[12]. Actual computations use a discretized CDF of the Cauchy distribution.

0 2n 2.7n
0.0

0.5

1.0
CDF C(z)
n=26000, ω=52000, γ=1500

0 2n 2.7n
0.0

2.1221
PDF c(z)
n=26000, ω=52000, γ=1500

10-4.
PDF c(z) for
 ω=0, γ=0.5
 ω=0, γ=1.0
 ω=-2, γ=1.0

-5 -2 0 2 5

0.7

0

z

z

Fig. 5. Left hand side: the shapes of PDFs of the Cauchy distribution given different
values for ω and γ. Right hand side: examples for the PDF and CDF of the Cauchy
distribution for a formula with 26, 000 variables and optimal values for ω and γ.

The idea is to pick a number a ∈ [0, 1) uniformly at random and identify the
smallest cool-down length c with C(c) ≥ a. The values for c are then distributed
according to the Cauchy distribution.

Our tests revealed that the interval [0, 2.7n] is reasonable for discretization,
meaning that the cool-down periods have lengths ranging from 0 flips up to 2.7n
flips. Further, we determined the values γ = 1500 and ω = 2n to be suitable
(see Fig. 5, right hand side). We have also studied the stability of performance
gains under modification of these parameters and checked the interval [0, 2.7n±
0.3n] with γ = 1500 ± 300, ω = 2.0n ± 0.5n. However, no significant changes in
performance gains could be found.

In summary, whenever iUP has been performed, a random number a ∈ [0, 1)
is picked. The length of the next cool-down period then is c = min{z|C(z) ≥ a}.

4.3 Regarding the “How” – modifying the reference assignment

As stated in the previous section, it is a viable approach to call iUP if the local
search is stuck in a dead end α and then use the resulting assignment β of the

10 EagleUP: SLS with Unit Propagation

iUP call to help the SLS solver escape from it. The question is how exactly β is
used to help modify α in order to relocate the local search out of the dead end.

The resulting iUP assignment β hosts all assignments that could be prop-
agated without running into a conflict. Comparing α and β on all variables
assigned in β provides a set M of variables that have changed their assignment
during unit propagation. In short M = {x ∈ V | β(x) is defined, α(x) 6= β(x)}.

After a call to iUP, we createM and override all variables fromM in α with
the assignments from β. This effectively changes the current reference assignment
and thereby places the SLS solver out of the current dead end. We refer to this
as partially overriding α with β.

Sometimes, iUP does not run into a conflict, thereby producing a satisfying
assignment β. However, this happened in less than 0.01% of the iUP calls. So in
general, applying UP helps the SLS solver to escape from the current dead end
to an assignment that has increased consistency regarding the searched formula.

4.4 EagleUP: Embedding iUP into Eagle

The previous sections explained how the SLS solver performs its search, how
iUP is performed, when iUP is performed, and how the result of a call to iUP
is used. The following section summarizes these explanations and presents how
iUP is embedded into Eagle to yield EagleUP.

EagleUP initializes a set of data structures before the actual search starts.
Given the 3-CNF formula F with n variables, it first initializes a total random
assignment α for the formula that is used by the local search. Furthermore, it
initializes the static variable ordering θRW5 using the RW heuristic (see Section
4.1). Additionally it pre-computes the CDF of the Cauchy distribution in [0, 2.7n]
(see Section 4.2) using the experimentally determined parameters ω = 2n, γ =
1500. The first cool-down period is set to c = ω.

After the initialization phase, EagleUP performs local search as explained in
Section 3. Local search continues in greedy mode until it gets stuck in a dead
end, where it switches to random mode. In contrast to Eagle, the solver now
checks if the current cool-down period c is over. If not, it continues in random
mode as done in Eagle, following the Sparrow heuristic to decide what variable
to flip next. If the cool-down period is over, a call to iUP is performed.

A call to iUP is performed using the current dead end α as a reference assign-
ment (see Section 4.1). After the call to iUP, the solver performs two tasks. First,
the length of the next cool-down period is computed using the Cauchy distri-
bution (see Section 4.2). Second, the current dead end α is partially overridden
with the result β from the iUP call (see Section 4.3).

The above scheme is repeated until the solver either finds a satisfying assign-
ment for the formula, or if a given timeout is reached (see Fig. 6).

5 Empirical Study

We performed an empirical study in order to test the feasibility of our approach.
We will first explain the general setup of this study, then present the results,
and finally give a brief discussion of the results.

EagleUP: SLS with Unit Propagation 11

EagleUP(CNF formula F , timeout t)

Initialize random total assignment α; Set flips := 0; Set lastIUPCall := 0;

Initialize θRW5 using the RW heuristic; //θRW5 is not modified again, i.e., is static

Compute Cauchy CDF C(z), z ∈ [0, 2.7n] with ω := 2n and γ = 1500; Set c := ω;

WHILE α does not satisfy F AND timeout t is not yet reached

calculate scores for all variables;

IF promising variables exist

THEN //greedy mode

x := pick promising variable with highest score,

breaking ties in favor of the least recently flipped;

flip x; flips++;

ELSE //random mode

IF flips > lastIUPCall + c

THEN //do iUP

randomly pick a ∈ [0, 1) and set c := min{z|C(Z) ≥ a};
lastIUPCall := flips;

α := iUP(F , VAR(θRW5), VAL(α), true); //partially override α with β

ELSE //do Sparrow

pick random unsatisfied clause u; compute sparrow prob. for all x ∈ u;

randomly pick a variable according to the computed probabilities;

flip the picked variable; flips++; adapt clause weights(sp=0.347);

ENDWHILE

IF α satisfies F THEN output α; ELSE output UNKNOWN;

Fig. 6. The functioning of EagleUP. See Fig. 1,3,4 for details on iUP, VAR and VAL.

Setup of the empirical study. Our empirical study was carried out on the
bwGRiD [4], which provided us with 64 Intel Harpertown quad-core CPUs with
2.83Ghz and 8GB RAM each. The operating system on the bwGRiD is Scientific
Linux. The support software to carry out the study is the EDACC system [6].

The solvers we used in our study were TNM, in the version that was presented
at the SAT 2009 competition [17], as well as our new SLS solver Eagle and its
iUP enhanced version EagleUP (sources are available at [5]). The parameters for
all solvers are kept fixed for all experiments: for TNM, the setting from the SAT
competition is used. For the Eagle solvers we use a1 = 4, a2 = 4, a3 = 26500 and
the smoothing-prob. for clause weighting is 0.347. For EagleUP, the additional
parameters for computing the cool-down periods are as explained in Section 4.2.

The benchmark is divided into four parts. Part A contains 600 satisfiable
3-CNF formulas with a clause-to-variable ratio of 4.2. Their sizes range from
20, 000 variables to 30, 000 variables in increments of 2, 000 (100 formulas each).
For the sizes of 20, 000 to 26, 000 we took all formulas from the SAT 2009 com-
petition, 10 for each size, and created new formulas according to the fixed clause
length model (no tautologies, no duplicate clauses, no duplicate literals in a
clause), 90 for each size. For the sizes of 28, 000 and 30, 000 we had to create all
formulas ourselves. Part B contains 1300 3-CNF formulas with 26, 000 variables
and various ratios (4.14 to 4.26 in increments of 0.01, 100 formulas each, all
generated using the fixed clause length model). Part C contains 83 satisfiable

12 EagleUP: SLS with Unit Propagation

crafted formulas, and Part D contains 53 satisfiable application formulas, all
from the SAT 2009 competition. Each of the three tested solvers had to perform
50 runs with different seeds on each formula and they all used the same seed for
a given formula and run. The timeout was set to 2, 000 seconds.

Results. The following results are available at [5] in more detail. Fig. 7
presents the success rate, the average runtime of the successful runs, and the
average standard deviation of the runtime of the successful runs. Furthermore,
it states the speedup in percent of Eagle over TNM, and EagleUP over Eagle.

Solver

v20,000, r4.2

avg. run
time [s]

avg. std.
dev. [s]

succ.
rate [%]

v22,000, r4.2 v24,000, r4.2
TNM
Eagle
EagleUP

v26,000, r4.2 v28,000, r4.2 v30,000, r4.2
TNM
Eagle
EagleUP

708.09
164.71
129.76

389.61
138.51
97.81

77.90
99.70
99.72

899.15
209.47
170.13

434.65
173.56
129.28

68.34
99.70
99.96

899.64
279.40
216.64

401.62
213.44
155.78

58.00
98.42
99.28

1017.95
297.37
247.07

374.88
229.84
185.92

49.90
97.64
98.18

1062.19
318.93
269.73

383.74
234.06
190.01

47.86
97.70
98.76

1192.53
443.45
371.05

314.95
310.29
261.43

30.32
95.82
97.94

speed
up [%]

76.7
21.2

76.7
18.7

68.9
22.4

70.7
16.9

69.9
15.4

62.8
16.3

Part A avg. run
time [s]

avg. std.
dev. [s]

succ.
rate [%]

speed
up [%]

avg. run
time [s]

avg. std.
dev. [s]

succ.
rate [%]

speed
up [%]

Part B
Solver

r4.14

avg. run
time [s]

Eagle
EagleUP

9.36
8.75

speed
up [%]

6.5

r4.16

avg. run
time [s]

29.85
26.53

speed
up [%]

11.1

r4.18

avg. run
time [s]

94.97
79.24

speed
up [%]

16.6

r4.20

avg. run
time [s]

297.37
247.07

speed
up [%]

16.9

r4.22

avg. run
time [s]

763.49
712.04

speed
up [%]

6.7

r4.24*

avg. run
time [s]

 1107.28
1043.27

speed
up [%]

5.7

Fig. 7. Part A: The table presents the results for each solver and formula size. First,
the success rate of the solver in percent. Second, the average runtime of the successful
runs of the solver in seconds. Third, the average standard deviation of the run times
of the successful runs in seconds. Fourth, the amount of time in percent that is saved
when using Eagle instead of TNM, or EagleUP instead of Eagle. Part B: The table
presents the average runtime of the Eagle solvers as well as the speedup on formulas
with 26, 000 variables and variable ratios. For details on Part C and D see [5].

Discussion (Part A). When taking a look at the results for TNM and Eagle
one can clearly see that Eagle is the superior solver. The success rate of Eagle
is at least 20% larger than the one of TNM. At the same time, Eagle can save up
to 75% of the runtime of TNM. Furthermore, the total average standard deviation
of the runtimes is about half for Eagle in comparison to TNM. Given the fact that
TNM is the winner of the SAT 2009 competition random benchmark, we deem
our solver to be one of the best solvers for large random 3-SAT formulas.

The UP enhanced solver EagleUP is able to improve the results even further.
EagleUP has an increased success rate over Eagle and it reduces the average
runtime of the successful runs as well as the average standard deviation of the
times of the successful runs. It is worth noting that EagleUP experiences a near
100% success rate on formulas with 30, 000 variables, while TNM has a success
rate of about 31%. All together, we managed to improve the runtime of Eagle by
about 15% to 22% through the application of UP, and thereby successfully ap-
plied this simple form of reasoning on the bastion of large uniform random 3-SAT
formulas. All together, this empirically proves the feasibility of our approach.

The time EagleUP spent to perform iUP was about 13% of its run-time. The
average number of propagated variables in a single call to iUP was about 42% of

EagleUP: SLS with Unit Propagation 13

all variables (10% as decision variables picked by VAR/VAL and 32% as implied
by unit clauses). The average number of variables that got their assignments
overridden after a single call to iUP was about 1% of all variables. Executed on
a formula with 30, 000 variables, Eagle uses about 10 MB RAM and EagleUP
uses about 21 MB RAM.

Discussion (Part B). The results indicate that it is possible to change
the ratio of formulas and still have EagleUP outperform Eagle. If the ratio is
decreased, we observe a drop in speedup. This can be explained by the fact that
on underconstrained formulas, numerous solutions exist: Eagle starts search
right away and needs only a small amount of flips until it finds a solution.
EagleUP suffers from the overhead of pre-computing the Cauchy distribution and
θRW5 , even though this information is hardly used in the short search afterwards.
Increasing the ratio results in a drop in speedup as well. This can be explained by
the fact that comparatively few solutions exist on critically constrained formulas,
which increases the chances for iUP to propagate wrong variable assignments.
This in turn decreases its ability to increase the consistency of the current SLS
assignment, resulting in less favorable positions for the following search.

Discussion (Part C and D). Given the results from part C and D (not
presented here, see [5]) we can state that EagleUP outperforms Eagle on both
the crafted and the application formulas. On crafted formulas EagleUP had a
8% higher success rate than Eagle, and on application formulas the success rate
was about 3% higher. Additionally, on application formulas, EagleUP achieved
the higher success rate in less computational time than Eagle. The studies on
crafted and application formulas were only preliminary (without any parameter
tuning). We therefore conclude that our scheme to combine UP with SLS has
potential on these type of formulas, but it is yet too soon to make any definitive
statement about the performance gains possible.

6 Conclusions and Future Work

In this paper we presented a novel approach to implement UP into SLS solvers.
In contrast to the related work, our approach relies on a fixed variable ordering
for performing UP that is computed using the RW heuristic. The usage of a fixed
variable ordering made it mandatory to use cool-down periods in between the
calls of UP. These cool-down values are computed using the Cauchy probability
distribution, an approach that has, to our knowledge, never been tried before.

The results we presented show a significant improvement of EagleUP, our
UP enhanced SLS solver, over Eagle, our plain SLS implementation following
the Sparrow scheme. EagleUP is about four times faster than TNM, which is the
winner of the SAT 2009 competition for uniform random 3-SAT formulas. On
the basis of these results, we have shown that UP can successfully be applied to
SLS solvers for solving large uniform random 3-SAT formulas.

The future work will include whether the static variable ordering θRW5 used
by unit propagation can be replaced by a more dynamic ordering. A full dynamic
ordering — i.e., recomputing RW every time before selecting a variable — is too
costly to be useful in practice. Instead, we want to pre-compute a few variable
orderings using the binary search tree that arises using RW as variable selection

14 EagleUP: SLS with Unit Propagation

heuristic. Additionally, we want to adapt our approach to work on structured
instances. The preliminary results from the crafted and application formulas give
hope that performance gains for structured formulas are also possible. Adding
clause learning in EagleUP for structured formulas might be worthwhile too.

Acknowledgements. The authors would like to thank Julian Rüth, Martin
Bader, Adrian Balint, Dominikus Krüger, Marcus Bombe, and Jacobo Torán.
The first author is supported by the Graduate School Mathematical Analysis of
Evolution, Information and Complexity in Ulm. The second author is supported
by the Dutch Organization for Scientific Research NWO under grant 617.023.61.

References

1. Athanasiou, D., Fernandez, M.A.: Recursive Weight Heuristic for Random k-
SAT. Technical report from Delft University. http://www.st.ewi.tudelft.nl/sat/
reports/RecursiveWeightHeurKSAT.pdf, 2010.

2. Audemard, G., Lagniez, J.-M., Mazure, B., Säıs, L.: Boosting local search thanks
to CDCL. In LPAR-17, LNCS 6397:474-488. Springer 2010.

3. Balint, A., Fröhlich, A.: Improving Stochastic Local Search for SAT with a New
Probability Distribution. In SAT’10, LNCS 6175:10-16. Springer 2010.

4. bwGRiD (www.bw-grid.de), member of the German D-Grid initiative, funded by
the Ministry for Education and Research, Germany.

5. Eagle(UP) benchmark, sources, results: http://www.uni-ulm.de/~s_ogable/.
6. Balint, A., Gall, D., Kapler, G., Retz, R.: Experiment Design and Administration

for Computer Cluster for SAT-solvers (EDACC). JSAT 7:77-82, 2010.
7. Hirsch, E.A., Kojevnikov, A.: UnitWalk: A New SAT Solver that Uses Local Search

Guided by Unit Clause Elimination. AMAI 43(1-4):91-111. Kluwer 2005.
8. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In AAAI’02:635-660, 2002.
9. Kullmann, O.: Fundaments of Branching Heuristics. Chapter 7 of Handbook of

Satisfiability:205-244. IOS Press 2009.
10. Li, C.M., Huang, W.Q.: Diversification and Determinism in Local Search for Sat-

isfiability. In SAT’05, LNCS 3569:158-172. Springer 2005.
11. Li, X.Y., Stallmann, M.F., Brglez, F.: QingTing: A fast SAT solver using local

search and efficient unit propagation. In SAT’03, LNCS 2919:452-467. Springer 2003.
12. Lupton, R.: Statistics in Theory and Practice. Section 3.7, Cauchy Distribution,

p. 21-22. Princeton University Press, ISBN 0-691-07429-1, 1993.
13. Lynce, I., Marques-Silva, J.: Random backtracking in backtrack search algorithms

for satisfiability. Discrete Applied Math., 155(12), p. 1604-1612. Elsevier 2007.
14. Mijnders, S., De Wilde, B., Heule, M.J.H.: Symbiosis of search and heuristics for

random 3-SAT. In LaSh’10, 2010.
15. Pham, D.N., and Gretton, C.: gNovelty+. Solver description for the SAT 2007

competition. http://www.satcompetition.org/2007/gNovelty+.pdf, 2007.
16. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-

isfiability solvers. In SAT’07, LNCS 4501:294-299. Springer 2007.
17. The SAT competition homepage: http://www.satcompetition.org.
18. Thornton, J., Pham, D.N., Bain, S., Ferreira, V.: Additive versus multiplicative

clause weighting for SAT. In AAAI’04:191-196. AAAI Press 2004.
19. Wei, W., Li, C.M.: Switching Between Two Adaptive Noise Mechanisms in Local

Search for SAT. TNM solver description for the SAT 2009 competition.
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf, 2009.

20. Zabih, R., McAllester, D.A.: A rearrangement search strategy for determining
propositional satisfiability. In AAAI’88:155-160. AAAI Press 1988.

