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Abstract. The inertia of a square matrix A is defined as the triple
(i+(A),i-(A),i0(A)), where i4(A), i—(A), and ig(A) are the number of
eigenvalues of A, counting multiplicities, with positive, negative, and zero
real part, respectively. A hard problem in Linear Algebra is to compute
the inertia. No method is known to get the inertia of a matrix exactly
in general. In this paper we show that the inertia is hard for PL (proba-
bilistic logspace) and in some cases the inertia can be computed in PL.
We extend our result to some problems related to the inertia. Namely,
we show that matrix stability is complete for PL and the inertia of sym-
metric matrices can be computed in PL.

1 Introduction

A fundamental topic in linear algebra is the study of equivalence relations be-
tween matrices that naturally arise in theory and in applications. In computer
science, we are interested in finding efficient algorithms to decide equivalence,
or to construct canonical forms of a matrix for the relation under consideration.
More general, we are interested in the computational complexity of these and
related problems.

Most of these problems can be solved within certain logspace counting classes,
all of which are contained in the parallel complexity class (uniform) NC?. In fact,
the logspace counting class GapL [AO96] seems to capture the complexity of a
lot of algebraic problems quite naturally. GapL is the extension of #L to integers
in the same way as #P [Val79b,Val79a] can be extended to GapP [FFK94]
in the polynomial time setting. The break-through result for GapL was that
it precisely captures the complexity of the determinant of an integer matrix
[Ber84,Dam91,Tod91,Vin91,Val92].

The verification of the value of a GapL-function defines the complexity
class C=L. For example, the singularity problem (deciding whether a matrix
is singular) is complete for C=L, because this is asking whether the determinant
of a matrix is zero.

Inequalities on GapL-functions define the complexity class PL. For exam-
ple, the problem to decide whether the determinant of a matrix is positive, is
complete for PL.
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The computational problems over matrices like testing similarity, equivalence,

and congruence are located in logspace counting classes like AC?(C_L) (the
AC closure of C_L) or PL. We describe these results in more detail.
Similarity. Two matrices A and B are similar, if there is a nonsingular matrix S
such that A = S~!BS. Santha and Tan [ST98] observed that testing similarity
is in AC°(C_L). Testing similarity is actually complete for this class [HT00]. A
and B are similar iff they have the same invariant factors. The invariant factors
can be computed in AC°(GapL) and are hard for GapL [HTO1].
Equivalence. Two matrices A and B are equivalent, if there exist nonsingular
matrices P and (), such that A = PB(Q. A simple characterization of equivalence
is that A and B have the same rank. Testing the equivalence of two matrices is
complete for AC°(C_L) [ABO99,HT00], as well as verifying one bit of the rank
of matrix [ABO99].
Congruence. Two symmetric real matrices A and B are congruent (via a real
matriz), if there exists a nonsingular real matrix S such that A = SBST. By
CONGRUENCE we denote the problem of testing the congruence. CONGRUENCE
is hard for AC°(C-L) [HT00]. An upper bound for CONGRUENCE is an open
problem in [HT00]. In this paper we show that CONGRUENCE € PL by consid-
ering the inertia of symmetric matrices.

The computational complexity of the inertia and its related problems is the
main topic of this paper. In Section 3.2, we use the Routh-Hurwitz Theorem to
show that the inertia of a matrix (under the restrictions of the Routh-Hurwitz
Theorem) can be computed in PL. In Section 3.3 we show that the inertia is
hard for PL.

An alternative way to compute the inertia of a matrix could be to determine
all the roots of the characteristic polynomial of the given matrix. With the
NC2-algorithm of Neff and Reif [Nef94,NR96] these roots can be approximated
to some precision [ABO]. However, it is not clear to what precision we have to
approximate a root in order to tell it apart from zero. This result is different
from our approach.

We also consider the verification of the inertia. That is, for matrix A and
integers p, n, and 4, one has to decide whether (p,n,3) is the inertia of A. We show
in Section 3 that for certain matrices the verification is complete for PL.

A system of differential equations is stable iff its coefficient matrix is sta-
ble (matrix whose eigenvalues have negative real parts). Therefore, the study
of stable matrices has a long-standing history and it is an important topic in
Linear Algebra. We prove in Section 4 that the problem of deciding whether all
eigenvalues of a matrix have positive real parts is complete for PL. A matrix
has no eigenvalues with negative real part is called positive semistable. We show
in Section 4 that the problem to decide whether a matrix is positive semistable
is in AC°(GapL) and is hard for PL.

Finally, in Section 5 we prove that the inertia of a symmetric integer matrix
can be computed in PL. It follows that the congruence of two matrices can be
decided in PL. Note that there are deterministic algorithms for the inertia of
symmetric integer matrices see for example [For00].



2 Preliminaries

We assume familiarity with some basic notions of complexity theory and lin-
ear algebra. We refer the readers to the papers [AB099,A096] for more de-
tails and properties of the considered complexity classes, and to the text-
books [Gan77,HJ91,HJ85] for more background in linear algebra.

Complezity Classes. For a nondeterministic Turing machine M, let gap,, denote
the difference between the number of accepting and rejecting computation paths
of M on input z. The function class GapL is defined as the class of all functions
gap s (z) such that M is a nondeterministic logspace bounded Turing machine M.

It is easy to see that GapL is closed under addition, subtraction, and multi-
plication. Allender, Arvind, and Mahajan [AAM99] showed that GapL is closed
under composition. Even stronger, they showed that the determinant of a ma-
trix A where each entry of A is computed in GapL can be computed in GapL.

A set S is in C_L, if there exists a function f € GapL such that for all =
we have z € S <= f(z) = 0. A set S is in PL if there is a function f € GapL
such that for all  we have x € S <= f(z) > 0. Ogihara [Ogi98] showed that
PL is closed under logspace Turing reductions.

By AC’(C_L), AC°(PL), and AC°(GapL) we denote the class of sets that
are AC"-reducible to a set in C_L, PL, respectively a function in GapL. All
these classes are contained in TC!, a subclass of NC?. The known relationships
among these classes are as follows:

C_L C AC’(C_L) C AC’(PL) = PL C AC°(GapL) C TC' C NC*.
Unless otherwise stated, all reductions in this paper are logspace many-one.

Linear Algebra. Let M, be the set of n x n integer matrices. For A € M,, we
denote the characteristic polynomial of A by xa(x), that is xya(z) = det(zl — A)
is a degree n polynomial, deg(xa) = n. The companion matriz of the polynomial
p(z) = 2" + a12"' + -+ + a, is the matrix P € M,,, where the last column
is (—am,...,—ap)T, all entries on the lower subdiagonal are 1. All the other
elements are zero. The property of P we use is that xp(z) = p(z).

The inertia of a matrix A € M, is defined as the triple (i1 (A),i_(A),ip(4)),
where i4(A4), i_(A), and ig(A) are the number of eigenvalues of A, counting
multiplicities, with positive, negative, and zero real part, respectively. Note that
ir(A),i_(A),ig(A) are nonnegative integers and the sum of these is exactly n.

Matrix A is called positive stable, if i(A) = (n,0,0), and negative stable, if
i(A) = (0,n,0). Furthermore, A is called as positive semistable if i_(A) = 0. In
case that A is real symmetric all eigenvalues of A are real and the word “stable”
will be replaced by “definite”.

For square matrices A = (a; ;) € My, and B € M,,, the Kronecker product
A ® B is defined as the matrix (a; ;jB) € Myy,. The Kronecker sum A @ B is
defined as the matrix A ® I, + I,, ® B € My, where I,, € M,, and I,, € M,,
are identity matrices. If Ay, ..., A,, and puq, ...,y are the eigenvalues of A and
B, respectively, then the eigenvalues of A @ B are Agpy, and the eigenvalues of
A® Bare A\ +y, forall1<k<nand1<Il<m.



Problems We define some natural problems in linear algebra that we are consid-
ering. Unless otherwise specified, our domain for the algebraic problems are the
integers. The two following functions are complete for GapL [AB099,ST98].

POWERELEMENT: given A € M,, and m, compute (A™); p.

DETERMINANT: given A € M, compute det(A4).

For each of them, we define the corresponding wverification problem as the
graph of the corresponding function: for a fixed function f(z), define v-f as the
set of all pairs (z,y) such that f(z) = y. This yields v-POWERELEMENT and
V-DETERMINANT. They are known to be complete for C_L.

We denote by POSPOWERELEMENT the problem of deciding whether one
element of the power of a matrix is positive, and by POSDETERMINANT the
problem of deciding whether the determinant of a matrix is positive. These
problems are complete for PL.

We define INERTIA to be the problem of computing one bit of i(A) (with
respect to some fixed coding). That is,

INERTIA = {(A, k,b)| the k-th bit of i(A) is b}.

By v-INERTIA we denote the problem of verifying the value of i(A).

PosSTABLE and POSSEMISTABLE are the sets of all positive stable,
semistable matrices, respectively. POSDEFINITE and POSSEMIDEFINITE are the
sets of all positive definite, semidefinite matrices, respectively.

3 The Inertia

3.1 The Routh-Hurwitz Theorem

The Routh-Hurwitz Theorem (see [Gan77], Volume II, Chapter XV) provides a
method for determining the number of roots in the right half-plane of a given
real polynomial. Since the roots of the characteristic polynomial x 4(x) are the
eigenvalues of the matrix A, we can compute the inertia of A by applying the
Routh-Hurwitz method to x4 (x).

Let A € M,,. Consider the characteristic polynomial of A

xa(®) = 2" + x4 e

Define ¢g = 1. The Routh-Hurwitz matriz 2(A) = (wi,j) € M, is defined as

0103C5C7"'0
CcopCocCqcg--- 0
0010305"'0
“Q(A): OCOC2C4"'0
0000--c,

That is, the diagonal elements of 2(A4) are w;; = ¢;. In the i-th column, the
elements above the diagonal are w;—1; = ¢jy1, wWi—2,; = Ci42, ... until we reach



either the first row wy ; or ¢,,. In the latter case, the remaining entries are filled
with zeros. The elements below Wi,q are Wi41,; = Ci—1, Wi42,4 = €j—2, ..., C1, Co,
0,0, ... down to the last row wy, ;.

The successive leading principal minors D; of 2(A) are called the Routh-
Hurwitz determinants, they are

C1 C3

D1 =C1, DQ = det (CO o

) Lo, Dy = det(2(A)).

Theorem 3.1 (Routh-Hurwitz). If D, # 0, then the number of roots of the
polynomial x a(x) in the right half-plane is determined by the formula

D, D,
iv(A)=V(1,Dy, —,..., —_—),
Z+( ) ( ) 1/D1/ an—l)l
where V(x1,xa,...) computes the number of sign alternations in the sequence of
numbers x1, T2, .... For the calculation of the values of V, for every group of p
successive zero Routh-Hurwitz determinants (p is always odd!)
Ds#oa Ds+1:"':Ds+p:0: Ds+p+17éo
D, D, D _ 1—(=1)"e _
we have to set V(DFI, D:I,...,Ds:ﬁ) =h+ —5"—, where p=2h -1
— D, D, — D, .
and € = 51gn(Ds_1 ﬁ) For s = 1, == is to be replaced by D:; and for

s=0, by co.

Let us discuss the case when D,, = 0. It is known that D,, = 0 iff x4 (z) has
a pair of opposite roots zg and —zq (see [Gan77]). Define

pi(z) = 2" + cox" 2 + caz™ 4+ and po(z) = cra™ ! 4 cax™ P 4

Then xa(z) = p1(x) + p2(z) and p1(ro) = p2(z0) = 0. Therefore, o is also
a root of the greatest common divisor g(z) of pi(z) and p2(z). We can write
xa(z) = g(z)x*% (z), where the polynomial x* () has no pair of opposite roots,
i.e. the Routh-Hurwitz matrix of x*% (z) is nonsingular. Let B be the companion
matrix of g(z) and C be the companion matrix of x%(z). Then we have

i(A) = i(B) +i(C).

Note that all nonzero-eigenvalues of B are pairs of opposite values. The
Routh-Hurwitz method does not work in the case where B has some oppo-
site eigenvalues on the imaginary axis, and no method is known to get the exact
number of roots of a polynomial on an axis (to the best of our knowledge).

However, there are methods to determine the number of distinct roots of a
polynomial on an axis, and we will show below how to use these methods to
solve at least some cases where D, = 0.

Let P be the companion matrix of a polynomial p(z), where deg(p(z)) = n.
The Hankel matriz H = (h; ;) € M, associated with p(z) is defined as h;; =
trace(P™t7=2), for i,j = 1,...,n, where trace(P*7=2) is the sum of all diagonal



elements of PiT7=2, Note that H is symmetric. By sig(H) we denote the signature
of H, that is the difference between i, (H) and i_(H). The following Theorem
can be found in Volume II, Chapter XV of [Gan77].

Theorem 3.2. 1) The number of distinct real roots of p(x) is equal sig(H).
2) The number of all distinct roots of p(x) is equal to the rank of H.

3.2 Upper Bounds

We consider the complexity to compute the inertia via Theorem 3.1. The first
step is to compute all the coefficients ¢; of x4(z) and from these all Routh-
Hurwitz determinants D;, for ¢ = 1,...,n. Since the coefficients ¢y, ..., ¢, are
computable in GapL, each of the determinants Dq,..., D, can be computed
in GapL as well [AAM99].

If D, # 0, i.e. 2(A) is nonsingular, we can compute iy (A) by using the
formulas from Theorem 3.1: a logspace machine with a PL oracle can ask, for
each of the determinants Dy, ..., Dy, if it is positive, negative, or zero. Because
i—(A) = iy (—A), we can apply the same method to compute i_(A4) and get
i0(A) =n —iy(A) —i_(A). Hence all three values of i(A) can be computed in
PL.

Theorem 3.3. The inertia of a matriz A with the property that 2(A) is non-
singular can be computed in PL.

Let us consider the case when D,, = 0, i.e. when 2(A) is singular. We decom-
pose xa(x) = g(z)x% (), as described in the previous section. Recall that g(x)
is the greatest common divisor of two polynomials p;(x) and p2(z). Therefore
the coefficients of g(z) can be computed as the solution of a system of linear
equations (see [K0z91]), which can be done in AC’(GapL) (see [ABO99]). It
follows that we can compute the polynomial x%(z) in AC°(GapL) as well. In
other words, each of the elements of the companion matrices B (of g(x)) and C
(of x*(2)) can be computed in AC°(GapL).

There is no method to compute 7(B) in general. However, in some cases,
when g(z) is easy, we can do so anyway. Suppose for example that

g(x) = =, for some t > 0.

Equivalently we can say that B (and hence A) has no opposite nonzero-
eigenvalues. Then it is clear that i(B) = (0,0,¢), and hence i(A4) = (0,0, t)+i(C).
Note that the decision whether A has no opposite nonzero-eigenvalues is in
coC_L: with the greatest ¢ such that z! is a divisor of x4 (z) (it is possible that
t = 0) we can decide whether the Routh-Hurwitz matrix associated with the
polynomial X’;—Ex) is nonsingular.
Corollary 3.4. The inertia of a matriz with no opposite nonzero-eigenvalues
can be computed in PL.

We can considerably extend Corollary 3.4 to the following theorem.



Theorem 3.5. The inertia of a matriz A with the property that
1) A has all opposite eigenvalues on the imaginary axis, or
2) A has no opposite eigenvalues on the imaginary azis,

can be computed in AC°(GapL).

Proof. Assume that the condition on A is fulfilled. Let B be again the
companion matrix of g(x). The triple i(B) can be easily computed. In the
case 1) we have i(B) = (0,0,deg(g(z)) and in the case 2) we have i(B) =
(1 deg(g(z)),0, § deg(g(z))). Thus we can compute i(A) by adding i(B) to i(C).

We show how to check the condition on A by using Theorem 3.2.

Since Theorem 3.2 deals with the real axis instead of the imaginary axis, we
first turn g(z) by 90°: consider the matrix F = ((1) ’01) . Its eigenvalues are +i
and —i. Define D = B® E. The eigenvalues of D are i\, (B) and —i\;(B) where
Ak (B) runs through all eigenvalues of B. It follows that the number of distinct
purely imaginary eigenvalues of B is the same as the number of distinct real
eigenvalues of D.

Finally, let H be the Hankel matrix of xp(z). From Theorem 3.2 we have

i+(B) =0 <= rank(H) = sig(H),
io(B) =0 <= sig(H) = 0.

The conditions on the right-hand side can be decided in AC®(GapL). This
proves the theorem. O

Because of the closure properties of PL and ACO(GapL), we get the same
upper bounds for the verification of the inertia.

3.3 Lower Bounds
Theorem 3.6. INERTIA and V-INERTIA are hard for PL.

Proof. We reduce POSPOWERELEMENT, a complete problem for PL, to INERTIA
and V-INERTIA. Let A € M,, be an input for POSPOWERELEMENT. One has to
decide whether (A™)q, > 0 for a given m > 1.

There is a reduction from matrix powering to the characteristic polynomial
which is shown in [HT00] (see also [HT01] and [HTO02]): given A, m and a, one
can construct a matrix B in AC° such that

(Am)l,n E— XB(x) — xN—Qm—l (x2m+1 _ a) ,

where N = m(n + d) + n, and d is the number of nonzero-elements in A.

The eigenvalues of B are the roots of xg(z). We consider the case when
a = (A™); , # 0. The roots of 2>™+! — a are the corners of a regular (2m + 1)-
gon inscribed in a circle of radius a?=71 with its center at the origin. Since
2m + 1 is odd, none of these roots lies on the imaginary axis. This implies that



iop(B) = N —(2m+1), and one of i1 (B) and i_(B) is m and the other is m + 1.
Moreover, these values depend on the sign of a. Namely, if a > 0, we have

iy (B) = (1)

m+1 if2m+1=1 (mod 4),
m if2m+1=3 (mod 4).
Note in particular that i, (B) in (1) is always odd. Analogously, i1 (B) is even
if @ < 0. In the case where (A™);,, =0, we have i(B) = (0,0, N).
In summary, we can compute values p, n, 3 in logspace such that

(A™)1n > 0 <= i(B) = (pn3)

This proves the theorem. O

Note also that B in the above proof has no pair of opposite nonzero-
eigenvalues. Therefore B fulfills the condition of Corollary 3.4.

Corollary 3.7. The computation and the verification of the inertia of a matrix
with mo opposite nonzero-eigenvalues are complete for PL.

4 Stability

Theorem 4.1. POSSTABLE € PL and PosSEMISTABLE € AC’(GapL)

Proof. A is positive stable iff all the Routh-Hurwitz determinants of the matrix
(—A) are positive. Hence, positive stability of A can be decided in PL.

If 2(A) is nonsingular, then POSSEMISTABLE € PL by Theorem 3.3. So
assume that (2(A) is singular. As described in Section 3.1, we decompose x 4(z) =
g(z)x*% (z) in AC°(GapL). Let B and C be the companion matrices of g(z)
and x* (z), respectively. Then A is positive semistable iff B is positive semistable
and C is positive stable. Matrix B is positive semistable iff all eigenvalues of B
are on the imaginary axis. Now the result follows from Theorem 3.5. g

Now we consider the hardness of the stability problems. A matrix A is non-
singular iff AAT is positive definite. AAT can be computed in NC'. Therefore,
POSDEFINITE is hard for coC_L under NC' many-one reductions.

Corollary 4.2. POSDEFINITE is hard for coC-L.
Theorem 4.3. POSSTABLE and POSSEMISTABLE are hard for PL.

Proof. By NEGDETERMINANT we denote the set of all matrices with negative
determinant. Note that NEGDETERMINANT is complete for PL. We construct a
reduction from NEGDETERMINANT to POSSTABLE as follows.

Let A € M,. Let dy1,...,d,,, be the diagonal elements of AT A. The
Hadamard Inequality states that |det(A)| < (di1---dnn)'/?. W.lo.g. we can
assume that the input matrix A is a 0-1 matrix and that no row or column of A



has more than two 1’s in it [All02]. Therefore d; ; < 2 for all i. By the Hadamard
Inequality we get the following bound for det(A):

—2" < det(4) < 2".

Define ¢t = [5;%51(2m + 1), for an integer m > 1. Since n < ¢, we have

det(A4) +2t > 0 and

det(A) < 0 <= det(A4) + 2" < 2. (2)
Lemma 4.4. We can construct a matrix B € M}, and m such that
(B™)1 1, = det(A) + 2" (3)

Note that m depends on ¢, and we defined ¢ in terms of m. This makes the
construction a bit tricky. We prove the lemma below.
Define b = (B™);,. We further reduce B to a matrix C such that

XC(CU) — wN—Qm—l (m2m+1 _ b) :
where N = m(k + d) + k, and d is the number of elements different from zero
of B [HT00] (see also [HT01] and [HT02]). This is an AC -reduction.

As explained in Theorem 3.6, matrix C has N — 2m — 1 eigenvalues zero and
2m + 1 eigenvalues as the roots of 2™+ —b. The latter 2m + 1 eigenvalues of C
are complex and lie on the circle of radius r = b7=71 (with the origin as center).
Since b > 0, the eigenvalue with the largest real part is Amax(C) = .

We shift the eigenvalues of C' by s = 2om#1 = 2[2m77]. That is, define the
matrix D = —C' + sI. The eigenvalue of C' with the largest real part becomes

the eigenvalue of D with the smallest real part: Apin(D) = —r + 5. So we get
b< 2 <7< 54<= Anin(D) > 0. (4)

By (2) and (4) we have A € NEGDETERMINANT <= D € POSSTABLE.
An analogous argument reduces the set of matrices with nonpositive deter-
minants (a PL-complete set) to POSSEMISTABLE O

Proof of Lemma 4.4. Since POWERELEMENT is complete for GapL, we can
compute By € M; and an exponent m in logspace such that (B§*)1,; = det(A).

Define a (m+1) x (m+1) block matrix F' with m times By on the first upper
subdiagonal, all other blocks are zero.

Define S = (& ¢° ), where s = 2lz77 1 It is easily to get S™ = (
and s?m+1l = 2,

We define an I(m + 1) x 2 matrix 7' whose elements at the position (1,1) and
(I{m +1),2) are 1 and all the others are zero.

Finally, for k = I(m + 1) + 2 we define

B= <FFT+TS>,

g )

0 S



and claim that the matrix B fulfills (3). From the powers of B we get

. <Fm F™T 4 2F™=1TS + 2F™=2TS2 4 ... 4 2FT S~ 4 Tsm>
B™ = (", om .

In particular, for each 1 < § < m, F? has a very simple form: on its i-th up-
per subdiagonal are purely B* and all the other block-elements are zeromatrix.
Furthermore, it is not hard to see that F™'TS* = 0 for all i < m. Thus

m _ (F™ F™T +TS™
B_<0 s )

Now, it is not hard to see that (B™); = det(A) + 2!. This proves the lemma.

5 The Congruence of Symmetric Matrices

Recall that all the eigenvalues of a symmetric (real) matrix A are real. Therefore,
if we decompose x 4(z) = g(z)x* (z) as explained in Section 3.1, g(z) has only
real roots. Let ¢ be the multiplicity of the zero-eigenvalue of the companion
matrix B of g(z). Then we have i(B) = (3(deg(g(z)) — t), 3(deg(g(z)) — t), ).
It follows that i(A) can be computed in AC°(GapL). Actually, we can show a
better upper bound for this problem. By INERTIA,,,, we denote the restriction

of INERTIA, where the input matrix A is a symmetric integer matrix.
Theorem 5.1. INERTIAgy,, is in PL.

Proof. Let A € M,. If A is singular, we can compute x4(z) and determine
the multiplicity ¢ of eigenvalues 0 (in GapL). Then it suffices to compute the
inertia of the companion matrix of polynomial x4 (z)/z!. The latter matrix is
nonsingular. Therefore we may as well assume that A is nonsingular.

If A has no pair of opposite nonzero-eigenvalues, then INERTIA 4y, is in PL,
as explained in Section 3.2. Therefore we consider the case when A has some
pair of opposite nonzero eigenvalues. The idea is to determine a positive rational
number € such that the value i (M) of the matrix M = A—el is equal to i1 (A)
and the Routh-Hurwitz matrix (M) is regular. Then we can apply Theorem 3.3
to compute iy (M).

The spectral radius of A is a bound on the distance of the eigenvalues of A
from the origin. Furthermore, if || - || is any matrix norm, then p(A4) <|| A ||
(see [HI85]). We choose || - || as the mazimum column sum matriz norm, i.e.,
v(A) =|| A ||= maxi<j<n Y1y |aij|, and we have p(A) < v(A). Because A is
nonsingular, we can define r; = (v(A71) +1)7 L. Let A\;(4),..., ,(A4) be the
eigenvalues of A. Then A;(A) > ry, fori = 1,...,n. Now let 0 < ¢ < r; and
define matrix M = A — el. The eigenvalues of M are A\;(4) —¢,..., A\ (A) — ¢
and we have iy (M) = i4.(4).

It remains to determine € such that 2(M) is nonsingular. Observe that M
has this property iff for all i # j

)\Z(A) — € 75 —(A](A) - 8) — )\Z(A) + )\](A) 75 2¢. (5)



The eigenvalues of S = A® A are A\;(4)+A;(A) for all 1 < i,j < n. Thus equiva-
lent to condition on the right-hand side of (5) is that 2e is not an eigenvalue of S.
Matrix S is singular, because A has some pair of opposite nonzero-eigenvalues.
If we decompose xs(z) = z¥x%(z) such that x%(0) # 0, then the companion
matrix S* of x%(x) is nonsingular and k is exactly the multiplicity of the eigen-
value 0 of S. Since S* is nonsingular, we can define ry = (v(S*~') + 1)~'. Each
of the eigenvalues of S* has absolute value greater than rs. Hence 2(M) is
nonsingular if 0 < 2¢ < 7,. In summary, we can choose € = min{ry,r2/2}.

The value ¢, each element of M, and each of the Routh-Hurwitz determi-
nants of £2(M) can be computed in GapL, because the elements of A~! and
S*~! are computable in GapL ([AAM99]). Therefore INERTIAy,, is in PL by
Theorem 3.3. O

Since each bit of iy (A) can be verified in PL, the values of i(A) can be
verified in PL, too. This implies that the problem of testing whether two given
symmetric matrices have the same inertia (that is CONGRUENCE) is in PL. This
solves an open problem in [HT00].

Corollary 5.2. CONGRUENCE, POSDEFINITE, POSSEMIDEFINITE € PL.

Summary and Open Questions

The table summarizes the

lower and upper bounds for Problem ‘ hard for ‘ contained in
some of the problems consid- PosSTABLE PL PL
ered in this paper. An obvious 0

task for further research is to POSSEMISTABLE PL AC (GapL)
close the gap between the lower =~ CONGRUENCE AC’(C_L) PL

and the upper bound where it  pospDrrINITE coC_L PL

doesn’t match.
A major challenge remains to compute the inertia in general.

Acknowledgments

We thank Eric Allender and the referees for many helpful comments on the
paper. In particular, Eric pointed us to the results in [AAM99] from which we
got that all Routh-Hurwitz determinants are computable in GapL.

References

[AAM99] E. Allender, V Arvind, and M. Mahajan. Arithmetic complexity, Kleene
closure, and formal power series, 1999.

[ABO] E. Allender and M. Ben-Or. Electronic Communication, 2001.

[ABO99] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and
feasible systems of linear equations. Computational Complexity, 8:99-126,
1999.

[All02] E. Allender. Personal Communication, 2002.



[AO96]

[Ber84]

[Dam91]
[FFK94]

[For00]

[GanT77]
[Gra81]

[HI85]
[HJ91]

[HT00]

[HTO01]
[HT02]
[Koz91]
[Nef94]
[NR96]
[0gi98]
[ST98]

[Tod91]

[Val79a]
[Val79b]

[Val92]

[Vin91]

E. Allender and M. Ogihara. Relationship among PL, #L, and the determi-
nant. RAIRO-Theoretical Informatics and Applications, 30:1-21, 1996.

S. Berkowitz. On computing the determinant in small parallel time using
a small number of processors. Information Processing Letters, 18:147-150,
1984.

C. Damm. DET = L#%), Technical Report Informatik-Preprint 8, Fachbere-
ich Informatik der Humboldt Universitaet zu Berlin, 1991.

S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal
of Computer and System Sciences, 48:116-148, 1994.

S. Fortune. Exact computation of the inertia of symmetric integer matrices.
In 32th Symposium on Theory of Computing, STOC 2000, pages 556-564.
ACM Press, 2000.

F. Gantmacher. The Theory of Matrices, volume 1 and 2. AMS Chelsea
Publishing, 1977.

A. Graham. Kronnecker Products and Matriz Calculus: With Applications.
Ellis Horwood Ltd., 1981.

R. Horn and C. Johnson. Matriz Analysis. Cambridge University Press, 1985.
R. Horn and C. Johnson. Topics in Matriz Analysis. Cambridge University
Press, 1991.

T. M. Hoang and T. Thierauf. The complexity of verifying the character-
istic polynomial and testing similarity. In 15th IEEE Conference on Com-
putational Complezity (CCC), pages 87-95. IEEE Computer Society Press,
2000.

T. M. Hoang and T. Thierauf. The complexity of the minimal polynomial. In
26th International Symposium, MFCS 2001, pages 408-420. Springer, 2001.
T. M. Hoang and T. Thierauf. The complexity of the characteristic and
the minimal polynomial. Invited paper to the special issue in Theoretical
Computer Science of the 26th MFCS conference 2001, to appear, 2002.

D. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, 1991.
C. A. Neff. Specified precision root isolation is in NC. Journal of Computer
and System Science, 48:429-463, 1994.

C. A. Neff and J. H. Reif. An efficient algorithm for the complex roots
problem. Journal of Complezity, 12:81-115, 1996.

M. Ogihara. The PL hierarchy collapses. SIAM Journal on Computing,
27:1430-1437, 1998.

M. Santha and S. Tan. Verifying the determinant in parallel. Computational
Complexity, 7:128-151, 1998.

S. Toda. Counting problems computationally equivalent to the determinant.
Technical Report CSIM 91-07, Dept. of Computer Science and Information
Mathematics, University of Electro-Communications, Chofu-shi, Tokyo 182,
Japan, 1991.

L. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8:189-201, 1979.

L. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8:410-421, 1979.

L. Valiant. Why is Boolean complexity theory difficult. In M.S. Paterson,
editor, Boolean Function Complezity, London Mathematical Society Lecture
Notes Series 169. Cambridge University Press, 1992.

V Vinay. Counting auxiliary pushdown automata and semi-unbounded arith-
metic circuits. In 6th IEEE Conference on Structure in Complexity Theory,
pages 270-284, 1991.



