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t. The inertia of a square matrix A is de�ned as the triple(i+(A); i�(A); i0(A)), where i+(A), i�(A), and i0(A) are the number ofeigenvalues of A, 
ounting multipli
ities, with positive, negative, and zeroreal part, respe
tively. A hard problem in Linear Algebra is to 
omputethe inertia. No method is known to get the inertia of a matrix exa
tlyin general. In this paper we show that the inertia is hard for PL (proba-bilisti
 logspa
e) and in some 
ases the inertia 
an be 
omputed in PL.We extend our result to some problems related to the inertia. Namely,we show that matrix stability is 
omplete for PL and the inertia of sym-metri
 matri
es 
an be 
omputed in PL.1 Introdu
tionA fundamental topi
 in linear algebra is the study of equivalen
e relations be-tween matri
es that naturally arise in theory and in appli
ations. In 
omputers
ien
e, we are interested in �nding eÆ
ient algorithms to de
ide equivalen
e,or to 
onstru
t 
anoni
al forms of a matrix for the relation under 
onsideration.More general, we are interested in the 
omputational 
omplexity of these andrelated problems.Most of these problems 
an be solved within 
ertain logspa
e 
ounting 
lasses,all of whi
h are 
ontained in the parallel 
omplexity 
lass (uniform)NC2. In fa
t,the logspa
e 
ounting 
lass GapL [AO96℄ seems to 
apture the 
omplexity of alot of algebrai
 problems quite naturally.GapL is the extension of #L to integersin the same way as #P [Val79b,Val79a℄ 
an be extended to GapP [FFK94℄in the polynomial time setting. The break-through result for GapL was thatit pre
isely 
aptures the 
omplexity of the determinant of an integer matrix[Ber84,Dam91,Tod91,Vin91,Val92℄.The veri�
ation of the value of a GapL-fun
tion de�nes the 
omplexity
lass C=L. For example, the singularity problem (de
iding whether a matrixis singular) is 
omplete for C=L, be
ause this is asking whether the determinantof a matrix is zero.Inequalities on GapL-fun
tions de�ne the 
omplexity 
lass PL. For exam-ple, the problem to de
ide whether the determinant of a matrix is positive, is
omplete for PL.? Supported by the Deuts
he Fors
hungsgemeins
haft?? Part of the work done at Universit�at Ulm.



The 
omputational problems over matri
es like testing similarity, equivalen
e,and 
ongruen
e are lo
ated in logspa
e 
ounting 
lasses like AC0(C=L) (theAC0-
losure of C=L) or PL. We des
ribe these results in more detail.Similarity. Twomatri
esA andB are similar , if there is a nonsingular matrix Ssu
h that A = S�1BS. Santha and Tan [ST98℄ observed that testing similarityis in AC0(C=L). Testing similarity is a
tually 
omplete for this 
lass [HT00℄. Aand B are similar i� they have the same invariant fa
tors. The invariant fa
tors
an be 
omputed in AC0(GapL) and are hard for GapL [HT01℄.Equivalen
e. Two matri
es A and B are equivalent , if there exist nonsingularmatri
es P and Q, su
h that A = PBQ. A simple 
hara
terization of equivalen
eis that A and B have the same rank. Testing the equivalen
e of two matri
es is
omplete for AC0(C=L) [ABO99,HT00℄, as well as verifying one bit of the rankof matrix [ABO99℄.Congruen
e. Two symmetri
 real matri
es A and B are 
ongruent (via a realmatrix), if there exists a nonsingular real matrix S su
h that A = SBST . ByCongruen
e we denote the problem of testing the 
ongruen
e. Congruen
eis hard for AC0(C=L) [HT00℄. An upper bound for Congruen
e is an openproblem in [HT00℄. In this paper we show that Congruen
e 2 PL by 
onsid-ering the inertia of symmetri
 matri
es.The 
omputational 
omplexity of the inertia and its related problems is themain topi
 of this paper. In Se
tion 3.2, we use the Routh-Hurwitz Theorem toshow that the inertia of a matrix (under the restri
tions of the Routh-HurwitzTheorem) 
an be 
omputed in PL. In Se
tion 3.3 we show that the inertia ishard for PL.An alternative way to 
ompute the inertia of a matrix 
ould be to determineall the roots of the 
hara
teristi
 polynomial of the given matrix. With theNC2-algorithm of Ne� and Reif [Nef94,NR96℄ these roots 
an be approximatedto some pre
ision [ABO℄. However, it is not 
lear to what pre
ision we have toapproximate a root in order to tell it apart from zero. This result is di�erentfrom our approa
h.We also 
onsider the veri�
ation of the inertia. That is, for matrix A andintegers p, n, and z, one has to de
ide whether (p,n,z) is the inertia of A. We showin Se
tion 3 that for 
ertain matri
es the veri�
ation is 
omplete for PL.A system of di�erential equations is stable i� its 
oeÆ
ient matrix is sta-ble (matrix whose eigenvalues have negative real parts). Therefore, the studyof stable matri
es has a long-standing history and it is an important topi
 inLinear Algebra. We prove in Se
tion 4 that the problem of de
iding whether alleigenvalues of a matrix have positive real parts is 
omplete for PL. A matrixhas no eigenvalues with negative real part is 
alled positive semistable. We showin Se
tion 4 that the problem to de
ide whether a matrix is positive semistableis in AC0(GapL) and is hard for PL.Finally, in Se
tion 5 we prove that the inertia of a symmetri
 integer matrix
an be 
omputed in PL. It follows that the 
ongruen
e of two matri
es 
an bede
ided in PL. Note that there are deterministi
 algorithms for the inertia ofsymmetri
 integer matri
es see for example [For00℄.



2 PreliminariesWe assume familiarity with some basi
 notions of 
omplexity theory and lin-ear algebra. We refer the readers to the papers [ABO99,AO96℄ for more de-tails and properties of the 
onsidered 
omplexity 
lasses, and to the text-books [Gan77,HJ91,HJ85℄ for more ba
kground in linear algebra.Complexity Classes. For a nondeterministi
 Turing ma
hineM , let gapM denotethe di�eren
e between the number of a

epting and reje
ting 
omputation pathsof M on input x. The fun
tion 
lassGapL is de�ned as the 
lass of all fun
tionsgapM (x) su
h thatM is a nondeterministi
 logspa
e bounded Turing ma
hineM .It is easy to see that GapL is 
losed under addition, subtra
tion, and multi-pli
ation. Allender, Arvind, and Mahajan [AAM99℄ showed that GapL is 
losedunder 
omposition. Even stronger, they showed that the determinant of a ma-trix A where ea
h entry of A is 
omputed in GapL 
an be 
omputed in GapL.A set S is in C=L, if there exists a fun
tion f 2 GapL su
h that for all xwe have x 2 S () f(x) = 0: A set S is in PL if there is a fun
tion f 2 GapLsu
h that for all x we have x 2 S () f(x) > 0: Ogihara [Ogi98℄ showed thatPL is 
losed under logspa
e Turing redu
tions.By AC0(C=L), AC0(PL), and AC0(GapL) we denote the 
lass of sets thatare AC0-redu
ible to a set in C=L, PL, respe
tively a fun
tion in GapL. Allthese 
lasses are 
ontained in TC1, a sub
lass of NC2. The known relationshipsamong these 
lasses are as follows:C=L � AC0(C=L) � AC0(PL) = PL � AC0(GapL) � TC1 � NC2:Unless otherwise stated, all redu
tions in this paper are logspa
e many-one.Linear Algebra. Let Mn be the set of n � n integer matri
es. For A 2 Mn wedenote the 
hara
teristi
 polynomial of A by �A(x), that is �A(x) = det(xI�A)is a degree n polynomial, deg(�A) = n. The 
ompanion matrix of the polynomialp(x) = xn + �1xn�1 + � � � + �n is the matrix P 2 Mn, where the last 
olumnis (��n; : : : ;��1)T , all entries on the lower subdiagonal are 1. All the otherelements are zero. The property of P we use is that �P (x) = p(x).The inertia of a matrix A 2Mn is de�ned as the triple (i+(A); i�(A); i0(A)),where i+(A), i�(A), and i0(A) are the number of eigenvalues of A, 
ountingmultipli
ities, with positive, negative, and zero real part, respe
tively. Note thati+(A); i�(A); i0(A) are nonnegative integers and the sum of these is exa
tly n.Matrix A is 
alled positive stable, if i(A) = (n; 0; 0), and negative stable, ifi(A) = (0; n; 0). Furthermore, A is 
alled as positive semistable if i�(A) = 0. In
ase that A is real symmetri
 all eigenvalues of A are real and the word \stable"will be repla
ed by \de�nite".For square matri
es A = (ai;j) 2 Mn and B 2 Mm, the Krone
ker produ
tA 
 B is de�ned as the matrix (ai;jB) 2 Mnm. The Krone
ker sum A � B isde�ned as the matrix A 
 Im + In 
 B 2 Mnm, where In 2 Mn and Im 2 Mmare identity matri
es. If �1; : : : ; �n and �1; : : : ; �m are the eigenvalues of A andB, respe
tively, then the eigenvalues of A 
 B are �k�l, and the eigenvalues ofA�B are �k + �l, for all 1 � k � n and 1 � l � m.



Problems We de�ne some natural problems in linear algebra that we are 
onsid-ering. Unless otherwise spe
i�ed, our domain for the algebrai
 problems are theintegers. The two following fun
tions are 
omplete for GapL [ABO99,ST98℄.PowerElement: given A 2Mn and m, 
ompute (Am)1;n.Determinant: given A 2Mn, 
ompute det(A).For ea
h of them, we de�ne the 
orresponding veri�
ation problem as thegraph of the 
orresponding fun
tion: for a �xed fun
tion f(x), de�ne v-f as theset of all pairs (x; y) su
h that f(x) = y. This yields v-PowerElement andv-Determinant. They are known to be 
omplete for C=L.We denote by PosPowerElement the problem of de
iding whether oneelement of the power of a matrix is positive, and by PosDeterminant theproblem of de
iding whether the determinant of a matrix is positive. Theseproblems are 
omplete for PL.We de�ne Inertia to be the problem of 
omputing one bit of i(A) (withrespe
t to some �xed 
oding). That is,Inertia = f(A; k; b)j the k-th bit of i(A) is bg:By v-Inertia we denote the problem of verifying the value of i(A).PosStable and PosSemistable are the sets of all positive stable,semistable matri
es, respe
tively. PosDefinite and PosSemidefinite are thesets of all positive de�nite, semide�nite matri
es, respe
tively.3 The Inertia3.1 The Routh-Hurwitz TheoremThe Routh-Hurwitz Theorem (see [Gan77℄, Volume II, Chapter XV) provides amethod for determining the number of roots in the right half-plane of a givenreal polynomial. Sin
e the roots of the 
hara
teristi
 polynomial �A(x) are theeigenvalues of the matrix A, we 
an 
ompute the inertia of A by applying theRouth-Hurwitz method to �A(x).Let A 2Mn. Consider the 
hara
teristi
 polynomial of A�A(x) = xn + 
1xn�1 + 
2xn�2 + � � �+ 
n:De�ne 
0 = 1. The Routh-Hurwitz matrix 
(A) = (!i;j) 2Mn is de�ned as
(A) = 0BBBBBBB�
1 
3 
5 
7 � � � 0
0 
2 
4 
6 � � � 00 
1 
3 
5 � � � 00 
0 
2 
4 � � � 0... . . . ...0 0 0 0 � � � 
n
1CCCCCCCA :That is, the diagonal elements of 
(A) are !i;i = 
i. In the i-th 
olumn, theelements above the diagonal are !i�1;i = 
i+1, !i�2;i = 
i+2, : : : until we rea
h



either the �rst row !1;i or 
n. In the latter 
ase, the remaining entries are �lledwith zeros. The elements below !i;i are !i+1;i = 
i�1, !i+2;i = 
i�2, : : : , 
1, 
0,0, 0, : : : down to the last row !n;i.The su

essive leading prin
ipal minors Di of 
(A) are 
alled the Routh-Hurwitz determinants, they areD1 = 
1; D2 = det�
1 
3
0 
2� ; � � � ; Dn = det(
(A)):Theorem 3.1 (Routh-Hurwitz). If Dn 6= 0, then the number of roots of thepolynomial �A(x) in the right half-plane is determined by the formulai+(A) = V (1; D1; D2D1 ; : : : ; DnDn�1 );where V (x1; x2; : : : ) 
omputes the number of sign alternations in the sequen
e ofnumbers x1; x2; : : : . For the 
al
ulation of the values of V , for every group of psu

essive zero Routh-Hurwitz determinants (p is always odd!)Ds 6= 0; Ds+1 = � � � = Ds+p = 0; Ds+p+1 6= 0we have to set V ( DsDs�1 ; Ds+1Ds ; : : : ; Ds+p+2Ds+p+1 ) = h + 1�(�1)h"2 , where p = 2h � 1and " = sign( DsDs�1 Ds+p+2Ds+p+1 ). For s = 1, DsDs�1 is to be repla
ed by D1; and fors = 0, by 
0.Let us dis
uss the 
ase when Dn = 0. It is known that Dn = 0 i� �A(x) hasa pair of opposite roots x0 and �x0 (see [Gan77℄). De�nep1(x) = xn + 
2xn�2 + 
4xn�4 + � � � and p2(x) = 
1xn�1 + 
3xn�3 + � � � :Then �A(x) = p1(x) + p2(x) and p1(x0) = p2(x0) = 0. Therefore, x0 is alsoa root of the greatest 
ommon divisor g(x) of p1(x) and p2(x). We 
an write�A(x) = g(x)��A(x), where the polynomial ��A(x) has no pair of opposite roots,i.e. the Routh-Hurwitz matrix of ��A(x) is nonsingular. Let B be the 
ompanionmatrix of g(x) and C be the 
ompanion matrix of ��A(x). Then we havei(A) = i(B) + i(C):Note that all nonzero-eigenvalues of B are pairs of opposite values. TheRouth-Hurwitz method does not work in the 
ase where B has some oppo-site eigenvalues on the imaginary axis, and no method is known to get the exa
tnumber of roots of a polynomial on an axis (to the best of our knowledge).However, there are methods to determine the number of distin
t roots of apolynomial on an axis, and we will show below how to use these methods tosolve at least some 
ases where Dn = 0.Let P be the 
ompanion matrix of a polynomial p(x), where deg(p(x)) = n.The Hankel matrix H = (hi;j) 2 Mn asso
iated with p(x) is de�ned as hi;j =tra
e(P i+j�2), for i; j = 1; : : : ; n, where tra
e(P i+j�2) is the sum of all diagonal



elements of P i+j�2. Note thatH is symmetri
. By sig(H) we denote the signatureof H , that is the di�eren
e between i+(H) and i�(H). The following Theorem
an be found in Volume II, Chapter XV of [Gan77℄.Theorem 3.2. 1) The number of distin
t real roots of p(x) is equal sig(H).2) The number of all distin
t roots of p(x) is equal to the rank of H.3.2 Upper BoundsWe 
onsider the 
omplexity to 
ompute the inertia via Theorem 3.1. The �rststep is to 
ompute all the 
oeÆ
ients 
i of �A(x) and from these all Routh-Hurwitz determinants Di, for i = 1; : : : ; n. Sin
e the 
oeÆ
ients 
1; : : : ; 
n are
omputable in GapL, ea
h of the determinants D1; : : : ; Dn 
an be 
omputedin GapL as well [AAM99℄.If Dn 6= 0, i.e. 
(A) is nonsingular, we 
an 
ompute i+(A) by using theformulas from Theorem 3.1: a logspa
e ma
hine with a PL ora
le 
an ask, forea
h of the determinants D1; : : : ; Dn, if it is positive, negative, or zero. Be
ausei�(A) = i+(�A), we 
an apply the same method to 
ompute i�(A) and geti0(A) = n � i+(A) � i�(A). Hen
e all three values of i(A) 
an be 
omputed inPL.Theorem 3.3. The inertia of a matrix A with the property that 
(A) is non-singular 
an be 
omputed in PL.Let us 
onsider the 
ase when Dn = 0, i.e. when 
(A) is singular. We de
om-pose �A(x) = g(x)��A(x), as des
ribed in the previous se
tion. Re
all that g(x)is the greatest 
ommon divisor of two polynomials p1(x) and p2(x). Thereforethe 
oeÆ
ients of g(x) 
an be 
omputed as the solution of a system of linearequations (see [Koz91℄), whi
h 
an be done in AC0(GapL) (see [ABO99℄). Itfollows that we 
an 
ompute the polynomial ��A(x) in AC0(GapL) as well. Inother words, ea
h of the elements of the 
ompanion matri
es B (of g(x)) and C(of ��A(x)) 
an be 
omputed in AC0(GapL).There is no method to 
ompute i(B) in general. However, in some 
ases,when g(x) is easy, we 
an do so anyway. Suppose for example thatg(x) = xt; for some t � 0.Equivalently we 
an say that B (and hen
e A) has no opposite nonzero-eigenvalues . Then it is 
lear that i(B) = (0; 0; t), and hen
e i(A) = (0; 0; t)+i(C).Note that the de
ision whether A has no opposite nonzero-eigenvalues is in
oC=L: with the greatest t su
h that xt is a divisor of �A(x) (it is possible thatt = 0) we 
an de
ide whether the Routh-Hurwitz matrix asso
iated with thepolynomial �A(x)xt is nonsingular.Corollary 3.4. The inertia of a matrix with no opposite nonzero-eigenvalues
an be 
omputed in PL.We 
an 
onsiderably extend Corollary 3.4 to the following theorem.



Theorem 3.5. The inertia of a matrix A with the property that1) A has all opposite eigenvalues on the imaginary axis, or2) A has no opposite eigenvalues on the imaginary axis,
an be 
omputed in AC0(GapL).Proof . Assume that the 
ondition on A is ful�lled. Let B be again the
ompanion matrix of g(x). The triple i(B) 
an be easily 
omputed. In the
ase 1) we have i(B) = (0; 0; deg(g(x)) and in the 
ase 2) we have i(B) =( 12 deg(g(x)); 0; 12 deg(g(x))). Thus we 
an 
ompute i(A) by adding i(B) to i(C).We show how to 
he
k the 
ondition on A by using Theorem 3.2.Sin
e Theorem 3.2 deals with the real axis instead of the imaginary axis, we�rst turn g(x) by 90Æ: 
onsider the matrix E = � 0 �11 0 � : Its eigenvalues are +iand �i. De�ne D = B
E. The eigenvalues of D are i�k(B) and �i�k(B) where�k(B) runs through all eigenvalues of B. It follows that the number of distin
tpurely imaginary eigenvalues of B is the same as the number of distin
t realeigenvalues of D.Finally, let H be the Hankel matrix of �D(x). From Theorem 3.2 we havei+(B) = 0() rank(H) = sig(H);i0(B) = 0() sig(H) = 0:The 
onditions on the right-hand side 
an be de
ided in AC0(GapL). Thisproves the theorem. �Be
ause of the 
losure properties of PL and AC0(GapL), we get the sameupper bounds for the veri�
ation of the inertia.3.3 Lower BoundsTheorem 3.6. Inertia and v-Inertia are hard for PL.Proof . We redu
ePosPowerElement, a 
omplete problem forPL, to Inertiaand v-Inertia. Let A 2 Mn be an input for PosPowerElement. One has tode
ide whether (Am)1;n > 0 for a given m > 1.There is a redu
tion from matrix powering to the 
hara
teristi
 polynomialwhi
h is shown in [HT00℄ (see also [HT01℄ and [HT02℄): given A, m and a, one
an 
onstru
t a matrix B in AC0 su
h that(Am)1;n = a() �B(x) = xN�2m�1 �x2m+1 � a� ;where N = m(n+ d) + n, and d is the number of nonzero-elements in A.The eigenvalues of B are the roots of �B(x). We 
onsider the 
ase whena = (Am)1;n 6= 0. The roots of x2m+1 � a are the 
orners of a regular (2m+ 1)-gon ins
ribed in a 
ir
le of radius a 12m+1 with its 
enter at the origin. Sin
e2m+ 1 is odd, none of these roots lies on the imaginary axis. This implies that



i0(B) = N � (2m+1), and one of i+(B) and i�(B) is m and the other is m+1.Moreover, these values depend on the sign of a. Namely, if a > 0, we havei+(B) = (m+ 1 if 2m+ 1 � 1 (mod 4);m if 2m+ 1 � 3 (mod 4): (1)Note in parti
ular that i+(B) in (1) is always odd. Analogously, i+(B) is evenif a < 0. In the 
ase where (Am)1;n = 0, we have i(B) = (0; 0; N).In summary, we 
an 
ompute values p, n, z in logspa
e su
h that(Am)1;n > 0() i(B) = (p,n,z)() i+(B) = oddThis proves the theorem. �Note also that B in the above proof has no pair of opposite nonzero-eigenvalues. Therefore B ful�lls the 
ondition of Corollary 3.4.Corollary 3.7. The 
omputation and the veri�
ation of the inertia of a matrixwith no opposite nonzero-eigenvalues are 
omplete for PL.4 StabilityTheorem 4.1. PosStable 2 PL and PosSemistable 2 AC0(GapL)Proof . A is positive stable i� all the Routh-Hurwitz determinants of the matrix
(�A) are positive. Hen
e, positive stability of A 
an be de
ided in PL.If 
(A) is nonsingular, then PosSemistable 2 PL by Theorem 3.3. Soassume that
(A) is singular. As des
ribed in Se
tion 3.1, we de
ompose �A(x) =g(x)��A(x) in AC0(GapL). Let B and C be the 
ompanion matri
es of g(x)and ��A(x), respe
tively. Then A is positive semistable i� B is positive semistableand C is positive stable. Matrix B is positive semistable i� all eigenvalues of Bare on the imaginary axis. Now the result follows from Theorem 3.5. �Now we 
onsider the hardness of the stability problems. A matrix A is non-singular i� AAT is positive de�nite. AAT 
an be 
omputed in NC1. Therefore,PosDefinite is hard for 
oC=L under NC1 many-one redu
tions.Corollary 4.2. PosDefinite is hard for 
oC=L.Theorem 4.3. PosStable and PosSemistable are hard for PL.Proof . By NegDeterminant we denote the set of all matri
es with negativedeterminant. Note that NegDeterminant is 
omplete for PL. We 
onstru
t aredu
tion from NegDeterminant to PosStable as follows.Let A 2 Mn. Let d1;1; : : : ; dn;n be the diagonal elements of ATA. TheHadamard Inequality states that j det(A)j � (d1;1 � � � dn;n)1=2: W.l.o.g. we 
anassume that the input matrix A is a 0-1 matrix and that no row or 
olumn of A



has more than two 1's in it [All02℄. Therefore di;i � 2 for all i. By the HadamardInequality we get the following bound for det(A):�2n < det(A) < 2n:De�ne t = d n2m+1e(2m + 1), for an integer m � 1. Sin
e n � t, we havedet(A) + 2t > 0 and det(A) < 0() det(A) + 2t < 2t: (2)Lemma 4.4. We 
an 
onstru
t a matrix B 2Mk and m su
h that(Bm)1;k = det(A) + 2t: (3)Note that m depends on t, and we de�ned t in terms of m. This makes the
onstru
tion a bit tri
ky. We prove the lemma below.De�ne b = (Bm)1;k. We further redu
e B to a matrix C su
h that�C(x) = xN�2m�1 �x2m+1 � b� ;where N = m(k + d) + k, and d is the number of elements di�erent from zeroof B [HT00℄ (see also [HT01℄ and [HT02℄). This is an AC0-redu
tion.As explained in Theorem 3.6, matrix C has N � 2m� 1 eigenvalues zero and2m+1 eigenvalues as the roots of x2m+1� b. The latter 2m+1 eigenvalues of Care 
omplex and lie on the 
ir
le of radius r = b 12m+1 (with the origin as 
enter).Sin
e b > 0, the eigenvalue with the largest real part is �max(C) = r.We shift the eigenvalues of C by s = 2 t2m+1 = 2d n2m+1 e. That is, de�ne thematrix D = �C + sI . The eigenvalue of C with the largest real part be
omesthe eigenvalue of D with the smallest real part: �min(D) = �r + s. So we getb < 2t () r < s() �min(D) > 0: (4)By (2) and (4) we have A 2 NegDeterminant() D 2 PosStable.An analogous argument redu
es the set of matri
es with nonpositive deter-minants (a PL-
omplete set) to PosSemistable �Proof of Lemma 4.4. Sin
e PowerElement is 
omplete for GapL, we 
an
ompute B0 2Ml and an exponent m in logspa
e su
h that (Bm0 )1;l = det(A).De�ne a (m+1)�(m+1) blo
k matrix F with m times B0 on the �rst uppersubdiagonal, all other blo
ks are zero.De�ne S = � s2 s30 0 � ; where s = 2d n2m+1 e. It is easily to get Sm = � s2m s2m+10 0 �and s2m+1 = 2t.We de�ne an l(m+1)�2 matrix T whose elements at the position (1; 1) and(l(m+ 1); 2) are 1 and all the others are zero.Finally, for k = l(m+ 1) + 2 we de�neB = �F FT + TS0 S � ;



and 
laim that the matrix B ful�lls (3). From the powers of B we getBm = �Fm FmT + 2Fm�1TS + 2Fm�2TS2 + � � �+ 2FTSm�1 + TSm0 Sm � :In parti
ular, for ea
h 1 � i � m, F i has a very simple form: on its i-th up-per subdiagonal are purely Bi and all the other blo
k-elements are zeromatrix.Furthermore, it is not hard to see that Fm�iTSi = 0 for all i < m. ThusBm = �Fm FmT + TSm0 Sm � :Now, it is not hard to see that (Bm)1;k = det(A) + 2t. This proves the lemma.5 The Congruen
e of Symmetri
 Matri
esRe
all that all the eigenvalues of a symmetri
 (real) matrix A are real. Therefore,if we de
ompose �A(x) = g(x)��A(x) as explained in Se
tion 3.1, g(x) has onlyreal roots. Let t be the multipli
ity of the zero-eigenvalue of the 
ompanionmatrix B of g(x). Then we have i(B) = ( 12 (deg(g(x)) � t); 12 (deg(g(x)) � t); t).It follows that i(A) 
an be 
omputed in AC0(GapL). A
tually, we 
an show abetter upper bound for this problem. By Inertiasym we denote the restri
tionof Inertia, where the input matrix A is a symmetri
 integer matrix.Theorem 5.1. Inertiasym is in PL.Proof . Let A 2 Mn. If A is singular, we 
an 
ompute �A(x) and determinethe multipli
ity t of eigenvalues 0 (in GapL). Then it suÆ
es to 
ompute theinertia of the 
ompanion matrix of polynomial �A(x)=xt. The latter matrix isnonsingular. Therefore we may as well assume that A is nonsingular.If A has no pair of opposite nonzero-eigenvalues, then Inertiasym is in PL,as explained in Se
tion 3.2. Therefore we 
onsider the 
ase when A has somepair of opposite nonzero eigenvalues. The idea is to determine a positive rationalnumber " su
h that the value i+(M) of the matrixM = A�"I is equal to i+(A)and the Routh-Hurwitz matrix 
(M) is regular. Then we 
an apply Theorem 3.3to 
ompute i+(M).The spe
tral radius of A is a bound on the distan
e of the eigenvalues of Afrom the origin. Furthermore, if k � k is any matrix norm, then �(A) �k A k(see [HJ85℄). We 
hoose k � k as the maximum 
olumn sum matrix norm, i.e.,�(A) =k A k= max1�j�nPni=1 jaij j; and we have �(A) � �(A). Be
ause A isnonsingular, we 
an de�ne r1 = (�(A�1) + 1)�1. Let �1(A); : : : ; �n(A) be theeigenvalues of A. Then �i(A) > r1; for i = 1; : : : ; n. Now let 0 < " � r1 andde�ne matrix M = A � "I . The eigenvalues of M are �1(A) � "; : : : ; �n(A) � "and we have i+(M) = i+(A).It remains to determine " su
h that 
(M) is nonsingular. Observe that Mhas this property i� for all i 6= j�i(A) � " 6= �(�j(A) � ")() �i(A) + �j(A) 6= 2": (5)



The eigenvalues of S = A�A are �i(A)+�j(A) for all 1 � i; j � n. Thus equiva-lent to 
ondition on the right-hand side of (5) is that 2" is not an eigenvalue of S.Matrix S is singular, be
ause A has some pair of opposite nonzero-eigenvalues.If we de
ompose �S(x) = xk��S(x) su
h that ��S(0) 6= 0, then the 
ompanionmatrix S� of ��S(x) is nonsingular and k is exa
tly the multipli
ity of the eigen-value 0 of S. Sin
e S� is nonsingular, we 
an de�ne r2 = (�(S��1) + 1)�1. Ea
hof the eigenvalues of S� has absolute value greater than r2. Hen
e 
(M) isnonsingular if 0 < 2" � r2. In summary, we 
an 
hoose " = minfr1; r2=2g.The value ", ea
h element of M , and ea
h of the Routh-Hurwitz determi-nants of 
(M) 
an be 
omputed in GapL, be
ause the elements of A�1 andS��1 are 
omputable in GapL ([AAM99℄). Therefore Inertiasym is in PL byTheorem 3.3. �Sin
e ea
h bit of i+(A) 
an be veri�ed in PL, the values of i(A) 
an beveri�ed in PL, too. This implies that the problem of testing whether two givensymmetri
 matri
es have the same inertia (that is Congruen
e) is in PL. Thissolves an open problem in [HT00℄.Corollary 5.2. Congruen
e, PosDefinite, PosSemidefinite 2 PL.Summary and Open QuestionsThe table summarizes thelower and upper bounds forsome of the problems 
onsid-ered in this paper. An obvioustask for further resear
h is to
lose the gap between the lowerand the upper bound where itdoesn't mat
h.
Problem hard for 
ontained inPosStable PL PLPosSemistable PL AC0(GapL)Congruen
e AC0(C=L) PLPosDefinite 
oC=L PLA major 
hallenge remains to 
ompute the inertia in general.A
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