Advantages of Shared Data Structures for Sequences of Balanced Parentheses

Simon Gog¹ Johannes Fischer²

¹Institut of Theoretical Computer Science Ulm University, Germany ²Center for Bioinformatics (ZBIT) Universität Tübingen, Germany

March 26, 2010

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 1 / 14

< ロ > < 同 > < 三 > < 三 >

Outline

- Basic Definitions
- Our DS for RMQ
- Geary et al.'s DS for balanced parentheses
- Our result
 - Computing RMQs with 2n + o(n) bits
 - Computing LCA with 2n + o(n) bits
- Experimental study
 - Comparison of RMQ data structures
 - Comparison of CST implementations
- Conclusion

Definition

Given an array *A* of *n* values. A range minimum query (RMQ) $rmq_A(i,j)$ with $i \leq j$ returns index *k* and $A[k] = min\{A[\ell] | i \leq \ell \leq j\}$.

< ロ > < 同 > < 回 > < 回 > .

Definition

Given an array *A* of *n* values. A range minimum query (RMQ) $rmq_A(i,j)$ with $i \leq j$ returns index *k* and $A[k] = min\{A[\ell] | i \leq \ell \leq j\}$.

Example

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	-1	2	1	3	1	2	0	2	0	1	-1

 $rmq_A(1,5) =$

< ロ > < 同 > < 回 > < 回 > .

Definition

Given an array *A* of *n* values. A range minimum query (RMQ) $rmq_A(i,j)$ with $i \leq j$ returns index *k* and $A[k] = min\{A[\ell] | i \leq \ell \leq j\}$.

Example

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	-1	2	1	3	1	2	0	2	0	1	-1

 $rmq_A(1,5) = 2$ $rmq_A(7,10) =$

Definition

Given an array *A* of *n* values. A range minimum query (RMQ) $rmq_A(i,j)$ with $i \leq j$ returns index *k* and $A[k] = min\{A[\ell] | i \leq \ell \leq j\}$.

Example

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	-1	2	1	3	1	2	0	2	0	1	-1

 $rmq_A(1,5) = 2$ $rmq_A(7,10) = 10$

Definition

Given an array *A* of *n* values. A range minimum query (RMQ) $rmq_A(i,j)$ with $i \leq j$ returns index *k* and $A[k] = min\{A[\ell] | i \leq \ell \leq j\}$.

Solution

- Preprocess a RMQ data structure R for A
- R answers a RMQ then in constant time
- Two versions of the problem
 - Systematic: R needs A to answer RMQs
 - Non-systematic: R answers RMQs

Definition

Given an array *A* of *n* values. A range minimum query (RMQ) $rmq_A(i,j)$ with $i \le j$ returns index *k* and $A[k] = min\{A[\ell] | i \le \ell \le j\}$.

Solution

- Preprocess a RMQ data structure R for A
- R answers a RMQ then in constant time
- Two versions of the problem
 - Systematic: R needs A to answer RMQs
 - Non-systematic: R answers RMQs

Our solution

- Non-systematic
- 2n + o(n) bits (3n bits in practice)
- 3n + o(n) bits for construction in linear time

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
 - rank((S, i))
 - select((S, i
 - $excess(S, i) = rank_{(i)} rank_{(i)}(i)$
 - find_close(S,i) and find_open(S,i
 - enclose(S, i)

Example

(()(()(()())()()())))))))

Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
 - *rank*((*S*, *i*)
 - select₍(S, I)
 - $excess(S, i) = rank_{(i)} rank_{(i)}$
 - find_close(S, i) and find_open(S, i)
 - enclose(S, i)

Example

 $\frac{(()(())(()()()()()())))}{rank_{(}(S,5) = 4}$

< D > < P > < P > < P > < P >

Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
 - rank((S, i)
 - $select_{(}(S, i)$
 - $excess(S, i) = rank_{(i)} rank_{(i)}$
 - find_close(S, i) and find_open(S, i)
 - enclose(S, i)

Example

(()(()(()(()())())))))))select₍(S,2) = 1

< D > < P > < P > < P > < P >

Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
 - *rank*((*S*, *i*)
 - select₍(S, i)
 - $excess(S, i) = rank_{(i)} rank_{(i)}(i)$
 - find_close(S, i) and find_open(S, i)
 - enclose(S, i)

Example

 $\frac{(()(())(()()()()()())))}{excess_{(}(S,5)=3)}$

- ₹ 🖻 🕨

Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
 - *rank*((*S*, *i*)
 - $select_{(}(S, i)$
 - $excess(S, i) = rank_{(i)} rank_{(i)}(i)$
 - find_close(S, i) and find_open(S, i)
 - enclose(S, i

Example

(()(()(()()()()))))))find_close(S,3) = 20 and find_open(S,20) = 3

< ロ > < 同 > < 回 > < 回 > .

Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
 - *rank*((*S*, *i*)
 - select₍(S, i)
 - $excess(S, i) = rank_{(i)} rank_{(i)}(i)$
 - find_close(S, i) and find_open(S, i)
 - enclose(S, i)

Example

< D > < A > < B >

Balanced Parentheses Sequences (BPS)

- Sequence S over the alphabet '(' and ')'
- Each prefix of S contains more '('s than ')'s
- Fundamental operations on S:
 - *rank*((*S*, *i*)
 - $select_{(}(S, i)$
 - $excess(S, i) = rank_{(i)} rank_{(i)}(i)$
 - find_close(S, i) and find_open(S, i)
 - enclose(S, i)

Time and space

Geary et al.'s data structure of size o(n) supports all operations in constant time

Geary et al.'s support structure for BP

- Partition BPS into *b* blocks of length $O(\log n)$
- Calculate far parentheses/pioneers to answer find_close, find_open, enclose
- pioneer bitmap takes $\mathcal{O}(\frac{n\log\log n}{\log n})$ bits

Geary et al.'s support structure for BP

- set of pioneers is again a BPS (of length $n_1 < 4b 6$)
- recusively build data structure for pioneers
- store answers explicitly on the second level

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

The range restricted enclose method

3

・ロ・・ (日・・ (日・・ 日・・)

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10	
A[i]	-1	2	1	3	1	2	0	2	0	1	-1	
(-1												

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10	
A[i]	-1	2	1	3	1	2	0	2	0	1	-1	
((-1 2	<u>,</u>											

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10	
A[i]	-1	2	1	3	1	2	0	2	0	1	-1	
((-1 2)											

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10	
A[i]	-1	2	1	3	1	2	0	2	0	1	-1	
((-1 2)	(

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10	
A[i]	-1	2	1	3	1	2	0	2	0	1	-1	
((-1 2)	((3									

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10	
A[i]	-1	2	1	3	1	2	0	2	0	1	-1	
((-1 2) 2 2	(1	() 3 3									

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10	
A[i]	-1	2	1	3	1	2	0	2	0	1	-1	
((-1 2) 2 2	(1	() 3 3	(1								

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10	
A[i]	-1	2	1	3	1	2	0	2	0	1	-1	
((-1 2) 2 2	(1	() 3 3	(1	(2							

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	-1	2	1	3	1	2	0	2	0	1	-1
(-1 2	() 2 2	(1	() 3 3	(1	(2) 2					

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	-1	2	1	3	1	2	0	2	0	1	-1
(-1 2	$\binom{1}{2}$	(1	() 3 3	(1	(2) 2) 1				

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	-1	2	1	3	1	2	0	2	0	1	-1
((-1 2)	(() 3 3	((2) 2))				

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10	
A[i]	-1	2	1	3	1	2	0	2	0	1	-1	
((-1 2)	(() 3 3	((2) 2))	(0				

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	-1	2	1	3	1	2	0	2	0	1	-1
(()	(() 33	((2)))	((2		

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i		0	1	2	2	3	4	5	6	6	7	8	9	10
A[i]	.	-1	2	1		3	1	2	0)	2	0	1	-1
(-1 :	(2) 2	(1	(3) 3	(1	(2) 2) 1) 1	(0	(2) 2	

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	-1	2	1	3	1	2	0	2	0	1	-1
((-1 2) 2 2	(1	() 3 3	(1	(2) 2)) 1 1	(0	(2) (2 C)

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Э

《口》《聞》《臣》《臣》

Construction of the BP of the SCT

Example

i		0	1	2	2	3	4	5	6		7	8	9)	10
A[i]		-1	2	1		3	1	2	0		2	0	1	1	-1
(-1	(2) 2	(1	(3) 3	(1	(2) 2) 1) 1	(0	(2) 2	(0	(1

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i		0	1		2	3	4	5	6	;	7	8	9)	10
A[i]	-1	2	.	1	3	1	2	0		2	0	1		-1
(-1	(2) 2	(1	(3) 3	(1	(2) 2) 1) 1	(0	(2) 2	(0	(1

Construction of the BP of the SCT

Example

i		0	1		2	3	4	5	6	3	7	8	9)	10	
A[i]	-1	2	•	1	3	1	2	()	2	0	1		-1	
(-1	(2) 2	(1	(3) 3	(1	(2) 2) 1) 1	(0	(2) 2	(0	(1	

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10					
A[i]	-1	2	1	3	1	2	0	2	0	1	-1					
((-1 2	() 2 2	(1	() 3 3	((2) 2))	(0	(2) 2 ((() 1) 1) 0	(-1		

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10					
A[i]	-1	2	1	3	1	2	0	2	0	1	-1]				
((-1 2) 2 2	(1	() 3 3	(1	(2) 2)) 1 1	(0	(2) (2 (() 1) 1) 0	(-1) -1	

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9	10						
A[i]	-1	2	1	3	1	2	0	2	0	1	-1]					
((-1 2	() 2 2	(1	() 3 3	((2) 2)) 1 1	(0	(2) (2 () () 1) 1) 0	(-1) -1) -1	

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 7 / 14

Construction of the BP of the SCT

Example

i	0	1	2	3	4	5	6	7	8	9		10						
A[i]	-1	2	1	3	1	2	0	2	0	1		-1						
((-1 2 1 2) 2 2	(1 3	() 3 3 4	(1 5	(26) 2)) 1 1	(0 7	(28) 2	(0 9	(1 10) 1) 0	(-1 11) -1) -1	

RMQ: Peak memory consumption at construction

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

RMQ: Final memory consumption and query time

Simon Gog (Uni Ulm)

Compressed Suffix Trees: Memory

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 10 / 14

< ロ > < 回 > < 回 > < 回 > < 回 >

Other data structures for RMQs

Non-systematic solutions

- sada: BPS of the extended Caresian Tree (4n + o(n) bits) by Sadakane (JDA 2007)
- 2dmin: BPS of the 2d-Min-Heap (2n + o(n)) by Fischer (2009)

Systematic solutions

- succ: Succinct solution (7n bits+size of input array) by Fischer ()
- compr: Compressed solution (≈ 3n bits + size of input array) by Fischer et al. (DCC 2008)

< D > < () > < () > < () > < () >

The algorithm

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 12 / 14

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ?

Experimental results

Experimental results

Simon Gog (Uni Ulm)

Succinct RMQ and LCA

March 26, 2010 13 / 14

æ

(日)

Any Questions?

<ロ> <問> < 回> < 回> < 三> < 三> < 三</p>