
SATUN: A complete Hybrid SAT Solver

Oliver Gableske?? and Julian Rüth

Ulm University
Institute of Theoretical Computer Science

89069 Ulm, Germany
oliver.gableske,julian.rueth@uni-ulm.de

Abstract. There are two major paradigms to solve uniform random k-
SAT: SLS and DPLL, both with their own advantages and drawbacks.
A hybrid solver tries to combine these paradigms in such a way, that
it inherits their advantages but not their drawbacks. The first hybrid
solver using partitions (hybridGM) was a successful combination of SLS
and DPLL for satisfiable formulas, but it was also incomplete. The solver
presented in this work (SATUN) extends the idea behind hybridGM result-
ing in a complete and fast solver for satisfiable and unsatisfiable formulas.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most studied NP-
complete problems in computer science because it has a wide range of applica-
tions such as hardware verification, planning and scheduling. In the context of
this work, we understand SAT as the task in finding a satisfying assignment for
a given boolean formula, or in providing the information that the given formula
has no satisfying assignment.

An algorithm solving the SAT problem for a given formula is called a SAT
solver. The research on practically applicable SAT solvers brought forward two
major paradigms: DPLL which is based on DP [4] and SLS which is based
on GSAT [21]. The DPLL paradigm covers most solvers following a systematic
search approach for SAT. These solvers usually have the advantage of being
complete, i.e. they will find a solution if one exists or prove that there is none.
However, they are usually comparatively slow and need considerable amounts of
memory. Memory limitations often result in the DPLL solver’s inability to solve
formulas above a certain size. The counterpart for DPLL is the SLS paradigm.
It covers all solvers following a local search approach for SAT. These approaches
have the disadvantage of being incomplete, i.e. they cannot prove unsatisfiability.
However, they are comparatively fast on satisfiable formulas and need just a
modest amount of memory. The low memory requirements of SLS solvers allow
them to solve formulas that are out of reach for DPLL solvers.

Since DPLL and SLS seem to complement each other, approaches have been
made to hybridize both paradigms. A hybrid SAT solver would then inherit
?? Funded by the Graduate School Mathematical Analysis of Evolution, Information

and Complexity at Ulm University.



the best of both worlds: it would be complete and it would have an SLS-like
performance on satisfiable formulas allowing it to solve even large ones.

Three major approaches to hybridize SLS and DPLL have been brought
forward. The first approach uses an SLS solver to support a DPLL solver [3, 6–8,
17]. The second approach uses a DPLL solver to support an SLS solver [5, 9, 14].
The third approach is peer-like, where the SLS and DPLL solvers are supposed
to benefit equally from each other [6, 15].

Up to this point in research, no truly superior hybrid SAT solver had emerged.
The above cited hybrid solvers either suffered on satisfiable formulas, not being
able to compete with their SLS component, or on unsatisfiable formulas, not
being able to compete with their DPLL component. An approach to create a
peer-like hybrid solver for uniform random k-SAT is hybridGM [1]. hybridGM is
an incomplete hybrid SAT solver that outperforms its SLS component.

Briefly described, hybridGM works by moving the focus of the DPLL-search
towards areas in which very good local minima, i.e. assignments that leave only
one clause unsatisfied, are found. If a formula is satisfiable, chances are to find a
satisfying assignment around such minima. hybridGM’s DPLL component then
completely checks these areas of the search space. In comparison, the hybrid’s
DPLL component checks many more assignments in these areas than the SLS
solver would. As a result, the hybrid solver is unlikely to “miss” solutions close
to such minima. The probability for the hybrid to find a solution, as soon as its
SLS component moved close to it, raises in comparison to a pure SLS approach.
This in turn compensates for the additional solving time performed with the
DPLL component and often grants a speed-up to the hybrid solver [1].

However, hybridGM does not save the information that specific parts of the
search space do not contain a solution. This results in the incompleteness of this
solver even though it has the ability to perform a DPLL search. Since hybridGM
is of fundamental relevance to this work, we will explain it later in more detail.

1.1 Aim and Structure of this Work

The aim of this work is to create a complete hybrid SAT solver, called SATUN,
that is competitive with its SLS component on satisfiable formulas, and that is
competitive with its DPLL component on unsatisfiable formulas.

The approach behind SATUN is to perform local search as it is done by
hybridGM, but for a limited amount of time. The limit is set in a way that
gives local search a reasonable chance to find a satisfying assignment. In case
the formula is satisfiable, this will result in a performance competitive with the
hybrid’s SLS component. As soon as the limit is reached, the formula is expected
to be unsatisfiable. SATUN’s DPLL component will then perform a search on the
complete search space of the formula to confirm that assumption.

However, a hybrid solver strictly following the above approach will always
be inferior to its DPLL component on unsatisfiable formulas. The local search
in the beginning is performed in vain because it cannot detect unsatisfiability.
The hybrid’s DPLL component will need to detect the unsatisfiability, but it



is started with the delay produced by the local search. The pure DPLL starts
without a delay and will therefore always be faster than the hybrid.

In order to overcome that problem, SATUN will extend the above approach,
by making use of the local search on unsatisfiable formulas as well. It will gather
additional information on the formula during local search, which is later used
by the hybrid’s DPLL component. The hope is that this additional information
grants a speed-up to the hybrid’s DPLL, and that this speed-up is large enough
to compensate for the search time of the local search. In this way, SATUN would
have an SLS like performance on satisfiable formulas, while not necessarily being
inferior to its DPLL component on unsatisfiable formulas.

The remainder of this paper is structured as follows. In Section 2 we will dis-
cuss the way hybridGM works and use this as a basis to explain the functioning of
SATUN in Section 3. We will then present an empirical study to provide evidence
for the superiority of SATUN in Section 4. A conclusion is given in Section 5.

2 hybridGM

hybridGM is an incomplete hybrid SAT solver that consists of the SLS component
gNovelty+ [18] and the DPLL component March ks [10]. For readers not familiar
with these solvers we suggest [8, 10, 18].

2.1 Basic terminology for hybridGM

We will now give the necessary terminology to explain hybridGM [1].
Let F be a k-CNF formula containing n variables {x1, x2, . . . , xn} = V. Let

α ∈ {0, 1}n be a complete assignment of F . The application of the assignment
α on formula F is denoted by F (α) ∈ {0, 1}. Let β ∈ {0, 1, ?}n be a partial
assignment. The application of a partial assignment β on F is denoted by F (β),
where F (β) is a new formula in which, for each i ∈ {1, . . . , n}, the value of βi

is assigned to xi if βi ∈ {0, 1} and xi remains unassigned if βi =?. Additionally,
we assume that the immediate simplifications have been applied to F (β).

Example 1. For the 3-CNF formula
F = (x1∨x2∨x5)∧ (x1∨x3∨x5)∧ (x3∨x4∨x5)∧ (x2∨x3∨x4)∧ (x1∨x2∨x5)
an example for α and β could be α = (1, 0, 1, 1, 0) and β = (?, 1, 1, ?, ?). Applying
α and β on F yields: F (α) = 1 and F (β) = (x1 ∨ x5) ∧ (x4 ∨ x5) ∧ (x1 ∨ x5).

In the following, let S be an SLS solver, let F be a k-CNF formula with n
variables from set V, and let α(0) be a complete assignment for F .

Definition 1 (flip trajectory). We define a sequence of flips TS(F, α(0)) =
(t1, . . . , tw) (with w ∈ N ∪ {∞}, tj ∈ V), that S performs when it searches on F
starting from α(0), as a flip trajectory of S on F using α(0).

Example 2. Given the formula from example 1 and a starting assignment α(0) =
(0, 1, 0, 0, 0), a possible flip trajectory that would lead to the satisfying assign-
ment α(4) = (1, 0, 1, 0, 1) could be TS(F, α(0)) = (x1, x5, x3, x2).



Definition 2 (search space partition). Let d ∈ {1, . . . , n} be an arbitrary but
fixed threshold constant. Let TS(F, α(0)) = (t1, . . . , tw) be a flip trajectory, and let
α(j) be the assignment that is visited by S in flip j. Furthermore, let j0 (0 ≤ j0 ≤
min{w−j, j−1}) be the largest number, such that |{tj−j0 , . . . , tj+j0}| ≤ d. Define
the search space partition (SSP) of α(j) as the partial assignment β ∈ {0, 1, ?}n,
such that

βr =

{
?, if xr ∈ {tj−j0 , . . . , tj+j0}
α

(j)
r , otherwise.

Example 3. Let F be a k-CNF formula with 10 variables. Let d = 5. Given the
flip trajectory

TS(F, α(0)) = (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, . . .)
= (x2, x6, x1, x9, x1, x6,x1, x3, x9, x1, x1, x8, x3, . . .),

and the complete assignment in flip j = 7, α(7) = (0, 0, 1, 1, 0, 1, 0, 1, 1, 1), we
create the SSP β as follows. First we set β = α(7). Then we must find the largest
j0 such that |{t7−j0 , . . . , t7+j0}| ≤ d = 5. We do so by starting with j0 = 0
and incrementing it as long as the condition holds. With j0 = 5 we have found
the largest j0 such that |{t7−5, . . . , t7+5}| = |{x6, x1, x9, x3, x8}| ≤ 5, and these
variables are set to ? in β. The resulting SSP is β = (?, 0, ?, 1, 0, ?, 0, ?, ?, 1).

2.2 The functioning of hybridGM

hybridGM starts its search on F from a random complete assignment α(0) in
its SLS component. The search is performed by flipping variable assignments,
yielding complete assignments α(j), until one of the following cases occurs. Case
one, F (α(j)) = 1. In this case the search is finished and α(j) is a satisfying
assignment for F . Case two, the number of unsatisfied clauses in F (α(j)) equals
1. In that case, we construct a SSP β around α(j), as explained in the previous
section.

As soon as SSP β has been constructed, F (β) is handed over to the DPLL
component which will determine if it is satisfiable. The DPLL solver will basically
try to find assignments to all the unassigned variables in β to solve the sub-
formula F (β). In case the DPLL solver succeeds, it can return β′, containing β
and the additionally assigned variables, which is a satisfying assignment for the
original formula F . In this case, the search is finished.

In case the DPLL solver can not extend β to a satisfying assignment for F (β)
(the sub-formula is unsatisfiable), the search continues in the SLS component as
described above. The SSP β as well as the information that it does not contain
a solution is not stored. Therefore, hybridGM is incomplete.

The reason why this works out well on satisfiable formulas is the following.
In [22], it was shown that the number of unsatisfied clauses under a given as-
signment is correlated to the hamming distance to the nearest solution. Because
a partition contains an assignment which leaves only one clause unsatisfied,
chances are that a solution can be found within that partition. Since the DPLL



component is performing a complete search on that partition, it will find a solu-
tion if one exists. In contrast, the pure SLS approach is not guaranteed to find a
solution from this part of the search space. Furthermore, the search of the DPLL
finishes quickly because a partition significantly reduces the formula, leaving a
simplified remainder that the DPLL can handle easily.

We will now continue to explain SATUN, the successor of hybridGM.

3 SATUN

Before we go into any detail about the functioning of SATUN, we will briefly cover
the solver March hi [11], as it is the DPLL component of SATUN. Furthermore,
March hi introduced a new variable selection heuristic based on a function called
hi. This function is only applicable for 3-SAT formulas, but the hybrid solver
SATUN will need a similar function for arbitrary k. We therefore generalized the
hi function into h∗i as described in the next section.

3.1 March hi and the h∗
i function

The DPLL solver March hi [11] is the successor of March ks [10]. March hi won
the uniform random UNSAT category of the SAT 2009 Competition [19] and
thereby proved, that it is the most successful solver on unsatisfiable uniform
random k-SAT formulas. We decided to use this DPLL solver in the design of
the new SATUN solver because the DPLL component in the new hybrid is also
responsible for proving a formula to be unsatisfiable. The major improvement
of March hi is its new variable selection heuristic, which is based on the hi

function. The original hi function is only applicable for 3-SAT, but SATUN will
need to compute the hi function for arbitrary k-SAT formulas. We therefore
generalized hi into h∗i as follows.

Given a k-CNF formula F with n variables V = {x1, . . . , xn}. The set of the
2n literals for F is L = {¬x1, x1, . . . ,¬xn, xn}. Define h∗i : L → R recursively:

h∗0(x) = 1

si+1 =
1

2n
·
∑
x∈L

h∗i (x)

h∗i+1(x) =
k∑

l=2

kk−l

sl−1
i+1

∑
(x∨xa1∨...∨xal−1 )∈F

h∗i (¬xa1) · . . . · h∗i (¬xal−1)

The inner sum is taken over all clauses (x ∨ xa1 ∨ . . . ∨ xal−1) of length l in the
formula F that contain literal x and arbitrary literals xa1 , . . . , xal−1 . This is then
multiplied by a scaling factor kk−l

sl−1
i

. The smaller the clause-length l, the larger
the scaling factor. The outer sum is taken over the different clause lengths. It is
hi(x) = h∗i (x) for a 3-SAT formula.

The more small clauses a literal occurs in, the larger its h∗i value. Literals that
often occur together in a clause will affect each other much more, than literals



that rarely occur together in a clause. h∗i therefore respects mutual influence of
literals over multiple clauses. The number i of iterations that are computed will
control how much of that mutual influence is respected when h∗i is computed for
a literal x. The larger i, the more mutual influence is taken into account. We
define the score of a variable using i = 5 as score∗(xj) = h∗5(xj) · h∗5(¬xj).

The idea behind score∗ is to measure how much (transitive) influence a vari-
able has on the formula. The score of a variable then represents its relative
strength to reduce the formula when it is branched upon. The heuristic is to
branch upon the variable with highest score, yielding a strongly reduced for-
mula which is assumed to have the smallest remaining search tree.

We continue to explain the functioning of SATUN in the next section using
the above described h∗i and score∗ functions.

3.2 The functioning of SATUN

In general, SATUN performs search in two phases. In phase one it performs ini-
tialization tasks and an SLS-like search as it is done in hybridGM. Phase one is
also used to gather additional information about the variables of the formula. In
contrast to hybridGM, the time for this SLS search is limited in SATUN. Ideally,
SATUN will find a satisfying assignment if one exists before the limit is reached.
After the limit has been reached the solver enters phase two, in which it performs
a DPLL-like search using the additionally gathered information from phase one.
At the end of phase two SATUN will be able to state whether the investigated
formula has a solution or not.

PHASE 1. For a k-CNF formula F with n variables and m clauses, SATUN
begins with some initialization tasks as follows. It will calculate score∗ for all
variables. We denote the six variables with highest score∗ x1, . . . , x6. For these six
variables, we create a 6× 6 flip-connection-matrix M in which each component
represents a counter initialized to zero. Now SATUN starts its SLS search from a
random complete assignment for F . This search is performed as in hybridGM.

Additionally, SATUN will observe the six variables with highest score∗.
Whenever variable xj is flipped right after xi (with i 6= j) the counter Mi,j

is incremented. The reason, why we have introduced the flip connection matrix
with the fixed size 6 × 6 is that it is unnecessary to observe all possible n × n
variable pairs. The SLS component prefers to flip variables with a high score∗

anyway. Confining the matrix to the variables with highest score therefore ignores
unimportant pairs. Please note, that this has nothing to do with partitioning,
i.e. the creation of SSPs and their processing by the DPLL component.

In short, phase one simply observes which of the variables with highest score
are flipped as a pair, and how often that happens. Phase one is performed until
M contains a specific amount of counts. This is supposed to ensure that the
SLS search in SATUN has a reasonable chance to find a satisfying assignment,
which is usually faster than using a DPLL approach as it is done in phase
two. Furthermore, it ensures that a reasonable amount of counts is recorded,
i.e. enough information about the six variables with highest score∗ has been



gathered. The amount of counts necessary is given by the hit-count-condition,
which has been determined empirically:

6∑
i=1

6∑
j=1

M(i, j) ≥ 36 · m
n
· 10
k − 2

Phase one is completed as soon as the hit-count-condition holds. Since the vari-
ables with highest score are flipped quite often by the SLS solver, and the pair-
wise flips indeed occur, the hit-count-condition will hold at some point. We then
expect the formula to be unsatisfiable and continue with phase two.

PHASE 2: We define pairsum(xi, xj) :=Mi,j +Mj,i. At the start of phase
two, SATUN will identify i, j ∈ {1, . . . , 6} for which the pairsum(xi, xj) is largest.
This represents the pair for which the variables got flipped “together” most often
(either xi right after xj or vice versa).

From the chosen pair (xi, xj), the hybrid solver now picks the variable with
higher score∗ (let this be xi), and creates two sub-formulas. Formula F0 is created
by assigning xi = 0 in F , and formula F1 is created by assigning xi = 1 in F .
Since we do this branch before invoking the DPLL (one could say manually) we
call this technique manual branching.

The formulas F0 and F1 are now sequentially handed over to the DPLL
component. If it can find a solution to either of them, the formula F must be
satisfiable, and a solution can be presented. If both formulas F0 and F1 are proven
to be unsatisfiable, then F must be unsatisfiable. For most formulas the second
case (both unsatisfiable) will occur because the SLS component is supposed to
find a solution for F within phase one.

The time needed by the DPLL to prove both sub-formulas to be unsatisfiable
is supposed to be smaller than the time needed to prove the original formula to
be unsatisfiable. This is supposed to compensate for the SLS search in phase one.
In other words, the identification of a branching variable, that grants a speed up
to the DPLL in the unsatisfiable case, allows us to try local search first to find
a satisfying assignment – even on unsatisfiable formulas. For an overview of the
functioning of SATUN, see Figure 1.

It is, however, not yet clear why manually branching on variable xi results
in a faster unsat-proof. An explanation follows in the next section.

3.3 Why manual branching works

The variable with highest score∗ has the most transitive influence on the formula.
One could expect it to be the globally best choice for the first branching variable.
In order to test this, we have performed an experiment as follows.

Given an unsatisfiable formula F with n variables in set V. Create n separate
manual branches on all the variables xj ∈ V. This yields two sub-formulas per
branch which we call F j

0 and F j
1 . Now F is proven to be unsatisfiable by proving

both F j
0 and F j

1 to be unsatisfiable using a DPLL solver. The DPLL solver
will need a finite number of search nodes to show that each sub-formula F j

i is



load formula, create random 
starting assignment a

F(a) = 1

TRUE

FA
L

S
E

Set b  : x        0
Set b  : x        1

DPLL(F(b ))
= 1

T
R

U
E

0

1

iFA
L

S
E

calculate score* and

initialize M

do one SLS flip

and update M

output a as
satisfying 
assignment

hit-
count-

condition
holds

TRUE

FA
L

S
E

if
single unsat

clause in
F(a)

T
R

U
E

FALSE

Pick manual 
branching var. x

create SSP b (requires 
multiple flips)

DPLL(F(b))
= 1

output b‘ as
satisfying assignment

TRUE

FALSE

output F
unsatis-
fiable

output b ‘ as
satisfying 
assignment

i

Partitioning

Manual Branching

SLS

Hybrid core

i=0
or i=1:

Fig. 1. An overview of the functioning of SATUN. See text for details. Pleas note, that a
SSP β, that contains a satisfying assignment, must be extended to such an assignment
by the DPLL in order to be a valid solution. We denote this extension by β′.

unsatisfiable. Let us denote this number with νj
i . The total amount of search

nodes, which is then needed to prove F unsatisfiable when using xj as first
branching variable, is νj = νj

0 + νj
1 .

We can now compare νj for all the branching variables xj . The smaller νj is,
the less search nodes are needed by the DPLL to prove F unsatisfiable. This in
turn will result in a shorter computation time for the DPLL. One would expect
the variable with highest score∗ to yield the smallest νj , but this is not always
the case. In other words: the variable that is expected to reduce the formula
the most when branched upon is not necessarily the one that yields the smallest
remaining search tree. One is often able to identify a better branching variable
among the first six variables with highest score∗.

score∗ does not state how small further search trees will be. It just gives
relative reduction strengths for all the remaining variables for the currently in-
vestigated formula. The assumption, that the strongest immediate reduction of
the formula yields the overall smallest search tree, is usually not true. In order
to choose the best variable to branch upon, one would need to predict the size
of the further search trees, which is, for example, represented by νj . However,
the νj values are not know a priori, and their computation already requires to
prove the formula to be unsatisfiable.

In general, a DPLL solver should try to identify conflicts close to the root of
its search tree. This will enable it to prune a considerable amount of the search
space early during the search, which in turn results in a faster search. Ideally, it
should branch on variables appearing in the smallest conflict within the formula.

The flips performed by the SLS solver represent a local decision. Since the
SLS solver usually deals with assignments that satisfy almost all clauses from the



formula, these decisions often represent how the SLS solver tried to overcome
a local conflict, i.e. a conflict of the current variable assignments. When two
variables are often flipped as a pair then they must somehow be connected. In
a CNF formula, a connection between variables is given in the form of clauses.
The fact that these variables have been flipped together very often is what makes
the corresponding clauses, that create this connection, important. These clauses
are expected to participate in a conflict that the SLS solver cannot seem to
overcome. The reason for a variable pair to get flipped more often than others
is expected to be that the respective clauses appear in relatively many conflicts,
or that conflicts in which the respective clauses appear are rather small.

Therefore, branching on a variable from the mentioned variable pair is sup-
posed to enable the DPLL solver to detect a conflict sooner. This leads to an
earlier pruning of parts of the search space, which in turn reduces the necessary
search nodes of the binary search tree. As a result, the DPLL will finish its com-
putations sooner. One could say that the variables from the most often flipped
variable pair represent the locally best choice for the first branching variable.

The observation during phase one of the manual branching is confined to
the six variables with highest score, from which we pick a pair that is flipped
most often. This is a compromise of the globally and locally best choice for the
first branching variable that respects both intuitions explained above. A variable
with a high score∗ will reduce the formula the most and will therefore yield a
small remaining search tree, and a variable from the most often flipped pair will
lead the search into a conflict sooner, yielding a smaller remaining search tree.

An empirical study of SATUN’s performance is presented in the next section.

4 Empirical Study

Soft- and Hardware: In order to perform the empirical study, we used the
SLS solver gNovelty+ [18] in the version of the SAT 2007 Competition, the
DPLL double-lookahead solver March hi [11] in the version of the SAT 2009
Competition, and the incomplete hybrid solver hybridGM [1] (version 7) of the
SAT 2009 Competition. These solvers can be downloaded from [19], and will be
the reference solvers for the new hybrid solver SATUN. SATUN can be downloaded
from [20].

The hardware used was the BWgrid [2] in Baden-Württemberg, Germany. It
provided us with 24 Intel Harpertown quad-core CPUs with 2.83 Ghz and 8GB
RAM each. The operating system was Scientific Linux.

Benchmark: The empirical study was performed on uniform random k-
SAT formulas from the SAT 2009 Competition uniform random benchmark [19].
Our benchmark consists of 3, 5, 7-SAT formulas; some satisfiable and some un-
satisfiable. For each category (sat or unsat), we picked three formulas for each
constellation of k and n. This results in 57 medium-sized satisfiable formulas, 57
medium-sized unsatisfiable formulas, and 57 large-sized satisfiable formulas.



We performed 100 runs for each satisfiable formula with the randomized
solvers (gNovelty+, hybridGM, and SATUN), as well as one run with the deter-
ministic solver March hi. Please see the following table for timeout settings.

As results of the randomized solvers, we will present the mean and median
runtime in seconds “mean | median” if the solver succeeded in all runs, and the
success rate in percent if the solver did not succeed in all runs. For the hybrid
solver hybridGM we also present a tuple that states which component of the
hybrid found the solution (gNovelty+, March ks). For SATUN, we present a tuple
(gNovelty+, March hi with partitioning, March hi with manual branching) that
states which component of the hybrid found the solution, but we also distinguish
whether the DPLL component found the solution during partitioning or manual
branching. In case a solver did not succeed in any of its runs, we write “TO”.

For each unsatisfiable formula, we have performed 1 run with March hi and
5 runs with SATUN. It was necessary to perform several runs with SATUN because
manual branching could identify different variables for the first branch in differ-
ent runs, which results in different runtimes to prove the formula unsatisfiable.

The gain-values present a difference of the mean runtime in seconds, where
the “Gain SLS” value presents the difference between gNovelty+ and SATUN, and
the “Gain DPLL” value presents the difference between March hi and SATUN.
We print negative gain-values whenever SATUN was slower, and we print bold
positive gain-values whenever it was faster. In case one of the compared solvers
did not achieve a success rate of 100%, we print “� 0” whenever SATUN had a
better success rate, we print “� 0” whenever it had a worse success rate, and
we print “= 0” whenever the solvers had equal success rates.

The line “Time difference in total” at the end of each benchmark category
contains the sum over all runs in that benchmark category where both solvers
had a 100% success rate. This line should give the reader an idea of the overall
performance of SATUN on the respective benchmark class.

Instance SLS
gNovelty+

DPLL
March hi

hybridGM7
(gNov,March)

SATUN
(gNov,March,MB)

Gain
SLS

Gain
DPLL

Results of the selected medium-sized satisfiable formulas (Timeout: 16000 seconds per run)
k3-v360-S1293537826 0, 05 | 0, 05 10, 41 0, 05 | 0, 04 (75, 25) 0, 07 | 0, 06 (47, 53, 0) -0,02 10, 3410, 3410, 34
k3-v360-S144043535 0, 01 | 0, 01 1, 27 0, 01 | 0, 01 (97, 3) 0, 02 | 0, 02 (82, 18, 0) -0,01 1, 251, 251, 25
k3-v360-S722433227 0, 01 | 0, 01 4, 44 0, 02 | 0, 02 (93, 7) 0, 04 | 0, 02 (82, 18, 0) -0,03 4, 404, 404, 40
k3-v380-S1841979702 0, 02 | 0, 02 5, 69 0, 03 | 0, 02 (78, 22) 0, 04 | 0, 03 (59, 41, 0) -0,02 5, 655, 655, 65
k3-v380-S1912687159 0, 00 | 0, 01 1, 59 0, 01 | 0, 01 (95, 5) 0, 02 | 0, 01 (89, 11, 0) -0,02 1, 571, 571, 57
k3-v380-S1985172968 0, 05 | 0, 04 0, 22 0, 05 | 0, 03 (84, 16) 0, 09 | 0, 06 (60, 40, 0) -0,03 0, 130, 130, 13
k3-v400-S142096783 0, 18 | 0, 12 8, 14 82% (63, 19) 0, 21 | 0, 13 (29, 71, 0) -0,03 7, 937, 937, 93
k3-v400-S714125262 0, 10 | 0, 08 39, 39 0, 11 | 0, 10 (75, 25) 0, 34 | 0, 10 (61, 38, 1) -0,24 39, 0439, 0439, 04
k3-v400-S981523907 0, 02 | 0, 02 2, 49 0, 03 | 0, 02 (85, 15) 0, 06 | 0, 03 (68, 32, 0) -0,03 2, 432, 432, 43
k3-v420-S1362286908 0, 01 | 0, 01 2, 62 0, 01 | 0, 02 (80, 20) 0, 03 | 0, 02 (47, 53, 0) -0,01 2, 592, 592, 59
k3-v420-S1460100153 0, 00 | 0, 01 0, 61 0, 01 | 0, 01 (92, 8) 0, 03 | 0, 02 (82, 18, 0) -0,03 0, 570, 570, 57
k3-v420-S1624574519 0, 13 | 0, 11 25, 97 0, 14 | 0, 08 (71, 29) 0, 11 | 0, 08 (36, 64, 0) 0, 020, 020, 02 25, 8625, 8625, 86
k3-v440-S110290755 0, 50 | 0, 38 33, 79 0, 31 | 0, 24 (47, 53) 0, 17 | 0, 13 (10, 90, 0) 0, 320, 320, 32 33, 6133, 6133, 61
k3-v440-S1112524719 0, 16 | 0, 14 6, 67 0, 21 | 0, 17 (64, 36) 0, 67 | 0, 16 (61, 35, 4) -0,51 6, 006, 006, 00
k3-v440-S1263695887 0, 01 | 0, 01 2, 71 0, 02 | 0, 02 (87, 13) 0, 02 | 0, 02 (68, 32, 0) -0,01 2, 692, 692, 69
k3-v460-S1367181683 0, 18 | 0, 12 185, 25 0, 20 | 0, 17 (74, 26) 0, 68 | 0, 36 (75, 25, 0) -0,50 184, 57184, 57184, 57
k3-v460-S1546885609 0, 11 | 0, 10 0, 22 0, 13 | 0, 10 (67, 33) 0, 14 | 0, 08 (52, 48, 0) -0,03 0, 070, 070, 07
k3-v460-S1555503917 0, 02 | 0, 02 41, 02 0, 04 | 0, 04 (82, 18) 0, 06 | 0, 03 (64, 36, 0) -0,03 40, 9640, 9640, 96
k3-v480-S1924575376 0, 02 | 0, 02 11, 56 0, 03 | 0, 03 (74, 26) 0, 05 | 0, 04 (53, 47, 0) -0,03 11, 5111, 5111, 51
k3-v480-S2069223517 0, 73 | 0, 54 22, 70 0, 55 | 0, 44 (72, 28) 0, 62 | 0, 46 (51, 49, 0) 0, 100, 100, 10 22, 0822, 0822, 08
k3-v480-S449556655 0, 04 | 0, 03 63, 69 0, 04 | 0, 03 (86, 14) 0, 06 | 0, 04 (67, 33, 0) -0,01 63, 6363, 6363, 63
k3-v500-S602463346 0, 04 | 0, 03 15, 44 0, 05 | 0, 04 (70, 30) 0, 06 | 0, 04 (68, 32, 0) -0,01 15, 3815, 3815, 38
k3-v500-S658989873 0, 06 | 0, 04 126, 99 0, 07 | 0, 06 (72, 28) 0, 13 | 0, 07 (63, 37, 0) -0,07 126, 86126, 86126, 86
k3-v500-S95953046 0, 04 | 0, 03 38, 31 0, 05 | 0, 03 (65, 35) 0, 06 | 0, 05 (59, 41, 0) -0,01 38, 2538, 2538, 25
k3-v520-S227954525 0, 07 | 0, 06 685, 32 0, 08 | 0, 06 (87, 13) 0, 13 | 0, 08 (92, 8, 0) -0,06 685, 19685, 19685, 19
k3-v520-S247943532 0, 18 | 0, 14 201, 59 0, 21 | 0, 16 (65, 35) 0, 14 | 0, 09 (57, 43, 0) 0, 030, 030, 03 201, 45201, 45201, 45
k3-v520-S621134782 0, 01 | 0, 01 3, 50 0, 01 | 0, 01 (79, 21) 0, 03 | 0, 02 (52, 48, 0) -0,01 3, 473, 473, 47
k3-v540-S1137823545 0, 17 | 0, 12 37, 00 0, 17 | 0, 14 (61, 39) 0, 27 | 0, 20 (41, 59, 0) -0,10 36, 7236, 7236, 72
k3-v540-S2142680239 0, 24 | 0, 19 420, 13 0, 24 | 0, 19 (75, 25) 0, 28 | 0, 18 (71, 29, 0) -0,04 419, 85419, 85419, 85
k3-v540-S449511205 0, 84 | 0, 65 3448, 97 1, 22 | 0, 77 (89, 11) 2, 60 | 1, 89 (93, 7, 0) -1,76 3446, 373446, 373446, 37



Instance SLS
gNovelty+

DPLL
March hi

hybridGM7
(gNov,March)

SATUN
(gNov,March,MB)

Gain
SLS

Gain
DPLL

k3-v560-S1429776379 0, 03 | 0, 04 147, 81 0, 04 | 0, 03 (80, 20) 0, 10 | 0, 05 (56, 44, 0) -0,07 147, 71147, 71147, 71
k3-v560-S1876865608 0, 02 | 0, 02 3, 82 0, 03 | 0, 02 (78, 22) 0, 04 | 0, 03 (63, 37, 0) -0,02 3, 783, 783, 78
k3-v560-S1879859331 0, 11 | 0, 08 331, 74 0, 14 | 0, 10 (80, 20) 0, 14 | 0, 10 (73, 27, 0) -0,03 331, 60331, 60331, 60
k5-v100-S1707873242 0, 01 | 0, 01 104, 51 0, 01 | 0, 02 (99, 1) 0, 05 | 0, 04 (64, 36, 0) -0,04 104, 46104, 46104, 46
k5-v100-S1772254584 0, 02 | 0, 02 32, 47 0, 02 | 0, 02 (97, 3) 0, 03 | 0, 03 (83, 17, 0) 0,00 32, 4432, 4432, 44
k5-v100-S282405510 0, 06 | 0, 04 28, 40 0, 06 | 0, 05 (100, 0) 0, 14 | 0, 10 (95, 5, 0) -0,08 28, 2628, 2628, 26
k5-v110-S1376127278 0, 58 | 0, 42 1788, 01 0, 56 | 0, 39 (100, 0) 1, 12 | 0, 74 (100, 0, 0) -0,54 1786, 891786, 891786, 89
k5-v110-S1481888618 0, 01 | 0, 02 299, 11 0, 01 | 0, 02 (99, 1) 0, 03 | 0, 02 (80, 20, 0) -0,01 299, 08299, 08299, 08
k5-v110-S1492329924 1, 73 | 1, 04 1793, 71 1, 74 | 1, 04 (100, 0) 2, 63 | 2, 05 (100, 0, 0) -0,89 1791, 081791, 081791, 08
k5-v120-S1017443264 0, 75 | 0, 53 51, 62 0, 77 | 0, 55 (100, 0) 3, 38 | 1, 16 (97, 0, 3) -2,63 48, 2348, 2348, 23
k5-v120-S1153031014 0, 75 | 0, 65 5659, 62 0, 75 | 0, 64 (96, 4) 1, 04 | 0, 88 (88, 12, 0) -0,29 5658, 585658, 585658, 58
k5-v120-S1163324878 0, 04 | 0, 03 187, 29 0, 05 | 0, 03 (95, 5) 0, 21 | 0, 12 (67, 33, 0) -0,17 187, 08187, 08187, 08
k5-v90-S1040456712 0, 01 | 0, 02 2, 56 0, 02 | 0, 02 (100, 0) 0, 06 | 0, 03 (99, 1, 0) -0,05 2, 502, 502, 50
k5-v90-S1159550149 0, 04 | 0, 03 9, 05 0, 04 | 0, 03 (100, 0) 0, 15 | 0, 10 (97, 3, 0) -0,10 8, 908, 908, 90
k5-v90-S1568932519 0, 05 | 0, 05 0, 19 0, 06 | 0, 05 (100, 0) 0, 26 | 0, 18 (74, 26, 0) -0,21 -0,07
k7-v60-S1514821049 0, 68 | 0, 52 124, 99 0, 69 | 0, 51 (100, 0) 1, 30 | 0, 98 (94, 6, 0) -0,62 123, 69123, 69123, 69
k7-v60-S1639151107 0, 20 | 0, 13 6, 18 0, 20 | 0, 13 (100, 0) 0, 46 | 0, 25 (100, 0, 0) -0,26 5, 725, 725, 72
k7-v60-S178043354 0, 60 | 0, 32 88, 46 0, 61 | 0, 32 (100, 0) 1, 31 | 0, 70 (100, 0, 0) -0,71 87, 1587, 1587, 15
k7-v65-S1146593655 2, 01 | 1, 38 768, 20 2, 02 | 1, 25 (100, 0) 3, 65 | 2, 60 (99, 0, 1) -1,64 764, 55764, 55764, 55
k7-v65-S1223878722 0, 72 | 0, 55 264, 77 0, 72 | 0, 54 (100, 0) 1, 37 | 1, 00 (98, 2, 0) -0,65 263, 39263, 39263, 39
k7-v65-S1645769281 1, 34 | 0, 99 625, 16 1, 23 | 0, 87 (99, 1) 2, 01 | 1, 38 (99, 1, 0) -0,66 623, 15623, 15623, 15
k7-v70-S603077945 1, 90 | 1, 30 384, 40 1, 67 | 1, 27 (100, 0) 2, 32 | 1, 64 (100, 0, 0) -0,41 382, 08382, 08382, 08
k7-v70-S754967851 1, 93 | 1, 30 1263, 36 1, 99 | 1, 31 (100, 0) 3, 92 | 2, 69 (100, 0, 0) -1,99 1259, 431259, 431259, 43
k7-v70-S834811574 1, 08 | 0, 77 949, 80 1, 10 | 0, 79 (100, 0) 2, 12 | 1, 48 (100, 0, 0) -1,04 947, 68947, 68947, 68
k7-v75-S1402156840 8, 05 | 4, 86 2628, 17 7, 83 | 4, 68 (100, 0) 4, 28 | 3, 52 (100, 0, 0) 3, 773, 773, 77 2623, 892623, 892623, 89
k7-v75-S1640054673 4, 21 | 2, 88 7894, 37 4, 00 | 2, 63 (100, 0) 5, 62 | 2, 88 (98, 0, 2) -1,41 7888, 757888, 757888, 75
k7-v75-S1988754311 1, 95 | 1, 28 8356, 44 1, 96 | 1, 25 (100, 0) 3, 40 | 2, 29 (100, 0, 0) -1,45 8353, 048353, 048353, 04
Time differences in total for medium-sized satisfiable formulas: −15.38 39193.4639193.4639193.46

Results of the selected medium-sized unsatisfiable formulas (Timeout 16000 seconds per run)
k3-v360-S1028159446 TO 4, 65 TO 7, 07 | 7, 05 (0, 0, 5) � 0� 0� 0 -2,42
k3-v360-S1369720750 TO 5, 41 TO 21, 06 | 20, 42 (0, 0, 5) � 0� 0� 0 -15,64
k3-v360-S1906521511 TO 5, 60 TO 11, 72 | 11, 89 (0, 0, 5) � 0� 0� 0 -6,12
k3-v380-S1580204273 TO 39, 35 TO 46, 94 | 47, 13 (0, 0, 5) � 0� 0� 0 -7,58
k3-v380-S1694258328 TO 29, 23 TO 29, 62 | 29, 61 (0, 0, 5) � 0� 0� 0 -0,39
k3-v380-S1700363952 TO 13, 94 TO 30, 17 | 28, 93 (0, 0, 5) � 0� 0� 0 -16,23
k3-v400-S1039370030 TO 19, 39 TO 23, 41 | 23, 36 (0, 0, 5) � 0� 0� 0 -4,01
k3-v400-S104085281 TO 26, 95 TO 30, 60 | 30, 57 (0, 0, 5) � 0� 0� 0 -3,65
k3-v400-S125259973 TO 44, 82 TO 52, 39 | 52, 34 (0, 0, 5) � 0� 0� 0 -7,57
k3-v420-S1136141672 TO 63, 96 TO 70, 52 | 70, 59 (0, 0, 5) � 0� 0� 0 -6,55
k3-v420-S121765931 TO 150, 57 TO 134, 20 | 134, 54 (0, 0, 5) � 0� 0� 0 16, 3716, 3716, 37
k3-v420-S1394036608 TO 32, 13 TO 37, 51 | 37, 49 (0, 0, 5) � 0� 0� 0 -5,37
k3-v440-S1035441377 TO 90, 10 TO 98, 88 | 98, 85 (0, 0, 5) � 0� 0� 0 -8,78
k3-v440-S1350958473 TO 175, 57 TO 192, 62 | 192, 45 (0, 0, 5) � 0� 0� 0 -17,05
k3-v440-S1353993612 TO 70, 76 TO 92, 47 | 92, 40 (0, 0, 5) � 0� 0� 0 -21,70
k3-v460-S1159067237 TO 92, 82 TO 96, 71 | 96, 72 (0, 0, 5) � 0� 0� 0 -3,89
k3-v460-S1249441590 TO 367, 06 TO 422, 88 | 422, 02 (0, 0, 5) � 0� 0� 0 -55,81
k3-v460-S1377066099 TO 310, 57 TO 296, 22 | 294, 74 (0, 0, 5) � 0� 0� 0 14, 3414, 3414, 34
k3-v480-S1007745655 TO 321, 29 TO 345, 90 | 345, 83 (0, 0, 5) � 0� 0� 0 -24,60
k3-v480-S1175850950 TO 455, 76 TO 442, 90 | 450, 86 (0, 0, 5) � 0� 0� 0 12, 8612, 8612, 86
k3-v480-S1524836866 TO 407, 24 TO 410, 16 | 422, 45 (0, 0, 5) � 0� 0� 0 -2,92
k3-v500-S1213077873 TO 584, 34 TO 587, 89 | 587, 01 (0, 0, 5) � 0� 0� 0 -3,54
k3-v500-S1339364096 TO 535, 22 TO 549, 43 | 550, 10 (0, 0, 5) � 0� 0� 0 -14,20
k3-v500-S1731702106 TO 1419, 13 TO 1456, 54 | 1457, 41 (0, 0, 5) � 0� 0� 0 -37,40
k3-v520-S1048138627 TO 1901, 17 TO 1989, 58 | 1989, 61 (0, 0, 5) � 0� 0� 0 -88,40
k3-v520-S1089910525 TO 3195, 53 TO 3072, 96 | 3031, 26 (0, 0, 5) � 0� 0� 0 122, 57122, 57122, 57
k3-v520-S1331813943 TO 1664, 58 TO 1500, 90 | 1498, 76 (0, 0, 5) � 0� 0� 0 163, 67163, 67163, 67
k3-v540-S1077410718 TO 2529, 11 TO 2642, 32 | 2643, 71 (0, 0, 5) � 0� 0� 0 -113,21
k3-v540-S1250067652 TO 1436, 58 TO 1485, 81 | 1543, 50 (0, 0, 5) � 0� 0� 0 -49,23
k3-v540-S1404929091 TO 3892, 16 TO 3567, 78 | 3385, 63 (0, 0, 5) � 0� 0� 0 324, 37324, 37324, 37
k3-v560-S1154116462 TO 7928, 40 TO 7439, 69 | 7081, 28 (0, 0, 5) � 0� 0� 0 488, 71488, 71488, 71
k3-v560-S1750991629 TO 9150, 39 TO 10139, 75 | 10130, 64 (0, 0, 5)� 0� 0� 0 -989,36
k3-v560-S179568577 TO 3838, 20 TO 3571, 52 | 3444, 55 (0, 0, 5) � 0� 0� 0 266, 67266, 67266, 67
k5-v100-S1050568800 TO 347, 02 TO 356, 12 | 356, 25 (0, 0, 5) � 0� 0� 0 -9,10
k5-v100-S1211704640 TO 395, 39 TO 361, 10 | 362, 11 (0, 0, 5) � 0� 0� 0 34, 2834, 2834, 28
k5-v100-S1221988902 TO 373, 68 TO 386, 36 | 386, 24 (0, 0, 5) � 0� 0� 0 -12,68
k5-v110-S102181364 TO 1898, 77 TO 1966, 04 | 1965, 17 (0, 0, 5) � 0� 0� 0 -67,26
k5-v110-S1251522734 TO 1831, 63 TO 1785, 96 | 1791, 08 (0, 0, 5) � 0� 0� 0 45, 6745, 6745, 67
k5-v110-S1736056721 TO 1978, 65 TO 1920, 58 | 1953, 69 (0, 0, 5) � 0� 0� 0 58, 0758, 0758, 07
k5-v120-S1070443005 TO 8114, 91 TO 7800, 32 | 7789, 79 (0, 0, 5) � 0� 0� 0 314, 59314, 59314, 59
k5-v120-S1086008090 TO 8068, 76 TO 7966, 90 | 7938, 79 (0, 0, 5) � 0� 0� 0 101, 86101, 86101, 86
k5-v120-S1481598919 TO 8476, 37 TO 8470, 34 | 8530, 49 (0, 0, 5) � 0� 0� 0 6, 036, 036, 03
k5-v90-S122462268 TO 80, 69 TO 96, 09 | 96, 59 (0, 0, 5) � 0� 0� 0 -15,40
k5-v90-S1305875336 TO 70, 76 TO 76, 28 | 76, 73 (0, 0, 5) � 0� 0� 0 -5,51
k5-v90-S1331382449 TO 81, 40 TO 86, 12 | 87, 19 (0, 0, 5) � 0� 0� 0 -4,71
k7-v60-S108799362 TO 362, 49 TO 387, 67 | 387, 68 (0, 0, 5) � 0� 0� 0 -25,18
k7-v60-S1318210982 TO 351, 41 TO 369, 35 | 369, 09 (0, 0, 5) � 0� 0� 0 -17,93
k7-v60-S1559668863 TO 353, 51 TO 377, 49 | 380, 13 (0, 0, 5) � 0� 0� 0 -23,98
k7-v65-S1171422074 TO 1257, 21 TO 1284, 59 | 1298, 43 (0, 0, 5) � 0� 0� 0 -27,37
k7-v65-S1266438269 TO 1200, 36 TO 1231, 41 | 1226, 60 (0, 0, 5) � 0� 0� 0 -31,05
k7-v65-S1551099861 TO 1234, 59 TO 1260, 28 | 1255, 68 (0, 0, 5) � 0� 0� 0 -25,69
k7-v70-S1758422766 TO 4103, 10 TO 4111, 38 | 4114, 14 (0, 0, 5) � 0� 0� 0 -8,27
k7-v70-S184801254 TO 5186, 28 TO 4147, 13 | 4137, 54 (0, 0, 5) � 0� 0� 0 1039, 141039, 141039, 14
k7-v70-S1900558626 TO 5140, 10 TO 4636, 63 | 4658, 10 (0, 0, 5) � 0� 0� 0 503, 47503, 47503, 47
k7-v75-S1299934729 TO TO TO TO = 0 = 0
k7-v75-S1394630553 TO TO TO 40% (0, 0, 2) � 0� 0� 0 � 0� 0� 0
k7-v75-S1525918493 TO TO TO 60% (0, 0, 3) � 0� 0� 0 � 0� 0� 0
Time differences in total for medium-sized unsatisfiable formulas: � 0� 0� 0 1732.921732.921732.92

Results of the selected large-sized satisfiable formulas (Timeout: 1800 seconds per run)



Instance SLS
gNovelty+

DPLL
March hi

hybridGM7
(gNov,March)

SATUN
(gNov,March,MB)

Gain
SLS

Gain
DPLL

k3-v10000-S1012522562 322, 59 | 273, 80 TO 33, 02 | 26, 45 (23, 77) 52% (50, 3, 0) � 0 � 0� 0� 0
k3-v10000-S1618450766 493, 78 | 391, 94 TO 75, 10 | 47, 96 (37, 63) 33% (25, 8, 0) � 0 � 0� 0� 0
k3-v10000-S1806027711 56, 32 | 45, 74 TO 5, 95 | 5, 20 (44, 56) 57, 72 | 34, 15 (92, 8, 0) -1,39 � 0� 0� 0
k3-v12000-S1089166613 350, 50 | 225, 17 TO 21, 49 | 18, 18 (25, 75) 48% (42, 6, 0) � 0 � 0� 0� 0
k3-v12000-S1510966387 895, 42 | 855, 25 TO 715, 83 | 538, 79 (39, 61) 11% (9, 2, 0) � 0 � 0� 0� 0
k3-v12000-S15767910 608, 85 | 522, 05 TO 66, 01 | 49, 56 (35, 65) 20% (14, 6, 0) � 0 � 0� 0� 0
k3-v14000-S1195310117 936, 11 | 852, 81 TO 281, 20 | 196, 27 (32, 68) 20% (17, 3, 0) � 0 � 0� 0� 0
k3-v14000-S1256544997 856, 02 | 863, 89 TO 112, 44 | 92, 84 (29, 71) 26% (24, 2, 0) � 0 � 0� 0� 0
k3-v14000-S1294530132 79% TO 243, 41 | 185, 55 (31, 69) 20% (18, 2, 0) � 0 � 0� 0� 0
k3-v16000-S1419235015 36% TO 527, 29 | 386, 90 (34, 66) 5% (5, 0, 0) � 0 � 0� 0� 0
k3-v16000-S162003179 703, 80 | 654, 81 TO 47, 36 | 40, 53 (33, 67) 42% (40, 2, 0) � 0 � 0� 0� 0
k3-v16000-S1726986756 844, 87 | 770, 04 TO 65, 43 | 54, 92 (23, 77) 39% (35, 4, 0) � 0 � 0� 0� 0
k3-v18000-S1141213963 95% TO 149, 69 | 118, 93 (27, 73) 23% (20, 3, 0) � 0 � 0� 0� 0
k3-v18000-S1279315365 78% TO 149, 21 | 128, 40 (34, 66) 21% (18, 3, 0) � 0 � 0� 0� 0
k3-v18000-S13321468111003, 03 | 1001, 28 TO 144, 30 | 122, 38 (31, 69) 29% (26, 3, 0) � 0 � 0� 0� 0
k3-v2000-S1075551507 0, 34 | 0, 26 TO 0, 30 | 0, 21 (55, 45) 0, 64 | 0, 44 (56, 44, 0) -0,30 � 0� 0� 0
k3-v2000-S1337875718 0, 84 | 0, 61 TO 0, 96 | 0, 69 (53, 47) 1, 20 | 0, 81 (54, 46, 0) -0,36 � 0� 0� 0
k3-v2000-S136987316 0, 64 | 0, 43 TO 0, 42 | 0, 31 (51, 49) 1, 73 | 0, 66 (54, 46, 0) -1,08 � 0� 0� 0
k3-v4000-S1203268705 3, 77 | 2, 36 TO 1, 27 | 1, 08 (39, 61) 11, 30 | 3, 43 (50, 50, 0) -7,53 � 0� 0� 0
k3-v4000-S1271018787 3, 19 | 2, 53 TO 1, 08 | 0, 85 (42, 58) 7, 59 | 3, 29 (53, 47, 0) -4,40 � 0� 0� 0
k3-v4000-S139794312 7, 32 | 6, 32 TO 2, 86 | 2, 23 (48, 52) 17, 52 | 9, 81 (45, 55, 0) -10,19 � 0� 0� 0
k3-v6000-S1119314619 26, 13 | 18, 38 TO 5, 34 | 4, 27 (47, 53) 239, 42 | 50, 40 (56, 44, 0) -213,29 � 0� 0� 0
k3-v6000-S1490060417 16, 65 | 11, 79 TO 2, 84 | 2, 40 (39, 61) 210, 51 | 56, 28 (53, 47, 0) -193,86 � 0� 0� 0
k3-v6000-S1629487320 110, 10 | 60, 74 TO 100, 55 | 63, 83 (37, 63)260, 96 | 162, 32 (67, 33, 0)-150,85 � 0� 0� 0
k3-v8000-S1741784682 110, 58 | 82, 36 TO 12, 77 | 9, 71 (37, 63) 85% (56, 29, 0) � 0 � 0� 0� 0
k3-v8000-S1760662955 154, 59 | 100, 04 TO 27, 36 | 23, 69 (30, 70) 432, 16 | 214, 21 (57, 43, 0)-277,57 � 0� 0� 0
k3-v8000-S195213520 47, 62 | 19, 44 TO 3, 39 | 2, 94 (30, 70) 295, 97 | 32, 09 (66, 34, 0) -248,35 � 0� 0� 0
k5-v1000-S1040507052 3% TO 19% (16, 3) 1% (1, 0, 0) � 0 � 0� 0� 0
k5-v1000-S1284372491 10% TO 24% (18, 6) 1% (1, 0, 0) � 0 � 0� 0� 0
k5-v1000-S1322153318 1% TO 11% (10, 1) TO � 0 = 0
k5-v1100-S115851319 20% TO 68% (55, 13) 5% (4, 1, 0) � 0 � 0� 0� 0
k5-v1100-S1441840675 1% TO 6% (5, 1) 1% (1, 0, 0) = 0 � 0� 0� 0
k5-v1100-S144924920 49% TO 2087, 03 | 1662, 11 (72, 28) 7% (4, 3, 0) � 0 � 0� 0� 0
k5-v700-S1018145191 580, 18 | 474, 90 TO 464, 83 | 299, 10 (86, 14) 34% (21, 13, 0) � 0 � 0� 0� 0
k5-v700-S1192890414 49, 10 | 33, 21 TO 29, 09 | 21, 15 (82, 18) 29, 19 | 25, 84 (59, 41, 0) 19, 9119, 9119, 91 � 0� 0� 0
k5-v700-S1281410666 572, 06 | 479, 54 TO 639, 42 | 392, 69 (86, 14) 31% (24, 7, 0) � 0 � 0� 0� 0
k5-v800-S1183359164 606, 63 | 487, 66 TO 636, 78 | 409, 99 (81, 19) 31% (25, 6, 0) � 0 � 0� 0� 0
k5-v800-S1185462553 12% TO 42% (37, 5) TO � 0 = 0
k5-v800-S1353769076 47% TO 2749, 04 | 1795, 46 (88, 12) 7% (3, 4, 0) � 0 � 0� 0� 0
k5-v900-S1119648091 47% TO 2587, 10 | 1987, 08 (82, 18) 11% (9, 2, 0) � 0 � 0� 0� 0
k5-v900-S1253795703 62% TO 2197, 55 | 1827, 75 (84, 16) 12% (8, 4, 0) � 0 � 0� 0� 0
k5-v900-S1334593800 7% TO 20% (17, 3) 1% (1, 0, 0) � 0 � 0� 0� 0
k7-v140-S1017667294 194, 30 | 143, 88 TO 243, 31 | 168, 06 (100, 0) 25% (25, 0, 0) � 0 � 0� 0� 0
k7-v140-S1085378176 659, 52 | 597, 32 TO 1449, 60 | 1036, 02 (100, 0) 2% (2, 0, 0) � 0 � 0� 0� 0
k7-v140-S1818639567 125, 51 | 90, 44 TO 179, 55 | 132, 84 (98, 2) 32% (32, 0, 0) � 0 � 0� 0� 0
k7-v160-S1178729443 706, 72 | 625, 86 TO 2476, 04 | 1532, 03 (100, 0) 1% (1, 0, 0) � 0 � 0� 0� 0
k7-v160-S1543261951 790, 52 | 789, 61 TO 1954, 92 | 1478, 08 (100, 0) 4% (4, 0, 0) � 0 � 0� 0� 0
k7-v160-S1849057034 697, 18 | 626, 44 TO 1725, 58 | 990, 72 (99, 1) TO � 0 = 0
k7-v180-S1049921489 79% TO 77% (77, 0) 4% (4, 0, 0) � 0 � 0� 0� 0
k7-v180-S1249224492 14% TO 10% (10, 0) TO � 0 = 0
k7-v180-S1295462378 21% TO 16% (16, 0) 1% (1, 0, 0) � 0 � 0� 0� 0
k7-v200-S1136894336 4% TO TO TO � 0 = 0
k7-v200-S1588298513 2% TO 3% (3, 0) TO � 0 = 0
k7-v200-S1695726805 11% TO 7% (7, 0) TO � 0 = 0
k7-v220-S1766907733 TO TO 2% (2, 0) TO = 0 = 0
k7-v220-S193214747 TO TO TO TO = 0 = 0
k7-v220-S318878687 TO TO TO TO = 0 = 0
Time differences in total for large-sized satisfiable formulas: � 0 � 0� 0� 0

Table 1: The runtime results of the selected formulas (see text for details).
No solver actually proved a large-size unsatisfiable formula to be unsatisfi-

able (out-of-memory situation for both March hi and SATUN), and therefore, we
provide no results for these formulas here.

Discussion of the results: Concerning the medium-sized satisfiable formu-
las, we observed a slightly slower solving time of SATUN compared to its SLS com-
ponent gNovelty+. SATUN took approximately 1.47 times as long as gNovelty+
to finish computation on this set of formulas. However, since this results in a
loss of approximately 15 seconds in total, we consider SATUN to be competitive
with gNovelty+ and we consider SATUN to have an SLS-like performance. As we
can see from the result table, the manual branching is rarely performed and can
therefore not explain these losses. Further investigation of the results revealed
that these losses are due to the partitioning. Partitioning uses up extra calcula-
tion time for the DPLL component to find satisfying assignments close to local
minima with only one unsatisfied clause. As we can see from the result table,



it succeeds to do so, but these findings do not compensate for the computation
time used up on formulas from this set of formulas. The fact that hybridGM
performs much better than SATUN leads to the conclusion that the way parti-
tioning is implemented in SATUN must be improved. Compared to the DPLL
solver March hi, SATUN was the superior solver. March hi took approximately a
thousand times as long to finish the computations, which results in a time gain
of 39193 seconds.

Concerning the medium-sized unsatisfiable formulas, the incomplete solvers
are not able to present any results. In contrast, SATUN is able to outperform its
DPLL component March hi. It took SATUN about 98% of the time that March hi
required to finish computations for this set of formulas, which results in a time
gain of 1732 seconds. We can make out two classes of formulas from the results.
The first class consists of formulas where the hybrid is slower than March hi
(about 10% slower). An analysis of these results revealed that manual branching
in the hybrid and March hi’s variable selection heuristic agreed on the first
branching variable for these formulas. In other words, the SLS component of
SATUN failed to provide a better branching decision, resulting in the same DPLL
searches for SATUN and March hi. The time difference is then explained by the
time that was uselessly put into local search. The second class of formulas is the
one where the hybrid is faster than March hi (about 25% faster). In total, the
gains achieved in this class can compensate for the SLS search on all formulas
of this set. Overall SATUN appears to be superior to March hi for unsatisfiable
formulas.

Concerning the large-size satisfiable formulas, the DPLL solver March hi was
unable to present any results because it experienced an out-of-memory situation
on all of them. Since SATUN managed to present results on several formulas of
this set, it is considered to be superior to March hi. Compared to gNovelty+,
SATUN is clearly the inferior solver. Again, an analysis of the results revealed that
this is due to the way partitioning is implemented.

The whole benchmark consisted of 171 formulas. The total number of formu-
las solved with a success rate

– of 100% is
90 for gNovelty+, 97 for hybridGM, 111 for March hi, and 124 for SATUN

– greater 0% is
111 for gNovelty+, 111 for hybridGM, 111 for March hi, and 160 for SATUN.

5 Conclusions and Future Work

We have extended the idea behind hybridGM to create the complete hybrid SAT
solver SATUN. We have done so by introducing manual branching, a technique
that makes use of local search to gather information helpful to a DPLL solver.

SATUN managed to solve the most formulas during our empirical study. Con-
cerning smaller satisfiable formulas, SATUN experienced minor losses in compar-
ison to its SLS component, but it is in total superior to its DPLL component
on these formulas. When it comes to unsatisfiable formulas, SATUN is superior to



its incomplete SLS component. Furthermore, SATUN has managed to achieve an
overall better search time than its DPLL component on unsatisfiable formulas
with the help of manual branching. On large-size satisfiable formulas, it outper-
formed its DPLL component, but experienced heavy losses compared to its SLS
component. A closer investigation of the results revealed that these losses are not
because of manual branching but because of the way partitioning is implemented
in SATUN.

Future work includes the improvement of the way partitioning is implemented
in SATUN to improve its performance. In order to do that, it might be worthwhile
to use preprocessing before calling a DPLL on a partition.

It is not yet known whether the observation of combined flips for more than
just two variables, i.e. for more than just pairs, could improve the selection for
the first branching variable. Additionally, it could be worthwhile to not only
select one but several branching variables for a manual branch.

6 Acknowledgments:

The authors would like to thank Marijn Heule, Martin Bader, and Christian
Mosch for fruitful discussions and technical help.

References

1. Balint, A., Henn, M., Gableske, O.: A novel approach to combine an SLS- and
a DPLL-solver for the satisfiability problem. In O. Kullmann (Ed.). Theory and
Applications of Satisfiability Testing (SAT2009), LNCS 5584, 284–297, Springer
2009

2. BWgrid Homepage: http://www.bw-grid.de/
3. Crawford, J. M.: Solving satisfiability problems using a combination of systematic

and local search. Second DIMACS Challenge, Rutgers University, NJ (1993)
4. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal

of the ACM. 7(3), 201–215 (1960)
5. Fang, H., Ruml, W.: Complete Local Search for Propositional Satisfiability. Associ-

ation for the Advancement of Artificial Intelligence (AAAI-04). 161–166 (2004)
6. Fang, L., Hsiao, M.: A New Hybrid Solution to Boost SAT Solver Performance.

Design, Automation, and Test in Europe. 1307–1313 (2007)
7. Ferris, B., Fröhlich, J.: WalkSAT as an Informed Heuristic to DPLL in SAT Solving.

Technical report, CSE 573: Artificial Intelligence (2004)
8. Gableske, O.: Towards the Development of a Hybrid SAT Solver. Diploma The-

sis, Ulm University, Germany. January 2009. http://www.uni-ulm.de/fileadmin/
website_uni_ulm/iui.inst.190/Mitarbeiter/gableske/DA.pdf

9. Habet, D., Li, C. M., Devendeville, L., Vasquez, M.: A Hybrid Approach for SAT.
Lecture Notes In Computer Science. 2470, 172–184 (2002)

10. Heule, M., van Maaren, H.: Effective incorporation of Double Look-Ahead Proce-
dures. LNCS 4501, 258–271 (2007)

11. Heule, M., van Maaren, H.: march hi. Solver description SAT09: http://www.cril.
univ-artois.fr/SAT09/solvers/booklet.pdf, 27–27 (2009)



12. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of AAAI
2002, 635–660 (2002)

13. Hutter, F., Tompkins, D.A., Hoos, H.H.: Scaling and probabilistic smoothing: Ef-
ficientdynamic local search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, 233–248. Springer, Heidelberg (2002)

14. Jussien, N., Lhomme, O.: Local Search With Constraint Propagation and Conflict-
Based Heuristics. 7th National Conference on Artificial Intelligence, 169–174 (2002)

15. Letombe, F., Marques-Silva, J.: Improvements to hybrid incremental SAT algo-
rithms. Theory and Application of Satisfiability Testing. LNCS 4996, 168–181 (2008)

16. Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satis-
fiability. SAT 2005. LNCS, vol. 3569, 158–172. Springer, Heidelberg (2005)

17. Mazure, B.,Sais L., Gregoire, E.: Boosting complete techniques thanks to local
search methods. Annals of Mathematics and Artificial Intelligence. 22,319–331(1998)

18. Pham, D. N., Thornton, J. R., Gretton, C., Sattar, A.: Advances in Local Search for
Satisfiability. Australian Conference on Artificial Intelligence 2007: 213-222 (2007)

19. The SAT Competition homepage: http://www.satcompetition.org
20. The SAT research homepage at Ulm University: http://www.uni-ulm.de/in/

theo/research/sat-solving.html

21. Selman, B., Levesque, H., Mitchell, D.: A New Method for Solving Hard Sat-
isfiability Problems. Proceedings of the Tenth National Conference on Artificial
Intelligence, AAAI Press. 440–446 (1992)

22. Zhang, W.: Configuration landscape analysis and backbone local search. Part I:
Satisfiability and maximum satisfiability. Artificial Intelligence Vol. 158, 1–26 (2004)


