# Advantages of Shared Data Structures for Sequences of Balanced Parentheses 

Simon Gog ${ }^{1}$ Johannes Fischer ${ }^{2}$<br>${ }^{1}$ Institut of Theoretical Computer Science<br>Ulm University, Germany<br>${ }^{2}$ Center for Bioinformatics (ZBIT)<br>Universität Tübingen, Germany

March 26, 2010

## Outline

- Basic Definitions
- Our DS for RMQ
- Geary et al.'s DS for balanced parentheses
- Our result
- Computing RMQs with $2 n+o(n)$ bits
- Computing LCA with $2 n+o(n)$ bits
- Experimental study
- Comparison of RMQ data structures
- Comparison of CST implementations
- Conclusion


## Range Minimum Queries

## Definition

Given an array $A$ of $n$ values. A range minimum query (RMQ) $r m q_{A}(i, j)$ with $i \leq j$ returns index $k$ and $A[k]=\min \{A[\ell] \mid i \leq \ell \leq j\}$.

## Range Minimum Queries

## Definition

Given an array $A$ of $n$ values. A range minimum query (RMQ) $r m q_{A}(i, j)$ with $i \leq j$ returns index $k$ and $A[k]=\min \{A[\ell] \mid i \leq \ell \leq j\}$.

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

$r m q_{A}(1,5)=$

## Range Minimum Queries

## Definition

Given an array $A$ of $n$ values. A range minimum query (RMQ) $r m q_{A}(i, j)$ with $i \leq j$ returns index $k$ and $A[k]=\min \{A[\ell] \mid i \leq \ell \leq j\}$.

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

```
rmq}\mp@subsup{q}{A}{}(1,5)=
rmq}\mp@subsup{q}{A}{}(7,10)
```


## Range Minimum Queries

## Definition

Given an array $A$ of $n$ values. A range minimum query (RMQ) $r m q_{A}(i, j)$ with $i \leq j$ returns index $k$ and $A[k]=\min \{A[\ell] \mid i \leq \ell \leq j\}$.

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

$$
\begin{aligned}
& r m q_{A}(1,5)=2 \\
& r m q_{A}(7,10)=10
\end{aligned}
$$

## Range Minimum Queries

## Definition

Given an array $A$ of $n$ values. A range minimum query (RMQ) $r m q_{A}(i, j)$ with $i \leq j$ returns index $k$ and $A[k]=\min \{A[\ell] \mid i \leq \ell \leq j\}$.

## Solution

- Preprocess a RMQ data structure $R$ for $A$
- $R$ answers a RMQ then in constant time
- Two versions of the problem
- Systematic: $R$ needs $A$ to answer RMQs
- Non-systematic: $R$ answers RMQs


## Range Minimum Queries

## Definition

Given an array $A$ of $n$ values. A range minimum query (RMQ) $r m q_{A}(i, j)$ with $i \leq j$ returns index $k$ and $A[k]=\min \{A[\ell] \mid i \leq \ell \leq j\}$.

## Solution

- Preprocess a RMQ data structure $R$ for $A$
- $R$ answers a RMQ then in constant time
- Two versions of the problem
- Systematic: $R$ needs $A$ to answer RMQs
- Non-systematic: $R$ answers RMQs


## Our solution

- Non-systematic
- $2 n+o(n)$ bits ( $3 n$ bits in practice)
- $3 n+o(n)$ bits for construction in linear time


## Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:


## Example

$(()(()(()()()()()()))())$

## Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
- $\operatorname{rank}_{( }(S, i)$

```
Example
\((()(()(()()()()()()))())\)
\(\operatorname{rank}_{( }(S, 5)=4\)
```


## Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
- $\operatorname{rank}_{( }(S, i)$
- $\operatorname{select}_{( }(S, i)$

Example
$(()(()(()()()()()()))())$
$\operatorname{select}_{( }(S, 2)=1$


## Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
- $\operatorname{rank}_{( }(S, i)$
- $\operatorname{select}_{( }(S, i)$
- $\operatorname{excess}(S, i)=\operatorname{rank}_{( }(i)-\operatorname{rank}_{)}(i)$

```
- enclose(S,i)
```


## Example

$(()(()(()()()()()()))())$
$\operatorname{excess}_{( }(S, 5)=3$

## Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
- $\operatorname{rank}_{( }(S, i)$
- $\operatorname{select}_{( }(S, i)$
- $\operatorname{excess}(S, i)=\operatorname{rank}_{( }(i)-\operatorname{rank}_{)}(i)$
- find_close( $S, i$ ) and find_open( $S, i$ )


## Example

$(()(()(()()()()()()))())$
find_close $(S, 3)=20$ and find_open $(S, 20)=3$

## Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
- $\operatorname{rank}_{( }(S, i)$
- $\operatorname{select}_{( }(S, i)$
- $\operatorname{excess}(S, i)=\operatorname{rank}_{( }(i)-\operatorname{rank}_{)}(i)$
- find_close( $S, i$ ) and find_open( $(S, i)$
- enclose(S,i)


## Example

$(()(()(()()()()()()))())$ enclose $(S, 4)=3$

## Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of $S$ contains more '('s than ')'s
- Fundamental operations on S:
- $\operatorname{rank}_{( }(S, i)$
- $\operatorname{select}_{( }(S, i)$
- $\operatorname{excess}(S, i)=\operatorname{rank}_{( }(i)-\operatorname{rank}_{)}(i)$
- find_close $(S, i)$ and find_open( $(S, i)$
- enclose( $S, i$ )


## Time and space

Geary et al.'s data structure of size $o(n)$ supports all operations in constant time

## Geary et al.'s support structure for BP



- Partition BPS into $b$ blocks of length $\mathcal{O}(\log n)$
- Calculate far parentheses/pioneers to answer find_close, find_open, enclose
- pioneer bitmap takes $\mathcal{O}\left(\frac{n \log \log n}{\log n}\right)$ bits


## Geary et al.'s support structure for BP



- set of pioneers is again a BPS (of length $n_{1}<4 b-6$ )
- recusively build data structure for pioneers
- store answers explicitly on the second level


## The range restricted enclose method

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

1
-1

## Construction of the BP of the SCT

## Example

| $c$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |


| -1 | 2 | 2 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

$\begin{array}{llllll}-1 & 2 & 2 & 1 & 1 & 3\end{array}$

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

$\begin{array}{lllllll}-1 & 2 & 2 & 1 & 3 & 6 & 1\end{array}$

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

$\begin{array}{llllllll}-1 & 2 & b & 1 & 3 & b & 1 & 1\end{array}$

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

$\begin{array}{lllllllll}-1 & 1 & 2 & 1 & 1 & 6 & 1 & 1 & 2\end{array}$

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

$\left.\begin{array}{lllllllll}-1 & 2 & 2 & 1 & 3 & b & 1 & 2 & 2\end{array}\right)$

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

$\left.\begin{array}{llllllllll}-1 & 2 & 2 & 1 & 1 & 6 & 1 & 2 & 2 & 1\end{array}\right)$

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

$\begin{array}{llllllllllll}-1 & 1 & b & 1 & 1 & f & 1 & 1 & b & ) & ) & 1\end{array}$

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |



## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |



## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |



## Construction of the BP of the SCT

## Example

| $c$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A[i] | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |  |  |
| -1 | 2 |  |  |  | 2 | $)$ | 1 | 0 | 1 | 2 |  |  | 6 |

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |



## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |



## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

## Construction of the BP of the SCT

## Example

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[\mathrm{i}]$ | -1 | 2 | 1 | 3 | 1 | 2 | 0 | 2 | 0 | 1 | -1 |

$\begin{array}{ccccccccccccccccccccc}(1 & 1 & 1 & ( & 1 & ( & 1 & ) & ) & 1 & ( & 1 & 2 & ( & 1 & ) & 0 & ( & ) & ) \\ -1 & 2 & 2 & 1 & 3 & 3 & 1 & 2 & 2 & 1 & 1 & 0 & 2 & 2 & 0 & 1 & 1 & 0 & -1 & -1 & -1\end{array}$

## RMQ: Peak memory consumption at construction

Memory consumption and time for construction


## RMQ: Final memory consumption and query time

Memory consumption and time for $10^{7}$ queries


## Compressed Suffix Trees: Memory



## Other data structures for RMQs

Non-systematic solutions

- sada: BPS of the extended Caresian Tree ( $4 n+o(n)$ bits) by Sadakane (JDA 2007)
- 2dmin: BPS of the 2d-Min-Heap (2n+o(n)) by Fischer (2009)


## Systematic solutions

- succ: Succinct solution (7n bits+size of input array) by Fischer ()
- compr: Compressed solution ( $\approx 3 n$ bits + size of input array) by Fischer et al. (DCC 2008)


## Experimental results

## Any Questions?

