
The Complexity of the Inertia ?Thanh Minh Hoang1 and Thomas Thierauf 2; ??1 Abt. Theoretishe Informatik, Universit�at Ulm, D-89069 Ulm2 FB Elektronik und Informatik, FH Aalen, D-73430 Aalenfhoang,thieraufg�informatik.uni-ulm.deAbstrat. The inertia of a square matrix A is de�ned as the triple(i+(A); i�(A); i0(A)), where i+(A), i�(A), and i0(A) are the number ofeigenvalues of A, ounting multipliities, with positive, negative, and zeroreal part, respetively. A hard problem in Linear Algebra is to omputethe inertia. No method is known to get the inertia of a matrix exatlyin general. In this paper we show that the inertia is hard for PL (proba-bilisti logspae) and in some ases the inertia an be omputed in PL.We extend our result to some problems related to the inertia. Namely,we show that matrix stability is omplete for PL and the inertia of sym-metri matries an be omputed in PL.1 IntrodutionA fundamental topi in linear algebra is the study of equivalene relations be-tween matries that naturally arise in theory and in appliations. In omputersiene, we are interested in �nding eÆient algorithms to deide equivalene,or to onstrut anonial forms of a matrix for the relation under onsideration.More general, we are interested in the omputational omplexity of these andrelated problems.Most of these problems an be solved within ertain logspae ounting lasses,all of whih are ontained in the parallel omplexity lass (uniform)NC2. In fat,the logspae ounting lass GapL [AO96℄ seems to apture the omplexity of alot of algebrai problems quite naturally.GapL is the extension of #L to integersin the same way as #P [Val79b,Val79a℄ an be extended to GapP [FFK94℄in the polynomial time setting. The break-through result for GapL was thatit preisely aptures the omplexity of the determinant of an integer matrix[Ber84,Dam91,Tod91,Vin91,Val92℄.The veri�ation of the value of a GapL-funtion de�nes the omplexitylass C=L. For example, the singularity problem (deiding whether a matrixis singular) is omplete for C=L, beause this is asking whether the determinantof a matrix is zero.Inequalities on GapL-funtions de�ne the omplexity lass PL. For exam-ple, the problem to deide whether the determinant of a matrix is positive, isomplete for PL.? Supported by the Deutshe Forshungsgemeinshaft?? Part of the work done at Universit�at Ulm.



The omputational problems over matries like testing similarity, equivalene,and ongruene are loated in logspae ounting lasses like AC0(C=L) (theAC0-losure of C=L) or PL. We desribe these results in more detail.Similarity. TwomatriesA andB are similar , if there is a nonsingular matrix Ssuh that A = S�1BS. Santha and Tan [ST98℄ observed that testing similarityis in AC0(C=L). Testing similarity is atually omplete for this lass [HT00℄. Aand B are similar i� they have the same invariant fators. The invariant fatorsan be omputed in AC0(GapL) and are hard for GapL [HT01℄.Equivalene. Two matries A and B are equivalent , if there exist nonsingularmatries P and Q, suh that A = PBQ. A simple haraterization of equivaleneis that A and B have the same rank. Testing the equivalene of two matries isomplete for AC0(C=L) [ABO99,HT00℄, as well as verifying one bit of the rankof matrix [ABO99℄.Congruene. Two symmetri real matries A and B are ongruent (via a realmatrix), if there exists a nonsingular real matrix S suh that A = SBST . ByCongruene we denote the problem of testing the ongruene. Congrueneis hard for AC0(C=L) [HT00℄. An upper bound for Congruene is an openproblem in [HT00℄. In this paper we show that Congruene 2 PL by onsid-ering the inertia of symmetri matries.The omputational omplexity of the inertia and its related problems is themain topi of this paper. In Setion 3.2, we use the Routh-Hurwitz Theorem toshow that the inertia of a matrix (under the restritions of the Routh-HurwitzTheorem) an be omputed in PL. In Setion 3.3 we show that the inertia ishard for PL.An alternative way to ompute the inertia of a matrix ould be to determineall the roots of the harateristi polynomial of the given matrix. With theNC2-algorithm of Ne� and Reif [Nef94,NR96℄ these roots an be approximatedto some preision [ABO℄. However, it is not lear to what preision we have toapproximate a root in order to tell it apart from zero. This result is di�erentfrom our approah.We also onsider the veri�ation of the inertia. That is, for matrix A andintegers p, n, and z, one has to deide whether (p,n,z) is the inertia of A. We showin Setion 3 that for ertain matries the veri�ation is omplete for PL.A system of di�erential equations is stable i� its oeÆient matrix is sta-ble (matrix whose eigenvalues have negative real parts). Therefore, the studyof stable matries has a long-standing history and it is an important topi inLinear Algebra. We prove in Setion 4 that the problem of deiding whether alleigenvalues of a matrix have positive real parts is omplete for PL. A matrixhas no eigenvalues with negative real part is alled positive semistable. We showin Setion 4 that the problem to deide whether a matrix is positive semistableis in AC0(GapL) and is hard for PL.Finally, in Setion 5 we prove that the inertia of a symmetri integer matrixan be omputed in PL. It follows that the ongruene of two matries an bedeided in PL. Note that there are deterministi algorithms for the inertia ofsymmetri integer matries see for example [For00℄.



2 PreliminariesWe assume familiarity with some basi notions of omplexity theory and lin-ear algebra. We refer the readers to the papers [ABO99,AO96℄ for more de-tails and properties of the onsidered omplexity lasses, and to the text-books [Gan77,HJ91,HJ85℄ for more bakground in linear algebra.Complexity Classes. For a nondeterministi Turing mahineM , let gapM denotethe di�erene between the number of aepting and rejeting omputation pathsof M on input x. The funtion lassGapL is de�ned as the lass of all funtionsgapM (x) suh thatM is a nondeterministi logspae bounded Turing mahineM .It is easy to see that GapL is losed under addition, subtration, and multi-pliation. Allender, Arvind, and Mahajan [AAM99℄ showed that GapL is losedunder omposition. Even stronger, they showed that the determinant of a ma-trix A where eah entry of A is omputed in GapL an be omputed in GapL.A set S is in C=L, if there exists a funtion f 2 GapL suh that for all xwe have x 2 S () f(x) = 0: A set S is in PL if there is a funtion f 2 GapLsuh that for all x we have x 2 S () f(x) > 0: Ogihara [Ogi98℄ showed thatPL is losed under logspae Turing redutions.By AC0(C=L), AC0(PL), and AC0(GapL) we denote the lass of sets thatare AC0-reduible to a set in C=L, PL, respetively a funtion in GapL. Allthese lasses are ontained in TC1, a sublass of NC2. The known relationshipsamong these lasses are as follows:C=L � AC0(C=L) � AC0(PL) = PL � AC0(GapL) � TC1 � NC2:Unless otherwise stated, all redutions in this paper are logspae many-one.Linear Algebra. Let Mn be the set of n � n integer matries. For A 2 Mn wedenote the harateristi polynomial of A by �A(x), that is �A(x) = det(xI�A)is a degree n polynomial, deg(�A) = n. The ompanion matrix of the polynomialp(x) = xn + �1xn�1 + � � � + �n is the matrix P 2 Mn, where the last olumnis (��n; : : : ;��1)T , all entries on the lower subdiagonal are 1. All the otherelements are zero. The property of P we use is that �P (x) = p(x).The inertia of a matrix A 2Mn is de�ned as the triple (i+(A); i�(A); i0(A)),where i+(A), i�(A), and i0(A) are the number of eigenvalues of A, ountingmultipliities, with positive, negative, and zero real part, respetively. Note thati+(A); i�(A); i0(A) are nonnegative integers and the sum of these is exatly n.Matrix A is alled positive stable, if i(A) = (n; 0; 0), and negative stable, ifi(A) = (0; n; 0). Furthermore, A is alled as positive semistable if i�(A) = 0. Inase that A is real symmetri all eigenvalues of A are real and the word \stable"will be replaed by \de�nite".For square matries A = (ai;j) 2 Mn and B 2 Mm, the Kroneker produtA 
 B is de�ned as the matrix (ai;jB) 2 Mnm. The Kroneker sum A � B isde�ned as the matrix A 
 Im + In 
 B 2 Mnm, where In 2 Mn and Im 2 Mmare identity matries. If �1; : : : ; �n and �1; : : : ; �m are the eigenvalues of A andB, respetively, then the eigenvalues of A 
 B are �k�l, and the eigenvalues ofA�B are �k + �l, for all 1 � k � n and 1 � l � m.



Problems We de�ne some natural problems in linear algebra that we are onsid-ering. Unless otherwise spei�ed, our domain for the algebrai problems are theintegers. The two following funtions are omplete for GapL [ABO99,ST98℄.PowerElement: given A 2Mn and m, ompute (Am)1;n.Determinant: given A 2Mn, ompute det(A).For eah of them, we de�ne the orresponding veri�ation problem as thegraph of the orresponding funtion: for a �xed funtion f(x), de�ne v-f as theset of all pairs (x; y) suh that f(x) = y. This yields v-PowerElement andv-Determinant. They are known to be omplete for C=L.We denote by PosPowerElement the problem of deiding whether oneelement of the power of a matrix is positive, and by PosDeterminant theproblem of deiding whether the determinant of a matrix is positive. Theseproblems are omplete for PL.We de�ne Inertia to be the problem of omputing one bit of i(A) (withrespet to some �xed oding). That is,Inertia = f(A; k; b)j the k-th bit of i(A) is bg:By v-Inertia we denote the problem of verifying the value of i(A).PosStable and PosSemistable are the sets of all positive stable,semistable matries, respetively. PosDefinite and PosSemidefinite are thesets of all positive de�nite, semide�nite matries, respetively.3 The Inertia3.1 The Routh-Hurwitz TheoremThe Routh-Hurwitz Theorem (see [Gan77℄, Volume II, Chapter XV) provides amethod for determining the number of roots in the right half-plane of a givenreal polynomial. Sine the roots of the harateristi polynomial �A(x) are theeigenvalues of the matrix A, we an ompute the inertia of A by applying theRouth-Hurwitz method to �A(x).Let A 2Mn. Consider the harateristi polynomial of A�A(x) = xn + 1xn�1 + 2xn�2 + � � �+ n:De�ne 0 = 1. The Routh-Hurwitz matrix 
(A) = (!i;j) 2Mn is de�ned as
(A) = 0BBBBBBB�1 3 5 7 � � � 00 2 4 6 � � � 00 1 3 5 � � � 00 0 2 4 � � � 0... . . . ...0 0 0 0 � � � n
1CCCCCCCA :That is, the diagonal elements of 
(A) are !i;i = i. In the i-th olumn, theelements above the diagonal are !i�1;i = i+1, !i�2;i = i+2, : : : until we reah



either the �rst row !1;i or n. In the latter ase, the remaining entries are �lledwith zeros. The elements below !i;i are !i+1;i = i�1, !i+2;i = i�2, : : : , 1, 0,0, 0, : : : down to the last row !n;i.The suessive leading prinipal minors Di of 
(A) are alled the Routh-Hurwitz determinants, they areD1 = 1; D2 = det�1 30 2� ; � � � ; Dn = det(
(A)):Theorem 3.1 (Routh-Hurwitz). If Dn 6= 0, then the number of roots of thepolynomial �A(x) in the right half-plane is determined by the formulai+(A) = V (1; D1; D2D1 ; : : : ; DnDn�1 );where V (x1; x2; : : : ) omputes the number of sign alternations in the sequene ofnumbers x1; x2; : : : . For the alulation of the values of V , for every group of psuessive zero Routh-Hurwitz determinants (p is always odd!)Ds 6= 0; Ds+1 = � � � = Ds+p = 0; Ds+p+1 6= 0we have to set V ( DsDs�1 ; Ds+1Ds ; : : : ; Ds+p+2Ds+p+1 ) = h + 1�(�1)h"2 , where p = 2h � 1and " = sign( DsDs�1 Ds+p+2Ds+p+1 ). For s = 1, DsDs�1 is to be replaed by D1; and fors = 0, by 0.Let us disuss the ase when Dn = 0. It is known that Dn = 0 i� �A(x) hasa pair of opposite roots x0 and �x0 (see [Gan77℄). De�nep1(x) = xn + 2xn�2 + 4xn�4 + � � � and p2(x) = 1xn�1 + 3xn�3 + � � � :Then �A(x) = p1(x) + p2(x) and p1(x0) = p2(x0) = 0. Therefore, x0 is alsoa root of the greatest ommon divisor g(x) of p1(x) and p2(x). We an write�A(x) = g(x)��A(x), where the polynomial ��A(x) has no pair of opposite roots,i.e. the Routh-Hurwitz matrix of ��A(x) is nonsingular. Let B be the ompanionmatrix of g(x) and C be the ompanion matrix of ��A(x). Then we havei(A) = i(B) + i(C):Note that all nonzero-eigenvalues of B are pairs of opposite values. TheRouth-Hurwitz method does not work in the ase where B has some oppo-site eigenvalues on the imaginary axis, and no method is known to get the exatnumber of roots of a polynomial on an axis (to the best of our knowledge).However, there are methods to determine the number of distint roots of apolynomial on an axis, and we will show below how to use these methods tosolve at least some ases where Dn = 0.Let P be the ompanion matrix of a polynomial p(x), where deg(p(x)) = n.The Hankel matrix H = (hi;j) 2 Mn assoiated with p(x) is de�ned as hi;j =trae(P i+j�2), for i; j = 1; : : : ; n, where trae(P i+j�2) is the sum of all diagonal



elements of P i+j�2. Note thatH is symmetri. By sig(H) we denote the signatureof H , that is the di�erene between i+(H) and i�(H). The following Theoreman be found in Volume II, Chapter XV of [Gan77℄.Theorem 3.2. 1) The number of distint real roots of p(x) is equal sig(H).2) The number of all distint roots of p(x) is equal to the rank of H.3.2 Upper BoundsWe onsider the omplexity to ompute the inertia via Theorem 3.1. The �rststep is to ompute all the oeÆients i of �A(x) and from these all Routh-Hurwitz determinants Di, for i = 1; : : : ; n. Sine the oeÆients 1; : : : ; n areomputable in GapL, eah of the determinants D1; : : : ; Dn an be omputedin GapL as well [AAM99℄.If Dn 6= 0, i.e. 
(A) is nonsingular, we an ompute i+(A) by using theformulas from Theorem 3.1: a logspae mahine with a PL orale an ask, foreah of the determinants D1; : : : ; Dn, if it is positive, negative, or zero. Beausei�(A) = i+(�A), we an apply the same method to ompute i�(A) and geti0(A) = n � i+(A) � i�(A). Hene all three values of i(A) an be omputed inPL.Theorem 3.3. The inertia of a matrix A with the property that 
(A) is non-singular an be omputed in PL.Let us onsider the ase when Dn = 0, i.e. when 
(A) is singular. We deom-pose �A(x) = g(x)��A(x), as desribed in the previous setion. Reall that g(x)is the greatest ommon divisor of two polynomials p1(x) and p2(x). Thereforethe oeÆients of g(x) an be omputed as the solution of a system of linearequations (see [Koz91℄), whih an be done in AC0(GapL) (see [ABO99℄). Itfollows that we an ompute the polynomial ��A(x) in AC0(GapL) as well. Inother words, eah of the elements of the ompanion matries B (of g(x)) and C(of ��A(x)) an be omputed in AC0(GapL).There is no method to ompute i(B) in general. However, in some ases,when g(x) is easy, we an do so anyway. Suppose for example thatg(x) = xt; for some t � 0.Equivalently we an say that B (and hene A) has no opposite nonzero-eigenvalues . Then it is lear that i(B) = (0; 0; t), and hene i(A) = (0; 0; t)+i(C).Note that the deision whether A has no opposite nonzero-eigenvalues is inoC=L: with the greatest t suh that xt is a divisor of �A(x) (it is possible thatt = 0) we an deide whether the Routh-Hurwitz matrix assoiated with thepolynomial �A(x)xt is nonsingular.Corollary 3.4. The inertia of a matrix with no opposite nonzero-eigenvaluesan be omputed in PL.We an onsiderably extend Corollary 3.4 to the following theorem.



Theorem 3.5. The inertia of a matrix A with the property that1) A has all opposite eigenvalues on the imaginary axis, or2) A has no opposite eigenvalues on the imaginary axis,an be omputed in AC0(GapL).Proof . Assume that the ondition on A is ful�lled. Let B be again theompanion matrix of g(x). The triple i(B) an be easily omputed. In thease 1) we have i(B) = (0; 0; deg(g(x)) and in the ase 2) we have i(B) =( 12 deg(g(x)); 0; 12 deg(g(x))). Thus we an ompute i(A) by adding i(B) to i(C).We show how to hek the ondition on A by using Theorem 3.2.Sine Theorem 3.2 deals with the real axis instead of the imaginary axis, we�rst turn g(x) by 90Æ: onsider the matrix E = � 0 �11 0 � : Its eigenvalues are +iand �i. De�ne D = B
E. The eigenvalues of D are i�k(B) and �i�k(B) where�k(B) runs through all eigenvalues of B. It follows that the number of distintpurely imaginary eigenvalues of B is the same as the number of distint realeigenvalues of D.Finally, let H be the Hankel matrix of �D(x). From Theorem 3.2 we havei+(B) = 0() rank(H) = sig(H);i0(B) = 0() sig(H) = 0:The onditions on the right-hand side an be deided in AC0(GapL). Thisproves the theorem. �Beause of the losure properties of PL and AC0(GapL), we get the sameupper bounds for the veri�ation of the inertia.3.3 Lower BoundsTheorem 3.6. Inertia and v-Inertia are hard for PL.Proof . We reduePosPowerElement, a omplete problem forPL, to Inertiaand v-Inertia. Let A 2 Mn be an input for PosPowerElement. One has todeide whether (Am)1;n > 0 for a given m > 1.There is a redution from matrix powering to the harateristi polynomialwhih is shown in [HT00℄ (see also [HT01℄ and [HT02℄): given A, m and a, onean onstrut a matrix B in AC0 suh that(Am)1;n = a() �B(x) = xN�2m�1 �x2m+1 � a� ;where N = m(n+ d) + n, and d is the number of nonzero-elements in A.The eigenvalues of B are the roots of �B(x). We onsider the ase whena = (Am)1;n 6= 0. The roots of x2m+1 � a are the orners of a regular (2m+ 1)-gon insribed in a irle of radius a 12m+1 with its enter at the origin. Sine2m+ 1 is odd, none of these roots lies on the imaginary axis. This implies that



i0(B) = N � (2m+1), and one of i+(B) and i�(B) is m and the other is m+1.Moreover, these values depend on the sign of a. Namely, if a > 0, we havei+(B) = (m+ 1 if 2m+ 1 � 1 (mod 4);m if 2m+ 1 � 3 (mod 4): (1)Note in partiular that i+(B) in (1) is always odd. Analogously, i+(B) is evenif a < 0. In the ase where (Am)1;n = 0, we have i(B) = (0; 0; N).In summary, we an ompute values p, n, z in logspae suh that(Am)1;n > 0() i(B) = (p,n,z)() i+(B) = oddThis proves the theorem. �Note also that B in the above proof has no pair of opposite nonzero-eigenvalues. Therefore B ful�lls the ondition of Corollary 3.4.Corollary 3.7. The omputation and the veri�ation of the inertia of a matrixwith no opposite nonzero-eigenvalues are omplete for PL.4 StabilityTheorem 4.1. PosStable 2 PL and PosSemistable 2 AC0(GapL)Proof . A is positive stable i� all the Routh-Hurwitz determinants of the matrix
(�A) are positive. Hene, positive stability of A an be deided in PL.If 
(A) is nonsingular, then PosSemistable 2 PL by Theorem 3.3. Soassume that
(A) is singular. As desribed in Setion 3.1, we deompose �A(x) =g(x)��A(x) in AC0(GapL). Let B and C be the ompanion matries of g(x)and ��A(x), respetively. Then A is positive semistable i� B is positive semistableand C is positive stable. Matrix B is positive semistable i� all eigenvalues of Bare on the imaginary axis. Now the result follows from Theorem 3.5. �Now we onsider the hardness of the stability problems. A matrix A is non-singular i� AAT is positive de�nite. AAT an be omputed in NC1. Therefore,PosDefinite is hard for oC=L under NC1 many-one redutions.Corollary 4.2. PosDefinite is hard for oC=L.Theorem 4.3. PosStable and PosSemistable are hard for PL.Proof . By NegDeterminant we denote the set of all matries with negativedeterminant. Note that NegDeterminant is omplete for PL. We onstrut aredution from NegDeterminant to PosStable as follows.Let A 2 Mn. Let d1;1; : : : ; dn;n be the diagonal elements of ATA. TheHadamard Inequality states that j det(A)j � (d1;1 � � � dn;n)1=2: W.l.o.g. we anassume that the input matrix A is a 0-1 matrix and that no row or olumn of A



has more than two 1's in it [All02℄. Therefore di;i � 2 for all i. By the HadamardInequality we get the following bound for det(A):�2n < det(A) < 2n:De�ne t = d n2m+1e(2m + 1), for an integer m � 1. Sine n � t, we havedet(A) + 2t > 0 and det(A) < 0() det(A) + 2t < 2t: (2)Lemma 4.4. We an onstrut a matrix B 2Mk and m suh that(Bm)1;k = det(A) + 2t: (3)Note that m depends on t, and we de�ned t in terms of m. This makes theonstrution a bit triky. We prove the lemma below.De�ne b = (Bm)1;k. We further redue B to a matrix C suh that�C(x) = xN�2m�1 �x2m+1 � b� ;where N = m(k + d) + k, and d is the number of elements di�erent from zeroof B [HT00℄ (see also [HT01℄ and [HT02℄). This is an AC0-redution.As explained in Theorem 3.6, matrix C has N � 2m� 1 eigenvalues zero and2m+1 eigenvalues as the roots of x2m+1� b. The latter 2m+1 eigenvalues of Care omplex and lie on the irle of radius r = b 12m+1 (with the origin as enter).Sine b > 0, the eigenvalue with the largest real part is �max(C) = r.We shift the eigenvalues of C by s = 2 t2m+1 = 2d n2m+1 e. That is, de�ne thematrix D = �C + sI . The eigenvalue of C with the largest real part beomesthe eigenvalue of D with the smallest real part: �min(D) = �r + s. So we getb < 2t () r < s() �min(D) > 0: (4)By (2) and (4) we have A 2 NegDeterminant() D 2 PosStable.An analogous argument redues the set of matries with nonpositive deter-minants (a PL-omplete set) to PosSemistable �Proof of Lemma 4.4. Sine PowerElement is omplete for GapL, we anompute B0 2Ml and an exponent m in logspae suh that (Bm0 )1;l = det(A).De�ne a (m+1)�(m+1) blok matrix F with m times B0 on the �rst uppersubdiagonal, all other bloks are zero.De�ne S = � s2 s30 0 � ; where s = 2d n2m+1 e. It is easily to get Sm = � s2m s2m+10 0 �and s2m+1 = 2t.We de�ne an l(m+1)�2 matrix T whose elements at the position (1; 1) and(l(m+ 1); 2) are 1 and all the others are zero.Finally, for k = l(m+ 1) + 2 we de�neB = �F FT + TS0 S � ;



and laim that the matrix B ful�lls (3). From the powers of B we getBm = �Fm FmT + 2Fm�1TS + 2Fm�2TS2 + � � �+ 2FTSm�1 + TSm0 Sm � :In partiular, for eah 1 � i � m, F i has a very simple form: on its i-th up-per subdiagonal are purely Bi and all the other blok-elements are zeromatrix.Furthermore, it is not hard to see that Fm�iTSi = 0 for all i < m. ThusBm = �Fm FmT + TSm0 Sm � :Now, it is not hard to see that (Bm)1;k = det(A) + 2t. This proves the lemma.5 The Congruene of Symmetri MatriesReall that all the eigenvalues of a symmetri (real) matrix A are real. Therefore,if we deompose �A(x) = g(x)��A(x) as explained in Setion 3.1, g(x) has onlyreal roots. Let t be the multipliity of the zero-eigenvalue of the ompanionmatrix B of g(x). Then we have i(B) = ( 12 (deg(g(x)) � t); 12 (deg(g(x)) � t); t).It follows that i(A) an be omputed in AC0(GapL). Atually, we an show abetter upper bound for this problem. By Inertiasym we denote the restritionof Inertia, where the input matrix A is a symmetri integer matrix.Theorem 5.1. Inertiasym is in PL.Proof . Let A 2 Mn. If A is singular, we an ompute �A(x) and determinethe multipliity t of eigenvalues 0 (in GapL). Then it suÆes to ompute theinertia of the ompanion matrix of polynomial �A(x)=xt. The latter matrix isnonsingular. Therefore we may as well assume that A is nonsingular.If A has no pair of opposite nonzero-eigenvalues, then Inertiasym is in PL,as explained in Setion 3.2. Therefore we onsider the ase when A has somepair of opposite nonzero eigenvalues. The idea is to determine a positive rationalnumber " suh that the value i+(M) of the matrixM = A�"I is equal to i+(A)and the Routh-Hurwitz matrix 
(M) is regular. Then we an apply Theorem 3.3to ompute i+(M).The spetral radius of A is a bound on the distane of the eigenvalues of Afrom the origin. Furthermore, if k � k is any matrix norm, then �(A) �k A k(see [HJ85℄). We hoose k � k as the maximum olumn sum matrix norm, i.e.,�(A) =k A k= max1�j�nPni=1 jaij j; and we have �(A) � �(A). Beause A isnonsingular, we an de�ne r1 = (�(A�1) + 1)�1. Let �1(A); : : : ; �n(A) be theeigenvalues of A. Then �i(A) > r1; for i = 1; : : : ; n. Now let 0 < " � r1 andde�ne matrix M = A � "I . The eigenvalues of M are �1(A) � "; : : : ; �n(A) � "and we have i+(M) = i+(A).It remains to determine " suh that 
(M) is nonsingular. Observe that Mhas this property i� for all i 6= j�i(A) � " 6= �(�j(A) � ")() �i(A) + �j(A) 6= 2": (5)



The eigenvalues of S = A�A are �i(A)+�j(A) for all 1 � i; j � n. Thus equiva-lent to ondition on the right-hand side of (5) is that 2" is not an eigenvalue of S.Matrix S is singular, beause A has some pair of opposite nonzero-eigenvalues.If we deompose �S(x) = xk��S(x) suh that ��S(0) 6= 0, then the ompanionmatrix S� of ��S(x) is nonsingular and k is exatly the multipliity of the eigen-value 0 of S. Sine S� is nonsingular, we an de�ne r2 = (�(S��1) + 1)�1. Eahof the eigenvalues of S� has absolute value greater than r2. Hene 
(M) isnonsingular if 0 < 2" � r2. In summary, we an hoose " = minfr1; r2=2g.The value ", eah element of M , and eah of the Routh-Hurwitz determi-nants of 
(M) an be omputed in GapL, beause the elements of A�1 andS��1 are omputable in GapL ([AAM99℄). Therefore Inertiasym is in PL byTheorem 3.3. �Sine eah bit of i+(A) an be veri�ed in PL, the values of i(A) an beveri�ed in PL, too. This implies that the problem of testing whether two givensymmetri matries have the same inertia (that is Congruene) is in PL. Thissolves an open problem in [HT00℄.Corollary 5.2. Congruene, PosDefinite, PosSemidefinite 2 PL.Summary and Open QuestionsThe table summarizes thelower and upper bounds forsome of the problems onsid-ered in this paper. An obvioustask for further researh is tolose the gap between the lowerand the upper bound where itdoesn't math.
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