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Abstract

We investigate the computational complexity of
some important problems in linear algebra.

1. The problem of verifying the characteristic poly-
nomial of a matrix is known to be in the complex-
ity classC=L (Exact Counting in Logspace). We
show that it is complete forC=L under logspace
many-one reductions.

2. The problem of deciding whether two matrices
are similar is known to be in the complexity classAC0(C=L). We show that it is complete for this
class under logspace many-one reductions. We
also consider the problems of deciding equiva-
lence and congruence of matrices.

1 Introduction

Valiant [Val79b, Val79a] initiated the study of the
computational complexity of counting problems. He
introduced the counting class#P that, intuitively,
counts the number of solutions ofNP-problems. An
example for a complete problem for this class is com-
puting the permanent of a matrix.

Since counting is restricted to nonnegative integers,
Fenner, Fortnow, and Kurtz [FFK94] extended#P to
the classGapP, the closure of#P under subtraction.
It follows that computing the permanent of integer ma-
trices isGapP-complete.

In contrast, computing the determinant of a matrix
is logspace many-one complete forGapL [Dam91,
Tod91, Vin91, Val92], the class corresponding toGapP in the logspace setting. This huge difference in
the complexity of the two problems1 is somewhat sur-
prising since the permanent and the determinant have
almost the same cofactor expansion, the only differ-
ence comes with the sign.GapL turns out to capture the complexity of many
other natural problems: computing� the powers of a matrix,� iterated matrix multiplication,� the inverse of a matrix,� the characteristic polynomial of a matrix.

There are also graph theoretic problems related to
counting the numbers-t-paths in a graph.

Interesting decision problems can be derived from
the above problems. For example, instead of comput-
ing the inverse of a matrix, it often suffices to decide
whether the inverseexists. That is to decide whether
the determinant is zero. More general, this motivates
the complexity classC=L where one has toverify the
value of aGapL problem.

Problems that are hard forGapL usually result in
verification problems that are hard forC=L. The de-
terminant gives a nice example: checking singularity

1Note however that there is no proof yet thatGapL 6= GapP.
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is complete forC=L. Also, verifying then-th power
of a matrix is complete forC=L.

But there are exceptions! An example is to� verify the inverse of a matrix:
given matricesA andB,
check whetherA�1 = B.

This can be solved by computing the productAB. The
product should be the identity matrix. Hence this can
be solved inNC1, a subclass ofC=L.

In contrast, if we have to� verify one entryof the inverse:
given matrixA, an integera and indicesi andj,
decide whether(A�1)i;j = a.

This is still complete forC=L. In other words, veri-
fying oneentry of the inverse is a harder problem than
verifying all elements. In the latter, we put too much
information in the input.

We consider the problem to� verify the characteristic polynomial of a matrix:
given a matrixA and the coefficients of a polyno-
mial p,
check whether�A = p.

It follows from a theorem of Berkowitz [Ber84] that
this is in C=L, and Santha and Tan [ST98] asked
whether it is complete there.

Recall that the determinant is the constant term in
the characteristic polynomial of a matrix and that ver-
ifying the determinant is complete forC=L. Now,
with the different complexities of the above two in-
verse problems in mind, the question is: is it easier to
verify all the coefficients of the characteristic polyno-
mial than to verify justoneof them? We show that this
is not the case: verifying the characteristic polynomial
is complete forC=L.

Furthermore, we consider� the similarity problem:
given matricesA andB,
check whether they are similar, that is, whether
there exists a nonsingular transformation ma-
trix P such thatA = P�1BP .

Santha and Tan [ST98] showed that it is inAC0(C=L), the class of sets that areAC0-reducible

toC=L. They ask whether it is complete in this class.
Again, we give a positive answer to this question: the
similarity problem is complete forAC0(C=L) under
logspace many-one reductions.

We also consider two related relations on matrices,
namely the equivalence relation and the congruence
relation. We show that equivalence is complete forAC0(C=L) as well. For congruence, we can only
show that it is hard forAC0(C=L).

The maybe most challenging open problem here is
whetherC=L is closed under complement. Many re-
lated classes have this property:� The most popular one is nondeterministic

logspace,NL, shown by Immerman [Imm88]
and Szelepcsényi [Sze88].� For symmetric logspace,SL, this was shown by
Nisan and Ta-Shma [NTS95].

Also, for probabilistic logspace,PL, it is trivial. For
unambiguous logspace,UL, it is open as well. For the
latter class, however, Reinhardt and Allender [RA97]
showed that thenonuniformversion of it,UL=poly, is
closed under complement. This gives rise to the con-
jecture thatUL is closed under complement too.

One possible way of provingC=L to be closed un-
der complement is to reduce the singularity problem
to the non-singularity problem. That is, given a ma-
trix A, construct a matrixB (in logspace) such thatA
is singular if and only ifB is nonsingular. It is well
known that one does not need to consider anarbitrary
matrixA: one can assume thatA is an upper triangu-
lar matrix except for the entry in lower left corner. To
prove our completeness result for verifying the charac-
teristic polynomial, we manipulate such matrices. We
think that it is quite interesting to see such transfor-
mations, because this can give some hints on how to
come up with a reduction as above to solve the com-
plementation problem forC=L. Therefore the meth-
ods we use are interesting in their own right. For more
background and interesting results we recommend the
paper of Allender, Beals, and Ogihara [ABO99].

2 Preliminaries

For a nondeterministic logspace bounded Turing
machineM , we denote the number of accepting paths
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on inputx by accM (x), and byrejM (x) the number of
rejecting paths. The difference of these two numbers
is gapM (x) = accM (x)� rejM (x).

The class of logspace computable sets is denoted
by L, the corresponding function class byFL. The
class of sets computable in nondeterministic logspace
is denoted byNL.

For the counting classes, we have#L, the class
of functions accM (x) for some nondeterministic
logspace bounded Turing machineM , andGapL
based analogously on functionsgapM . Based on
counting, we consider the language classC=L: a setA is inC=L, if there exists af 2 GapL such that for
all x: x 2 A () f(x) = 0:

For setsA andB, A is (logspace) many-one re-
ducible toB, in symbols: A �Lm B, if there is a
function f 2 FL such that for allx we havex 2A() f(x) 2 B. We also consider other reducibility
notions below. When we talk of reductions, we mean
logspace many-one reductions.

We note thatC=L is closed under many-one reduc-
tions:A �Lm B andB 2 C=L thenA 2 C=L.

A setA is (logspace many-one) hardfor a complex-
ity classC, if L �Lm A for every setL 2 C. If addition-
allyA is inC, we callA (logspace many-one) complete
for C.A isAC0-reducible toB, if there is a logspace uni-
form circuit family of polynomial size and constant
depth that computesAwith unbounded fan-in and-, or-
gates and oracle gates forB. In particular, we consider
the classAC0(C=L) of sets that areAC0-reducible
to a set inC=L.

Next we define the problems we are looking at. If
nothing else is said, our domain for the algebraic prob-
lems are the integers. Forn � n matrices over the
intergers we assume that the matrix elements have a
binary representation of at mostn bits.� POWER

Input: an� n-matrixA andm, (1 � m � n).
Output:Am, them-th power ofA.� POWERELEMENT

Input: an�n-matrixA and integersi, j, m with(1 � i; j;m � n).
Output:(Am)i;j, the(i; j)-th entry ofAm.

� DETERMINANT

Input: an� n-matrixA.
Output:det(A), the determinant ofA.� CHARPOLYNOMIAL

Input: an� n-matrixA.
Output: (c0; c1; : : : ; cn�1), the coefficients of
the characteristic polynomial�A(x) = xn +cn�1xn�1 + � � � + c0 of the matrixA.

These problems are all known to be inGapL. For
each of them, we define theverification problemas the
graph of the correspondingGapL-function. That is,
for a functionf(x), we denote the graph off asV-f
(for verify f ),

V-f = f (x; y) j f(x) = y g:
This yields the verification problems� V-POWER,� V-POWERELEMENT,� V-DETERMINANT, and� V-CHARPOLYNOMIAL .

The first three problems are known to be complete forC=L. V-CHARPOLYNOMIAL is known to be inC=L.
We show in Section 3 that it is complete forC=L as
well.

A special case ofV-DETERMINANT is� SINGULARITY

Input: an� n-matrixA.
Decide whetherdet(A) = 0.

Also SINGULARITY is complete forC=L.
Related problems are computing the rank of a ma-

trix, RANK , or deciding whether a system of linear
equations is feasible, FSLE for short.� FSLE

Input: a matrixA and a vectorb.
Decide whether there is a rational vectorx such
thatAx = b.

FSLE is complete forAC0(C=L) [ABO99].
In Section 4 we consider three problems with com-

plexity related to FSLE. These are some standard
equivalence relations on matrices: equivalence, con-
gruence, and similarity of matrices.
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� EQUIVALENCE

Input: twon� n-matricesA andB.
Decide whetherA andB are equivalent. That is,
whether there exist two nonsingular matricesP
andQ such thatA = PBQ.

Congruence is a special case of equivalence of two
symmetric matrices where we haveQ = P T .� CONGRUENCE

Input: two symmetricn� n-matricesA andB.
Decide whetherA andB are congruent. That is,
whether there exists a nonsingular matrixP such
that A = P TBP .

Finally, the similarity problem is a special case of
equivalence where we haveQ = P�1.� SIMILARITY

Input: twon� n-matricesA andB.
Decide whetherA and B are similar.That is,
whether there exists a nonsingular matrixP such
that A = P�1BP .

Santha and Tan [ST98] have shown that
SIMILARITY in AC0(C=L). We show in Sec-
tion 4 that it is complete forAC0(C=L) under
logspace many-one reductions. More specifically, we
reduce FSLE to SIMILARITY : This also holds for
EQUIVALENCE. For CONGRUENCE, we can show
that it is logspace many-one hard forAC0(C=L).
3 Verifying the Characteristic Polynomial

To show that V-CHARPOLYNOMIAL is
complete for C=L, we give a reduction from
V-POWERELEMENT to V-CHARPOLYNOMIAL . This
follows from the reduction POWERELEMENT �Lm
DETERMINANT which goes back to Toda [Tod91] and
Valiant [Val92]. The reduction presented here is taken
from [ABO99].

Theorem 3.1 [Tod91, Val92]

POWERELEMENT �Lm DETERMINANT.

Proof. Let A be an � n matrix and1 � m � n.
We construct a matrixB such that(Am)1;n = det(B).
That is, w.l.o.g. we fixi = 1 andj = n in the defini-
tion of POWERELEMENT.

Interpret A as representing a directed bipartite
graph on2n nodes. That is, the nodes are arranged in
two columns ofn nodes each. In both columns, nodes
are numbered from1 to n. If entry ak;l of A is not
zero, then there is an edge labeledak;l from nodek in
the first column to nodel in the second column. Now,
takem copies of this graph, put them in a sequence
and identify each second column of nodes with the
first column of the next graph in the sequence. Call
the resulting graphG0.G0 hasm + 1 columns of nodes. Theweight of
a path inG0 is the product of all labels on the edges
of the path. The crucial observation now is that the
entry at position(1; n) inAm is the sum of the weights
of all paths inG0 from node 1 in the first column to
noden in the last column. Call these two nodess andt,
respectively.

As an intermediate result this provides a reduction
from POWERELEMENT to the weighted path problem
on graphs.

GraphG0 is further modified: for each edge(k; l)
with labelak;l, introduce a new nodeu and replace the
edge by two edges,(k; u) with label 1 and(u; l) with
labelak;l. Now all paths froms to t haveevenlength,
but still the same weight. Add an edge labeled1 from t
to s. Finally, add self loops labeled 1 to all nodes,
exceptt. Call the resulting graphG.

Let B be the adjacency matrix ofG. The deter-
minant of B can be expressed as the sum over all
weighted cycle covers ofG. However, every cycle
cover ofG consists of a path froms to t, (due to the
extra edge fromt to s) and self loops for the remain-
ing nodes. The single nontrivial cycle in each cover
has odd length, and thus corresponds to an even per-
mutation. Therefore,det(B) is precisely the sum over
all weighted path froms to t in G0. We conclude thatdet(B) = (Am)1;n as desired. �

We want to use these techniques to show

V-POWERELEMENT �Lm V-CHARPOLYNOMIAL :
The idea for this reduction is to construct a matrix,
where the coefficients of the characteristic polyno-
mial of the matrix can be expressed in terms of the
value(Am)1;n. We show that the matrixB � IN has
this property, whereB is the matrix from the proof
above andIN is theN -dimensional identity matrix.
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Let C = B � IN . Matrix C is the adjacency ma-
trix of a graph, call itH. We obtainH from graphG
in the above proof as follows: the subtraction ofIN
from B corresponds to taking away all the self loops
in graphG and adding a self loop with weight�1 to
the nodet.

We consider the matrixC in more detail. Let the
bipartite graph defined by matrixA haven nodes ande
edges. Then graphH hasN = m(n + e) + n nodes
and thereforeC (andB) is aN �N matrix.

Except for the self loop at nodet and the edge fromt
to s, graphH is acyclic. Thus we can put the nodes
ofH in such an order, that adjacency matrixC is upper
triangular for the firstn� 1 rows with zeros along the
main diagonal. The last row ofC has a one on the first
position, a minus one on the last position, and the rest
is zero.

We also consider the upper triangle inC. Each col-
umn of graphG0 was split in our construction into two
columns and we got a new node on every edge.The
first part we describe by then� e matrixF :F = 0BB@ 1 � � � 1 0 � � � 0 � � � 0 � � � 00 � � � 0 1 � � � 1 � � � 0 � � � 0

...
...

. ..
...0 � � � 0 0 � � � 0 � � � 1 � � � 11CCA

The number of ones in thek-th row ofF is the number
of edges leaving nodek in the first column ofG0.

From each of the newly introduced nodes there is
one edge going out. Hence this second part we can
describe by thee�n-matrixS, which has precisely one
non-zero entry in each row. The value of the non-zero
entry is the weight of the corresponding edge inG0.

Now we can writeC as follows:

C =
0BBBBBBBBBBBBBBBB@

F S
. . . F SL R

1CCCCCCCCCCCCCCCCA

The empty places inC are all zero. L is then� n
matrix with a one at position(n; 1) and zero elsewhere,
andR is then � n matrix with�1 at position(n; n)
and zero elsewhere.

Let the characteristic polynomial ofC have the
form:�C(x) = det(xIN � C) = xN + N�1Xi=0 cixi:

We give two ways how to compute the coeffi-
cientsci in �C(x):

1. one way is to use elementary linear algebra and
bring matrixC into triangular form. Then the
characteristic polynomial is the product of the di-
agonal entries.

2. a short cut is provided by results in combinato-
rial matrix theory that generalize the argument
given in the proof of Theorem 3.1 from the de-
terminant, the constant coefficient of the char-
acteristic polynomial, to all of its coefficients.
(see [BR91, Zei85, MV97, MV99]).

We start by giving the combinatorial argument which
is much shorter than the elementary argument.

The combinatorial way

From combinatorial matrix theory we know that the
coefficientci in �C(x) equals the sum of the disjoint
weighted cycles that coverN � i nodes inH, with
appropriate sign. In the graphH, all edges go from
a layer to the next layer. The only exceptions are the
edge(t; s) and the self loop(t; t). So any cycle must
use precisely one of these, since the cycles should be
disjoint. So the only disjoint cycles inH are of these
two types:� covering one node: the cycle(t; t) with weight�1. The sign is�1. So we havecN�1 = 1� covering2m + 1 nodes: each cycle that uses the

edge(t; s) then traces out a path froms to t. The
sum of all these paths is precisely(Am)1;n. The
sign of these cycles is�1. HencecN�(2m+1) =�(Am)1;n.
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All other coefficients must be zero. Therefore we have(Am)1;n = a() (1)�C(x) = xN + xN�1 � axN�(2m+1):
The algebraic way

We bring(xIN � C) into upper triangular form by
doing row transformations.

For x = 0 it is easy to see thatdet(�C) = 0. So
let x 6= 0. We multiply the last row byx and add the
first row to it. This yields a zero in the first position
of the last row, but also some number of�1’s to the
right, coming from the first row of matrixF . We iter-
ate the previous step: multiply the last row byx and
add all the rows from it such that thex diagonal entry
cancels thex entry in the last row. This in turn yields
some non-zero entries further to the right in the last
row coming from matrixS.

We continue doing this:� if the first nonzero entry (from the left) in the last
row is a integer constant, say� at positionj, then
multiply the last row byx and subtract� times
thej-th row from the last row;� if the first nonzero entry in the last row has the
form �x, then we can directly subtract� times
thej-th row.

Each iteration may put some more constants to the
right of the current position into the last row, because
of the matricesF andS. Since there are2m of them
in total, after2m such iterations, all non-zero entries
in the last row are in the lastn positions.

This is the part of matrixR in the above descrip-
tion ofC. The non-zero entries are all integers except
for the last one: here we started with entryx + 1 in
the beginning. We did2m multiplications withx and
added some rows from matrixS (the one just aboveR
in C). Thus the entry has the form(x+ 1)x2m + c for
some constantc. To eliminate the constant entries in
the last row, we multiply it one more time withx and
subtract some of the lastn rows to obtain zeros in the
last row except for the last entry at position(N;N),
which now has the form((x+1)x2m+ c)x. LetD(x)
be the resulting upper triangular matrix.

The determinant of a triangular matrix is the prod-
uct of the diagonal elements. Hencedet(D(x)) = xN�1 �(x+ 1)x2m + c�x:
Note however that this is not the same as�C(x): the
latter we changed with each multiplication of the last
row byx, and we did this2m+1 times. Therefore we
get �C(x) = det(D(x))x2m+1= xN�(2m+1) �(x+ 1)x2m + c� : (2)

Note that�C(0) = 0, so that this covers the casex = 0
as well.

The problem that remains in order to determine�C(x) is the value of the constantc. Note thatc
may depend on each of the above transformation steps.
From equation ( 2) we get forx = �1�C(�1) = (�1)N�(2m+1)c: (3)

On the other hand, we can determine�C(�1) directly
as �C(�1) = det((�1)IN � C)= det(�IN � (B � IN ))= det(�B)= (�1)N det(B): (4)

From the equations (3) and (4) it follows thatc must
be�det(B). Hence,(Am)1;n = a()det(B) = a()�C(x) = xN + xN�1 � axN�(2m+1):

In summary, both methods yield explicitly the
coefficients of �C(x). Therefore we have the
desired reduction from V-POWERELEMENT to
V-CHARPOLYNOMIAL . We conclude:

Theorem 3.2
V-CHARPOLYNOMIAL is complete forC=L.
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The reductions shown in this section are actually not
just logspace many-one reductions, but much stronger
logspace projections. That is, the output is a projection
of input values and, in addition, some constant values
(we only needed�1, 0, and1 as additional constants)
that can be computed in logspace (actually inTC0).
4 Testing Similarity, Equivalence and Con-

gruence

Recall that two matricesA andB are similar, if
there exists a nonsingular matrixP such thatA =P�1BP . Santha and Tan [ST98] showed that there is aAC0-reduction from SIMILARITY to V-RANK . From
this it follows that SIMILARITY is inAC0(C=L)

We show on the other hand that the problemfea-
sible system of linear equations, FSLE, can be re-
duced to SIMILARITY . Since FSLE complete forAC0(C=L) [ABO99], this follows for SIMILARITY

as well.

Theorem 4.1
SIMILARITY is complete forAC0(C=L).
Proof. LetA be an� n matrix andb = (b1; : : : ; bn)
ann vector. We will construct two matricesC andD,
such that the systemAx = b has a solution iffC andD are similar.

DefineC = 0BBBB@ b1A ...bn0 � � � 0 0
1CCCCA ; D = 0BBBB@ 0A ...00 � � � 0 0

1CCCCA
Suppose first that the systemAx = b hasno so-

lution. Then rank(C) = rank(D) + 1, and thereforeC andD cannot be similar, because similar matrices
must have the same rank. (Note that the transforma-
tion matrix in the definition of SIMILARITY is nonsin-
gular.)

If, on the other hand,Ax = b has a solution, sayx0,
then we can define a transformation matrixP as fol-
lows: P = 0BBBB@ In x00 � � � 0 �1

1CCCCA :

Now it is easy to check thatP has full rank and thatCP = PD. ThereforeC andD are similar. �
Next we investigate the equivalence and congru-

ence problems. Recall that two matricesA andB of
the same ordern are equivalent, if there exist nonsin-
gular matricesP andQ, such thatA = PBQ. It
is well known that this holds iffA andB have the
same rank. Allender, Beals, and Ogihara [ABO99]
have shown that the rank of a matrix can be com-
puted inAC0(C=L). Therefore EQUIVALENCE is inAC0(C=L). They also used the fact that a linear sys-
temAx = b has a solution iffrank(A) = rank(Ajb).
From this we obtain that EQUIVALENCE is complete
forAC0(C=L).
Fact 4.2
EQUIVALENCE is complete forAC0(C=L).
Proof. LetA be an� n matrix andb = (b1; : : : ; bn)
a vector. LetC andD be the matrices defined in the
proof of Theorem 4.1. Then the systemAx = b has
a solution iff rank(A) = rank(Ajb) iff rank(C) =
rank(D) iff C andD are equivalent. �

Recall that two symmetric matricesA andB (over
the reals) of the same ordern are congruent, if there
exists a nonsingular matrixP , such thatA = P TBP .
It is known thatA andB are congruent iff they have
the same rank and signature. (The signature of a sym-
metric matrix is the number of positive eigenvalues mi-
nus the number of negative eigenvalues of the matrix.)

We don’t have an upper bound on the complexity of
CONGRUENCE. In particular, the complexity of com-
puting the signature is an open problem. As a lower
bound, we can show that it is hard forAC0(C=L).
Lemma 4.3
CONGRUENCEis hard forAC0(C=L).
Proof. We reduce EQUIVALENCE to CONGRUENCE.
Let A andB be twon � n matrices. We will con-
struct two matricesC andD, such thatA andB are
equivalent iffC andD are congruent.

We defineC = (ATA)2 andD = (BTB)2. Note
thatC andD are symmetric and we haverank(A) = rank(ATA) = rank((ATA)2):
ThereforeA andC have the same rank, and the same
holds forB andD. Moreover, the eigenvalues ofC
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andD are all nonnegative. Therefore, their rank equals
their signature. We conclude thatA andB have the
same rank iffC andD have the same rankandsigna-
ture. This proves the claim. �

Note that the reductions in Theorem 4.1 and
Fact 4.2 are not just logspace reductions but logspace
uniform projections. The reduction in Lemma 4.3 can
be computed inTC0.
Open Problems

Two (real) symmetric matrices are congruent iff
they have the same rank and signature. To de-
cide, whether two matrices have the same rank, is inAC0(C=L). The complexity of the analog problem
for the signature is open. So we don’t know the com-
plexity of the problem CONGRUENCE. We expect that
this problem complete forAC0(C=L) too. A related
problem is toverify the signature of a symmetric ma-
trix. Can this be done inC=L ^ coC=L, the class of
sets that can be written as the intersection of a set inC=L and a set incoC=L?

A problem related toV-CHARPOLYNOMIAL is to
decide whether a polynomial is the minimal polyno-
mial of a given matrixA. We don’t know the com-
plexity of this problem.

A problem related to SIMILARITY is to decide
whether a given matrixA is diagonalizable. That is,
whether it is similar to diagonal matrix. We don’t
know the complexity of this problem.

The more important question is whetherC=L is
closed under complement. An affirmative answer
would solve most of the above questions because then
all the complexity classes considered here coincide.
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[Sze88] R. Szelepcsényi. The method of forced
enumeration for nondeterministic automata.
Acta Informatica, 26(3):279–284, 1988.

[Tod91] S. Toda. Counting problems computation-
ally equivalent to the determinant. Techni-
cal Report CSIM 91-07, Dept. of Computer
Science and Information Mathematics, Uni-
versity of Electro-Communications, Chofu-
shi, Tokyo 182, Japan, 1991.

[Val79a] L. Valiant. The complexity of computing
the permanent.Theoretical Computer Sci-
ence, 8:189–201, 1979.

[Val79b] L. Valiant. The complexity of enumeration
and reliability problems.SIAM Journal on
Computing, 8:410–421, 1979.

[Val92] L. Valiant. Why is boolean complexity
theory difficult. In M.S. Paterson, edi-
tor, Boolean Function Complexity, London
Mathematical Society Lecture Notes Series
169. Cambridge University Press, 1992.

[Vin91] V Vinay. Counting auxiliary pushdown au-
tomata and semi-unbounded arithmetic cir-
cuits. In 6th IEEE Conference on Struc-
ture in Complexity Theory, pages 270–284,
1991.

[Zei85] D. Zeilberger. A combinatorial approach
to matrix algebra. Discrete Mathematics,
56:61–72, 1985.

9


