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Abstract Maybe the most important class GapL (studied
by [AO96]) that seems to capture the complexity of a lot of
Theinertiaof ann x n matrix 4 is defined as the triple ~ problems from linear algebra quite natural@apL is the
(i1 (A),i_(A),ig(A)), wherei (A),i_(A), andig(A) are extension o##£L (first studied by AJ93]) in the same way
the number of eigenvalues of, counting multiplicites,  as#P [Val79] can be extended tGapP [FFK94] in the
with positive, negative, and zero real part. It is known that polynomial time setting. GapL is characterized precisely
the inertia of a large class of matrices can be determined by the determinant of an integer matrix [Ber84, Dam91,
in PL (probabilistic logspade However, the general prob-  Tod91, Vin91, Val92, MV97].
lem, whether the inertia of aarbitrary integer matrix is There are some interesting classes of decision problems
computable ilPL, was an open question. In this paper we based orGapL.
give a positive answer to this question and show that the
problem is complete faPL.
As consequences of this result we show necessary and
sufficient conditions that certain algebraic functionltke
rank or the inertia of an integer matrix can be computed in

GapL. e Inequalities orGapL-functions define the complexity
classPL (probabilistic logspacg in which one has to
decide whether the value of @apL function on an

1 Introduction input is positive. For example, the problem of testing
if the determinant of a matrix is positive, is complete
for PL.

¢ \erifications ofGapL-functions define the clags_L
(exact counting in logspageThe singularity problem,
i.e. the problem of deciding whether the determinant
of a matrix is zero, is complete f@r _L.

The problem of computing the inertia of a matrix plays
an important role in a number of applied fields, in particular ~ In a preceding paper [HT02a], we have studied the com-
in control theory and in robotics. Matrix inertia, a funda- plexity of the inertia. Using Routh-Hurwitz Theorem for
mental topic in linear algebra, has been studied by manycomputing the inertia, we have proved that the inertia can be
researchers (for more detail, see e.g. [Gan77], Chapter XV)verified in PL for many cases, in particular for symmetric
along time ago. matrices and for matrices with no opposite nonzero eigen-
We are interested in thewmputational complexityf the values. However, it remained open in [HT02a] whether the
inertia of a matrix, which is the main topic of this paper. It inertia of anarbitrary integer matrix is inPL. In Section 3
is well known that many problems from linear algebra can We give a positive answer to this question. The inertia has
be solved within certaifiogspace counting classeall of ~ beenshown to be hard f®L under logspace many-one re-
which are contained in the para”e' Complexity class (uni_ ductions [HTOZa] It follows that the inertia is Complete fo
form) NC2. PL.
We want to mention that Neff and Reif [Nef94, NR96]
*Supported by DFG grants Th 472/3-2 and Scho 302/7-1. have developed a method to approximate the roots of a poly-




nomial. However, it is not clear how to compute the inertia Also we haveNL C C_L.

of a matrix by approximating the roots of its characteristic =~ Counting logspace hierarchies over these classes were
polynomial. The problem is that one must be able to decidedefined in [AO96]. We list some properties of these classes.
whether a root lies on an axis or not.

The second part of the paper is motivated by the question
whether one can improve the upper bounds on some func-
tions like the rank or the inertia t&apL. Our main results
are that these questions are equivalent to the collapse-of ce
tain complexity classes.

We show in Section 4.1 that the rank of a matrix can be
computed inGapL if and only if C_L = SPL, where
SPL is the class of all sets with the characteristic function ¢ The Probabilistic Logspace Hierarchfover PL) col-
in GapL. As a consequence of the results about the inertia, lapses tdPL by the factAC’(PL) = NC'(PL) =
we show in Section 4.2 that the inertia of a matrix can be PL [0Ogi98, BF0O0]. That isPL is closed undeAC°-

e It has been shown in [ABO99] that tli&xact Counting
Logspace HierarchjoverC_L) collapses td.=t =
AC’(C_L), and that one of the complete problems
for this hierarchy is the problem of computing one bit
of the rank of a matrix. Note thatC°(C_L) is called
the AC -closure of C_L, it is the class of problems
AC’-reducible to the sets &@_L.

computed inGapL if and only if PL. = SPL. Note that andNC!-reductions. In particulaPL is closed under
NL C C_L andSPL C ¢L. Hence, as a corollary of union, intersection and complement.

our results we get: if the rank or the inertia of a matrix can

be computed irlGapL thenNL C &L andC_L is closed e C_L is closed under union and intersection. Whether
under complement. Both consequences are open problems ~ C=L is closed under complement is an open problem.
right now. e SPLSPL — SPL. In particularSPL is closed under

We also consider a relaxed version of the above question.
GapL is not known to be closed under division. Hence it
is natural to ask whether we can write the rank or the inertia
of a matrix as a quotient of twGapL-functions. We show
in Section 4.1 that this is true for the rank of a matrix if an
only if C_L = coC_L. In Section 4.2 we show that this is
true for the inertia of a matrix if and only PL = C_L.

Finally, in Section 4.3, we characterize the case that the
absolute value of anggapL-function can be computed in
GapL too.

union, intersection and complement.

Complete Problems. Logspace counting classes are in-
d teresting because of the complete problems therein. We give
some examples from linear algebra for these classes. When
nothing else is said, by matrices we mean square integer
matrices of orden.

Problems complete foGGapL are to compute one el-
ement of them-th power of a matrix and the determi-
nant [Tod91, Dam91, Vin91, Val92].

S The singularity problem, i.e. the set
2 Preliminaries

SINGULARITY = { A | det(A) =0},
Complexity Classes. For a nondeterministic Turing ma-
chineM on inputz, we denote the number of accepting and
rejecting computation paths gccy, («) andrej,, (x), re- V-POWELEM = { (4,a,m) | (A" )1n =a},
spectively. The dlﬁgrence of these two quantltleg is dedot V-DET = { (4, a) | det(A) = a }, and
by gap,,(x). That is,gap,,(z) = accy(z) — rej,,(z).
The complexity classgtL consists of all functiong such RANK < = { (A, r | rankA) <r}
that f = accy, for some nondeterministic logspace Tur-
ing machine. Similarly, The clas&apL consists of all
functions f such thatf = gap,;, for some nondeter- RANK> = { (A,r | rank4) > r}
ministic logspace Turing machine. Based on these func-
tion classes, we define the following counting complexity iS complete focoC_L. The verification of the rank can be

is complete foilC_L. More general, the sets

are also complete fa_L. Consequently

classes [AO96, ARZ99]. written as the intersection of a set@.L and incoC_L:

C_L={S|3fcGapL, Va: z€ 8« f(z)=0}, V-RANK = {(A4,r | rank(4) =7}
PL={S|3f cGapL, Vz: z € S < f(z) >0}, = RANK < N RANK .

SPL = {5 | xs € GapL}, This means that-RANK € C_L A coC_L. Moreover, it

. o ) ) is complete for this class. The problem of computing (one
wherey s is the characteristic function of sét It is known bit of) the rank, i.e. the set

that
SPL C C_L C PL C NC?% RAaNK = { (A, k,b) | thek-th bitofrank A)isb}.



is a complete problem foAC"(C_L) [ABO99]. For a given integer matrid and an positive integen, each
SincePL is the class oAC°-reducible to the problem element of the power-matrid™ is known to be equal to
of computing the high-order bit of the determinant, the set a sum of weighteds, ¢)-paths in a directed grapH con-
structed easily fromd andm. Therefore, one can show the
POSDET = { A | det(A4) >0} fact that each element of” is computable irGapL when

the elements ol are computable iGxapL.
is complete forPL. FurthermorePL is characterized by

some problems re_Iateq to matrix inertia [HT_02a]._ Parallel Polynomial GCD Computation. In the compu-
_ Recall that theinertia of ann x n matrix A is de-  ya4iqn of the inertia that we present in Section 3, we need to
fined as the triplei(4) = (i1 (A),i-(4),i0(4)), where o5 e the ged and the division of some univariate poly-
i+(4), i-(A), andig(A) are the number of eigenvalues of -, iais  Parallel algorithms for polynomial gcd and poly-
A, counting multlpllcmgs, W't_h positive, negative, qndae nomial division are known [BvzGH82]. There are excellent
_real part. We can define (W'th respec_t to some f'X_ed COd'textbooks (see for example: Kozen [Koz91], or leradi and
ing) the problem of computing thieth bit of the inertia as  ,en [1K93]) where these algorithms are explained in de-
follows: tail.

We consider the polynomial gcd computation in parallel.
For univariate polynomials with leading coefficients diffe
ent from zero:

INERTIA = { (A, k,b) | thek-th bitof i(A) isb }.

The verification of the inertia is the set
p(x) = apa™ + -+ +ag, and

a
V-INERTIA = { (A,p,n, z) | i(A) = (p,n, z) }.
{(Apn,2) [i(A) = (p.m,2) } o) = b b n2

It has been shown by [HT02a] that#RTIA andv-INERTIA

are hard folPL under logspace many-one reductions, and
these problems are locatedL when A is symmetric or

A has no opposite nonzero-eigenvalues.

the Sylvester matrixs defined as a matrix of order+ m,
wheren andm columns are taken from the coefficients of
p andgq, respectively. The following Sylvester matrix is an
example forn = 4 andn = 2:

Note: INERTIA as defined above is a decision problem. ag 0 b2 0 0 O
When we say thahe inertia is inPL, we actually refer to az ay by b 0 0
the decision problemNERTIA (and not to a function com- g |02 as bop b1 by O
puting the inertia). a1 ay 0 by b1 by

ap ai 0 0 b() b1

Closure Properties ofGapL. To analyze the complexity 0 a 0 0 0 b

of the inertia later on, we sum up some closure properties| et
of the considered classes.

g=ged(p,q) = 2"+ a1z + -+ cp.
Theorem 2.1 [AO96] Let f € GapL. The following func-

tions are inGapL as well: (W.l.o.g. we can choosg to be monic). Forl < e < n,

let S(¢) be the matrix obtained frorf by deleting the last

1. f(g(-)), foranyg € FL, 2e rows, the last columns of coefficients g, and the last
. e columns of coefficients of, and letc®) be the vector
2. Zf:(‘) f(x,14), for any constant, (0,0,...,0,1)T of length(m + n — 2¢). Then the parallel

computation ofy can be done by the following two steps:

|| :
3. [Ii=o f(w,7), for any constant, 1. determine the degree gfthis is the valuel such that

. (d (e)y — .
4. (!f]é;;)' for anyg € FL such thatg(z) _ O(l) det(S )) 7& 0 anddet(S )) =0foralle < d;

2. compute the vector of the coefficientsydy the prod-

The first property has been improved considerably. Essen- uct Sgxo, whereSy is the matrix obtained fron$' by
tially, GapL is closed under a restrictive kind of composi- deleting the lasi columns of coefficients gf, and the
tion as follows. lastd columns of coefficients af, andx is a solution

. . of S@g = ¢,
Theorem 2.2 [AAMO3] The determinant of a matrix hav-

ing GapL-computable elements can be computed in For the complexity of the above computation of
GapL. ged(p, q) we observe that:



e Step 1 can be donei@_L A coC_L.

e Instep 2, observe th&t ¥z = ¢(® has the unique so-
lution £ = (S®)~1 ¢ which is the last column
of the inverse(S(4)~1. Therefore, the coefficients
ca—1,---,co Of g can be expressed by rational form
a/bwhereb = det(S(9)) and alla’s are certain deter-
minants.

w1,; Or ¢y, In the latter case, the remaining entries are filled
with zeros. The elements belaw ; arew;+1,; = ¢—1,
Wit2,; = Ci—2, ..., C1, €, 0, 0, ... down to the last row
Wn,i-

The successive leading principal mindps of (p) are
called theRouth-Hurwitz determinantsThey areD;
det(cy), Dy = det((cl 2)) ..., Dy = det(Q(p)).

Co

As a consequence of the parallel polynomial gcd com-
putation, there are parallel algorithms for the polynomial Theorem 3.1 (Routh-Hurwitz) If D,, # 0, then the num-
division with remainder, which are based on computing de- ber of roots of the polynomial(x) in the right half-plane is

terminants (for more detail: see [IK93], Algorithm 15.2). |
is not hard to argue that by writing the coefficientdf in
the rational formu /b where we get the numbedsandb by
some determinant computations.

3 Computing the Inertia in PL

We start by describing the Routh-Hurwitz method in

Section 3.1, In Section 3.2 we show how it can be used

determined by the formula

Dy

Z+(A) = V(llea Dlv"'

whereV (z1, 22, . ..) computes the number of sign alterna-
tions in the sequence of numbaers z», .... For the cal-
culation of the values of, for every group ot successive
zero Routh-Hurwitz determinants (I is always odd!)

to compute the inertia of matrices, where the associated

Routh-Hurwitz matrix is regular. The main part is Sec-

tion 3.3 where we show how to compute the inertia in the

singular case iPL.
3.1 The Routh-Hurwitz Theorem

Let A be ann x n matrix. The eigenvalues of are the
roots of the characteristic polynomiglh (z) = det(xI —
A). For the computation af 4), the inertia of4, it suffices
to computei; (A) because we havie (A) = i (—A) and
i0(A) =n —ip(A) —ip (- A).

In order to computé (A), we show how to determine
i+(p), the number of roots with positive real part of an inte-
ger polynomiap(z) = 2™ + c12" 1 + cox™ 2 + -+ + ¢y,
counting multiplicities. A known method to determine
the number of roots in the right half-plane of a given real
polynomial p(x) is provided by Routh and Hurwitz (see
e.g. [Gan77], Volume 2, Chapter XV).

Definecy = 1. TheRouth-Hurwitz matriof p is defined
by then x n matrixQ(p),

€1 €3 C5 Ct 0
Cop C2 C4 Cp 0
0 C1 C3 Cp 0
Q (p ) - 0 Chp C2 C4 0
0 0 0 O Cn

That is, the diagonal elementsQfp) arew; ; = ¢;. Inthe
i-th column, the elements above the diagonalare ; =

Cit1, Wi—2,; = Cit2, ... until we reach either the first row

Ds #0, Dgy1 =+ =Ds11 =0, Dsyy11 #0

we have to setV(p2-, B, g=2) — | +
#, wherel = 2k — 1 ande = sign(%%).
Fors =1, D?il has to be replaced bip,; and fors = 0,
by ¢g.

A proof of this theorem can be found in [Gan77], Volume
2, Chapter XV, Section 6.

Note the assumptio®,, # 0 in the theorem. That is,
we can apply the theorem directly only in the case that the
Routh-Hurwitz matrix2(p) is regular. We analyze thieg-
ular casein Section 3.2 and then turn to tlsengular case
in Section 3.3.

3.2 The Regular Case

Assume thaD,, # 0. We apply the Routh-Hurwitz The-
orem 3.1 to determiné; (A). It is clear that all elements
of the Routh-Hurwitz matrix are computable @apL.
Therefore, by Theorem 2.2, all the Routh-Hurwitz determi-
nantsD; are computable ifxapL, too. It follows that one
can decide iPL whetherD; is positive, negative, or zero.
The k-th bit of ;. can be therefore computed by a family
of AC-circuits withPL oracles. SincAC°(PL) = PL,
the setsNERTIA andv-INERTIA are inPL.

Theorem 3.2 [HT02a] For matrices that have a regular
Routh-Hurwitz matrixI NERTIA andV-INERTIA are in PL.



3.3 The Singular Case

Itis known from linear algebra thd?,, = 0 if and only if
p(z) has a pair of opposite roots.Let us spiit:) into even
and odd termsp(z) = p1(z) + p2(z) where

b1 (EC) = " + Cn—an_Q + Cn—4$n_4 + - 9

pa(z) = cp1@" ! Hepga" TP 4
Defineg(z) = ged(py(z), p2(x)) and consider the decom-
position

p(z) = g(x)po(x). (1)

It follows that the opposite roots g@f(x) are precisely the
roots of g(z), and furthermorepy(x) has no pair of op-
posite roots. Therefore we can determinép,) by Theo-
rem 3.2.

Sinceiy (p) = i+(g) + i+(po), it now suffices to com-
puteiy (g). However, the Routh-Hurwitz method doesn'’t
apply to g(x) becausey(z) has purely pairs of opposite
roots (andy(z) is therefore of even degree). Nevertheless
we have

iv(9) = %(deg(g) —i0(g))- 2)

Consider Equation (2). The degréez(g) can be deter-
mined by polynomial gcd computation (see page 3). There-
fore, it remains to comput®(g).

Observe thaty(g) can be easily determined when all the
roots ofg are real because in this caggég) is exactly the
multiplicity of 2 = 0 as a root ofg(x). Recall that ifp(x)
is the characteristic polynomial of a symmetric matrixthe
all the roots ofp(z) are real. According to this observation
we have the following theorem which is useful later on.

Theorem 3.3 [HT02a] For symmetric matrice3NERTIA
andv-INERTIA are in PL.

Coming back to the general case, by decomposition (1)
we have

io(g9) = io(p) — to(po)-
Note that we can easily determifgpy):

io(po) = {

Therefore it suffices to compuig(p): this gives usiy(g),
from which we get . (g) by Equation (2).

Let us summarize: in order to compuitg(p) it suffices
to computeio(p), the number of purely imaginary roots of
p().

We will explain below a theorem from linear algebra that
shows how to determine the numberdistinct real roots
of a polynomialg(x). In order to apply this theorem to

0 otherwise

(3)

determineio(p), we first have to turp(z) by 90°. This is
done as follows.

It is known from linear algebra that for matricds and
A, of ordern andm, respectively, the eigenvalues of the
Kronecker productl; ® A, are); (A1) (Az), forall 4, k,
where); (A1) and A, (A2) are the eigenvalues of; and
As. For our purpose, observe that the eigenvalues of the
0

skew-symmetric matridy = <1

1> are the imaginary

0
0 —A)

numbers+: and —i. DefineB = E® A = A 0

whereA is the given matrix having the characteristic poly-
nomial p(z). Then the eigenvalues d8 arei);(A) and
—iA;(A) where), (A) runs through all eigenvalues of.

It follows that the number of real eigenvalues Bfis ex-
actly equal t@2i(p). Letq(x) = x5(z), the characteristic
polynomial of B. Then we have

1
io(p) = 3 the number of real roots af

We conclude that in order to compulg(p), it suffices to
compute the number of real rootsdifr).

The companion matrix of polynomial(z) = a" +
1z L+ o2 4 -+ + ¢, is defined by

0 0 0 —cn

1 0 0 —Cp—1
Q — 0 1 0 —Cp—2

0 0 1 —C1

TheHankel matrixd = (h; ;) associated tg(z) is defined
by

h;; = tracQ""~?), fori,j =1,...,n,
where tracéQ‘+7=2) is the sum of all diagonal elements
of Q*t7~2. Note thatH is symmetric. By sigH) we de-
note thesignatureof H, i.e. sigH) = i+ (H) — i_(H).
The following theorem can be found in [Gan77], Volume 2,
Chapter XV:

Theorem 3.4 Let H be the Hankel matrix associated with
polynomialg(z). Then

1. sig(H) is the number of distineealroots ofq(x),
2. rank(H) is the number of distinct roots ofz).

Obviously, for the given polynomiaj, the elements of
its Hankel matrixH are computable iGxapL. By the fact
after Theorem 2.2 this remains true when the coefficients of
q(x) are itself computable iGapL. As a consequence of
Theorem 3.3 and 3.4 we have the following corollary:

Corollary 3.5 The number of distinct real roots of a poly-
nomial with coefficients computable@apL can be deter-
mined inPL.



According to Theorem 3.4 and Corollary 3.5 the idea for
computing the number of real roots ¢fz) is as follows.
¢q(z) will be decomposed into factors by

q(z) = q1()g2(x) - - - qu ()

such that each polynomia} has only roots of multiplic-

ity 1. Polynomials with this property are callequare free
That s, for each of these polynomials the number of its real
roots is the same as the numbedgdtinctreal roots. Hence

these numbers can be determined by Theorem 3.4. Finally,
the sum of these numbers yields the number of real roots of

q(liz.remains to find a suitable decomposition fgfx).
Let « be a root ofg(x), with multiplicity m, i.e.
q(z) = (x — )™ h(x) andh(a) # 0.
andh(a) # 0. Consider the 1-st derivativg!) of ¢(z):
¢ (@) =mlz —a)" " h(@) + (z — o)™ BD(x).
Sincea is a root ofg") () with multiplicity m — 1, it is

also a root ofgcd(q(x), ¢V (x)) with multiplicity m — 1. It
follows that the polynomial

01 () q(x)

~ ged(q(),qD (z))

is square free. Similarly, for theth derivativeg® (), we
can show that all the polynomials

() = ged(a(@),¢" (@)
(7)== ed(qle), @ (@)

are square free and they yield the desired decomposition

9(z) = q1(x)g2(2) - - gn(2).

We summarize the algorithm for computing(A) on
input A:

1. Compute the polynomials

p(x) = xalz),
p(x)
x = 9
Pl = el (@), pa(a)
according to decomposition (1)
() = Xxesalz),
¢D(x) = thei-th derivative ofg(z),
fori=1,...,n,

ged(gq(x),¢" ()
ged(q(x), ¢ (x))
fori=1,...,n.

2. Compute the Hankel matril{; of ¢;(z),
fori=1,...,n.

3. Compute the values

ir(H;)andi_(H;), fori=1,...,n,
by Theorem 3.3

io(4) = 5 > siglrt),

i+(po), by Theorem 3.2
io(po), by Equation (3)
io(g) = i0(A) — io(po),

iv(g) = %(deg(g) —io(9))-

4. Outputi (A) =it (po) + i+(9)-
We show the main theorem.
Theorem 3.6 INERTIA andV-INERTIA are in PL.

Proof. Itis sufficient to show that, (A4) can be verified in
PL.

By considering the computation af_ (A), described
above, we observe that the polynomiglsg and ¢(?, for
i =1,...,n areinteger polynomials with coefficients com-
putable inGapL.

As explained in the preliminary section, the degree of
a polynomial gcd can be verified iRL. Therefore, the
verifications ofdeg(py) anddeg(q;) are inPL. Further-
more, the coefficients of polynomiais(x), and hence the
elements of matrice#;, have a rational forna/b wherea
andb are computable ilGapL. Based on these observa-
tions, by Theorem 3.5, and by Corollary 3.5 we can show
that the set{ (A,i,k,1,s) | k = deg(ged(q,q™)), | =
deg(ged(q, =), s = sig(H;) } is in PL. That means
that the signature of eacH; can be verified ilPL. The
remaining values in Step 3 can be verifiedRd. as well.
Therefore the algorithm to verify, (A) can be imple-
mented by a family oA C°-circuits with PL-oracles. Re-
call thatPL is closed undeA C°-reductions. d

It has been shown in [HTO02a] thatNERTIA and
V-INERTIA are hard forPL under logspace many-one re-
ductions. Therefore we obtain the following corollary.

Corollary 3.7
INERTIA andV-INERTIA are complete foPL.

4 Closure Properties of GapL

In this section we show necessary and sufficient condi-
tions that certain algebraic functions like the rank or the i
ertia of an integer matrix can be computeddapL.



4.1 Matrix Rank

Proof. Assume tha€C_L = coC_L. Then the problem of
verifying the rank of a matrixy-RANK, is incoC_L. That

Assume that the rank of a matrix could be computed in is, there is a functiorf € GapL such that for any matrix

GapL. Then the verification of the rank-RANK, would
be in C_L. On the other hand-RANK is complete for
C_L A coC_L. Hence this would impNC_L = coC_L.

The following theorem strengthens this collapse consider-

ably.
Theorem 4.1 C_L = SPL < ranke GapL.

Proof. Assume thalC_L = SPL. Thenv-RANK €
SPL. Hence, there is a functione GapL such that for a
given matrixA of ordern and a number we have

rank4) =r =
rankA) #r =

g(A,T) =1,
g(A4,r) =0.

It follows that
n

rankA) = rg(A,r),

r=1

and therefore rank GapL.

Conversely, suppose rank GapL. ThenC_L =
coC_L as explained above. To show tHat. L. = SPL,
we show thatv-POWELEM, a complete problem fo€_L,
is in SPL. Recall that there is a reduction by [ABO99]
from v-POWELEM to v-RANK in the following way

(A™)1n =0
(A™)1n #0

where matrixB of order N can be easily computed frorm
Define aGapL-functiong as

< rankKB)=N -1, and

< rankB) =N,

g(B) = N —rankB).
Then we have

if (A™)1, =0
otherwise.

Hencey is the characteristic function for deciding whether
(A,m,1,n,0) € v-POWELEM. This shows that
v-POWELEM € SPL. O

Next we weaken the assumption for the rank-function:
instead of onezapL-function that computes the rank di-
rectly, suppose there are ti@apL-functionsg andh such
that the rank can be written as the quotieny@ndh, i.e.,
rank A) = g(A)/h(A). We show that this is a necessary
and sufficient condition fo€_L being closed under com-
plement.

Theorem 4.2
C_L =coC_L < Jg,h € GapL rank= g/h.

and anyr,
rankA) =r <= f(A,r) #0.

Define functions

g(4) = Y rf(4,r),

h(A) = > f(Ar).
r=0

Then we haveg, h € GapL and rank= g/h as claimed.
Conversely, ley, h € GapL such that rank= g/h. For
a given matrixA and an integek > 0, define

(A, k) = g(A) — k h(A).
Thenf € GapL and we have
rankA) =r <= f(A,r) =0.

It follows that the rank of a matrix can be verified@.L.
HenceC_L = coC_L. O

Theminimal polynomiabf a matrixA is the smallest de-
gree monic polynomigl(x), that fulfills the characteristic
equation of4, u(A) = 0. In [HTO2b], it has been shown
that the degree of the minimal polynomial is computation-
ally equivalent to matrix rank. Therefore, we can formulate
the above theorems also in terms of the degree of the mini-
mal polynomial.

There is an interesting alternative way of representing
the rank of a matrix. Consider anx n symmetric matrix4A
with the characteristic polynomial

XA($) =z" + Cnfliﬂni1 + -+ cx+ .
It is well known from linear algebra that

rankA) = k < c¢,—x # 0 and

Cn—k—1=Cpn-k—2=""-=co=0.

Furthermore, all coefficientse; in
GaplL [Ber84].

Define a vectow = (w,,,w,_1,- -+ ,wi,wo)’, where
w; = fzo c2, forj = 0,1,...,n. Hence every ele-
ment ofw is computable irGapL. Furthermore we have:

rank(A) = k if and only if

are computable

() w has precisely £ + 1
Wn, Wn—15 -+, Wn—k, and

positive elements,

(ii) preciselyn — k zero elementsyp,, 1 = Wyp_g—2 =
<o =wp = 0.



Define functions

g(A) =5 f(A,)),
j=0

Conversely, for a given nonnegativ@apL-vector v, the
number of its positive elements is exactly the rank of the
diagonal matrix whose diagonalis

In summary, the problem of determining the rank of a
matrix is (logspace) equivalent to the problem of determin-
ing the number of consecutive zeros at the right end in a

GapL-vector.

4.2 Matrix Inertia

It is known that the rank can be reduced to the inertia by

rank A) = ranK AT A) =i, (AT A). (4)
Recall that the functions,, i_, andig of the inertia are
computationally equivalent becausg(A4) = i_(—A) and
10(A) = n—i4(A) —i_(A). The following theorem char-

hA) =37 F(A, ).
=0

Then we haveg, h € GapL andi, (4) = g/h as claimed.
Conversely, ley, h € GapL such that = g/h. For a
given matrixA and an integek > 0, define

f(A k) = g(A) =k h(A).
Thenf € GapL and we have
iv(A) =j = f(Af) =0.

That is, we can verify, in C_L. ThereforePL = C_L.
O

acterizes the case that the upper bound for computing the

inertia can be improved froRL to GapL.
Theorem 4.3 PL = SPL < i, € GapL.

Proof. Assume thalPL. = SPL. By Theorem 3.6, the
verification ofi, is in PL, and hence irSPL. That is,
there exists a functiop € GapL such that

i+(A) #j = g(A,j) =0,

for a matrixA and for all0 < j < n. It follows that
ir(A)=>jg(A,j),
j=1

and thereforé,. € GapL.

Conversely, suppose € GapL. Then the verification
of i, isin C_L. Becausé, is complete folPL by Corol-
lary 3.7, we havdPL = C_L. By Equation (4), rank is in
GapL too. ThusC_L = SPL by Theorem 4.1. Therefore
PL = SPL. (I

Like for the rank in Section 4.1 we show the following
theorem for a weaker condition that we can expiesas a
guotient of twoGapL-functions.

Theorem 4.4
PL=C_L <= Jg,h € GapL iy = g/h.

Proof. Assume thalPL = C_L. Then the problem of

verifying i1 is in coC_L. That is, there is a functiofi €
GapL such that for any matri¥l and anyj, we have:

i+(A) =j < f(A,j) #0.

4.3 Absolute value

For any functionf mapping to integers, by afs) we
denote the function of absolute valuesfofThat is
f(x)
—f(x)

if f(z) >0,
otherwise.

abgf)(x) = {

Theorem 4.5
PL = SPL < Vf € GapL abgf) € GapL.

Proof. SupposéPL = SPL and letf € GapL. Define
the setS = {z | f(x) > 0}. By definitonS € PL
and thereforeS € SPL, by assumption. That is, there is
g € GapL such that for all:

g(z) = {(1)

Then we can write al§g) = (2¢g — 1)f, and therefore
abgf) € GapL.

Conversely, letS € PL. That is, for some functiorf €
GapL, we can writeS = {z | f(z) > 0}. We define the
following functions

g =abgf)—absf 1),

(1)

We haveg € GapL, by assumption. It follows that €
GaplL by the closure properties dkapL. Now observe
if f(x) >0,

that
1
h(z) = .
0 otherwise.

This shows thats € SPL, and therefor®L = SPL.

ifxels,
otherwise.

O



Open Problems [ARZ99]
In the polynomial time setting it is known th&P C
SPPC-F . The proof is quite easy:

Let A = {z | f(z) > 0} € PP, for some

f € GapP. A nondeterministic maching/ on
input z guesses > 0 and asks it<C_P-oracle
whetherf(xz) = k. Ifthe answer is “yes”, thei/
accepts. If the answer is “no”, thew branches
once and accepts on one branch and rejects on the
other branch. This shows thate SPPC-F.

[Ber84]

[BFOO]

Note that this proof doesn’t work in the logspace setting:

in the Ruzzo-Simon-Tompa model of space-bounded oracle[BvzGH82]

machines, the machine has to be deterministic while writing
a query. Hence we ask

e ISPL C SPLC=L?

BecausSPPSFY = SPP, the above inclusion implies [Dam91]
thatC_P = SPP — PP = SPP. In the logspace
setting, we also havBPLSPY = SPL [ARZ99], but the
above conclusion is open. [FFK94]

e DoesC_L = SPL — PL = SPL?

In particular, this question is equivalent to finding a reduc
tion from the inertia to the rank of a matrix, and the latter [Gan77]
functions don’t look very different (in complexity).
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