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On the Minimal Polynomial of a Matrix�Thanh Minh HoangyAbt. Theoretis
he InformatikUniversit�at Ulm, 89069 Ulm, GermanyandThomas ThieraufzFB Elektronik und InformatikFH Aalen, 73430 Aalen, GermanyABSTRACTWe investigate the 
omplexity of the degree and the 
onstant term of the minimal polyno-mial of a matrix. We show that the degree of the minimal polynomial is 
omputationallyequivalent to the matrix rank.We 
ompare the 
onstant term of the minimal polynomial with the 
onstant term ofthe 
hara
teristi
 polynomial. The latter is known to be 
omputable in the logspa
e
ounting 
lass GapL. We show that if this holds for the minimal polynomial as well,then the exa
t 
ounting in logspa
e 
lass C=L is 
losed under 
omplement. WhetherC=L is 
losed under 
omplement is one of the main open problems in this area.As an appli
ation of our te
hniques we show that the problem of de
iding whether amatrix is diagonalizable is 
omplete for AC0(C=L), the AC0-
losure of C=L.Keywords: Linear Algebra, Minimal Polynomial, Logspa
e Counting Class.1. Introdu
tionComputing the determinant of a matrix is an important topi
 in mathemati
sand theoreti
al 
omputer s
ien
e whi
h has been studied for many years. Withrespe
t to parallel 
omputation, the determinant is in NC2 [4, 5, 6, 7℄. Manyproblems in linear algebra are 
losely related to the determinant, and hen
e, are inNC2 as well. However, NC2 does not 
apture the exa
t 
omplexity of problems inlinear algebra. In parti
ular, the determinant is not known to be NC2-
omplete.Our goal is to determine pre
isely the 
omplexity of su
h problems.The initial step in this dire
tion was done by Damm [8℄, Toda [21℄, Vinay [23℄,and Valiant [22℄ (see [16℄ for more details on the history). They showed that the de-terminant of an integer matrix 
hara
terizes the 
omplexity 
lass GapL, a logspa
e
ounting 
lasses that 
an handle integers. Toda [21℄ showed more problems to be�This work was supported by the German Resear
h FoundationyEmail: hoang�informatik.uni-ulm.dezEmail: thierauf�informatik.uni-ulm.de. Part of the work done at the Universit�at Ulm1



GapL-
omplete, in
luding matrix powering and the inverse of a matrix. Thereare also graph theoreti
 problems related to 
ounting the number s-t-paths in agraph [21℄ (see also [19℄).The veri�
ation of GapL fun
tions is 
aptured by the 
lass C=L. A 
ompleteproblem of this 
lass is the problem of testing singularity, i.e., the problem of testingwhether the determinant of a given matrix is zero. More general, Allender, Beals,and Ogihara [2℄ 
onsidered the matrix rank:� the de
ision problem whether the rank of A is less than some given number ris C=L-
omplete,� the de
ision problem whether the rank of A equals some given r, is 
ompletefor C=L^ 
oC=L, the 
lass of sets that 
an be written as the 
onjun
tion ofsets in C=L and in 
oC=L,� the problem of 
omputing the rank is inAC0(C=L), theAC0-
losure ofC=L.The problem of verifying one bit of the rank (at a given position), and theproblem of de
iding whether two matri
es have the same rank are 
ompletefor AC0(C=L).The 
omplexity of the minimal polynomial has been studied before [14℄(seealso [12, 13℄). In this paper, we show that the degree of the minimal polynomial ofa matrix is 
omputationally equivalent to the matrix rank problem, i.e. 
ompletefor AC0(C=L). Moreover, in analogy to the results on the rank we show that thede
ision problem whether� the degree of the minimal polynomial is less than some given m is C=L-
omplete,� the degree of the minimal polynomial is equal some given m is 
omplete forC=L ^ 
oC=L, and� the degrees of the minimal polynomials of two matri
es are equal is 
ompletefor AC0(C=L).We also investigate the 
omplexity of the 
onstant term of the minimal poly-nomial. The 
onstant term of the 
hara
teristi
 polynomial is GapL-
omplete.We ask whether the 
onstant term of the minimal polynomial 
an be 
omputed inGapL, too. We show that this question is strongly 
onne
ted with another openproblem: if the 
onstant term of the minimal polynomial 
an be 
omputed in GapL,then C=L is 
losed under 
omplement . This 
onne
tion is a 
onsequen
e of a hard-ness result: the problem of de
iding whether the 
onstant terms of the minimalpolynomials of two matri
es are equal is 
omplete for AC0(C=L).Whether C=L is 
losed under 
omplement is one of the big open questions inthis area. Re
all that many related 
lasses have this property: NL [15, 20℄, SL [17℄,PL (trivially), and nonuniform UL [18℄. Thus our results on the 
onstant term ofthe minimal polynomial o�ers a new point of atta
k to the open question whetherC=L is 
losed under 
omplement. 2



A �nal observation is about the diagonalizability of matri
es. In [13℄ it wasshown that the diagonalizability problem, whi
h is to de
ide whether a given ma-trix is diagonalizable, is hard for AC0(C=L). We show that this 
lass also is anupper bound for the diagonalizability problem. It follows that the diagonalizabilityproblem is 
omplete forAC0(C=L). We extend the result to simultaneous diagonal-izability where one has to de
ide whether all of k given matri
es are diagonalizableby the same diagonalizing matrix.2. PreliminariesWe assume familiarity with some basi
 notions of 
omplexity theory and linearalgebra. We refer the readers to the papers [2, 3℄ for more details and propertiesof the 
onsidered 
omplexity 
lasses, and to the textbooks [9, 11, 10℄ for moreba
kground in linear algebra.2.1. Complexity ClassesFor a nondeterministi
 Turing ma
hine M , we denote the number of a

eptingand reje
ting 
omputation paths on input x by a

M (x) and by rejM (x), respe
-tively. The di�eren
e of these two quantities is gapM , i.e., for all xgapM (x) = a

M (x)� rejM (x):The 
lass GapL is de�ned as the set of all fun
tions gapM (x) su
h that Mis a nondeterministi
 logspa
e bounded Turing ma
hine. GapL has many 
losureproperties: for example it is 
losed under addition, subtra
tion, and multipli
ation(see [3℄). In [1℄ (Corollary 3.3) it was shown that GapL is 
losed under 
ompositionin a very strong sense: if ea
h element of an n� n matrix A is GapL-
omputable,then the determinant of A is still 
omputable in GapL.On the basis of the 
lass GapL we 
an de�ne C=L (exa
t 
ounting in logspa
e)and PL (probabilisti
 logspa
e) as followsC=L = fS j 9f 2 GapL;8x : x 2 S () f(x) = 0g;PL = fS j 9f 2 GapL;8x : x 2 S () f(x) � 0g:Sin
e it is open whetherC=L is 
losed under 
omplement, it makes sense to 
onsiderthe Boolean 
losure of C=L, i.e., the 
lass of sets that 
an be expressed as a Boolean
ombination of sets in C=L. For our purposes, it suÆ
es to 
onsider the followingtwo 
lasses:(i) 
oC=L is the 
lass of 
omplement sets L where L 2 C=L,(ii) C=L ^ 
oC=L [2℄ is de�ned as the 
lass of interse
tions of sets in C=L withsets in 
oC=L, i.e.,L 2 C=L ^ 
oC=L () 9L1 2 C=L; L2 2 
oC=L : L = L1 \ L2:For sets S1 and S2, we say that S1 is AC0-redu
ible to S2, if there is a logspa
euniform 
ir
uit family of polynomial size and 
onstant depth that 
omputes S1 withunbounded fan-in AND- and OR-gates, NOT-gates, and ora
le gates for S2.3



Based on the AC0-redu
tion we 
an de�ne the so-
alled AC0-
losures su
h asAC0(C=L) or AC0(GapL). In parti
ular, we 
onsider the 
lasses AC0(C=L) andAC0(GapL): the sets that are AC0-redu
ible to a set in C=L, and to a fun
tionin GapL, respe
tively. The known relationships among these 
lasses are as followsC=L � C=L ^ 
oC=L � AC0(C=L) � PL � AC0(GapL) � TC1 � NC2:Furthermore, we say that S1 is (logspa
e many-one) redu
ible to S2, if thereis a fun
tion f 2 L (deterministi
 logspa
e) su
h that for all x we havex 2 S1 () f(x) 2 S2. In an analogous way one 
an de�ne AC0- or NC1-many-one redu
tions. Unless otherwise stated, all redu
tions in this paper are logspa
emany-one.2.2. Linear AlgebraLet A 2 F n�n be a matrix over the �eld F . The 
hara
teristi
 polynomial of Ais the polynomial �A(x) = det(xI�A). A nonzero polynomial p(x) over F is 
alledan annihilating polynomial for A if p(A) = 0. The Cayley-Hamilton Theorem statesthat �A(x) is an annihilating polynomial for A. The 
hara
teristi
 polynomial isa moni
 polynomial : its highest 
oeÆ
ient is one. The minimal polynomial of A,denoted by �A(x), is the unique moni
 annihilating polynomial for A with minimaldegree. Note that if A is an integer matrix, then all 
oeÆ
ients of �A(x) andof �A(x) are also integers. We will denote the degree of a polynomial p by deg(p)and the 
onstant term of p by 
t(p). It is known that 1 � deg(�A(x)) � n.Two matri
es A;B 2 F n�n are 
alled similar if there is a nonsingular matrixP 2 F n�n su
h that A = PBP�1. Furthermore, A is 
alled diagonalizable if Ais similar to a diagonal matrix. The matri
es A1; : : : ; Ak are 
alled simultaneouslydiagonalizable if there is a nonsingular matrix P su
h that PA1P�1; : : : ; PAkP�1are diagonal.2.3. ProblemsWe restri
t all the matrix problems in the present paper to the problems forinteger matri
es. The reason for this restri
tion is that the integer matrix prob-lems are equivalent to the 
orresponding rational matrix problems under logspa
eredu
ibility (see [2℄ for more details).By Determinant we denote the problem of 
omputing the determinant of ann� n matrix A.By PowerElement we denote the problem of 
omputing the element at posi-tion (1; n) of the power Am, i.e. the element (Am)1;n, for an n � n matrix A andan integer m.Both problems PowerElement and Determinant are 
omplete for GapL[4, 8, 21, 22, 23℄.Various de
ision problems are based on GapL-fun
tions. The veri�
ation of aGapL-fun
tion is 
aptured by the 
lass C=L. A GapL-
omplete fun
tion yields aC=L-
omplete veri�
ation problem. For example, the problem of verifying whether4



the determinant is zero, i.e. testing singularity, is 
omplete for C=L. Similarly,the problem of verifying whether the element at position (1; n) of Am is zero, is
omplete for C=L. We denote the latter problem by PowerElement=. Allender,Beals and Ogihara [2℄ 
onsidered the rank problem of a matrix. They showed that� Rank = f(A; k; b) j the k-th bit of rank(A) is bg is 
omplete for AC0(C=L),� Rank� = f(A; r) j rank(A) � rg is 
omplete for C=L, and� Rank= = f(A; r) j rank(A) = rg is 
omplete for C=L ^ 
oC=L.With respe
t to the minimal polynomial, MinPolynomial is the problem of
omputing the i-th 
oeÆ
ient di of �A(x) for given A and i. MinPolynomial is
omputable in AC0(GapL) and is hard for GapL [13, 14℄.The problem DegMinPol is de�ned as the set of all triples (A; k; b) su
h thatb is the k-th bit of deg(�A(x)), i.e,DegMinPol = f(A; k; b) j the k-th bit of deg(�A(x)) is bg:There is a number of de
ision problems related to MinPolynomial andDegMinPol: Let A and B be square matri
es and let m � 1� EqMinPolynomial is to de
ide whether �A(x) = �B(x), i.e.,EqMinPolynomial = f(A;B) j �A(x) = �B(x)g:� EqCTMinPol is to de
ide whether 
t(�A(x)) = 
t(�B(x)), i.e.,EqCTMinPol = f(A;B) j 
t(�A(x)) = 
t(�B(x))g:� EqDegMinPol is to de
ide whether deg(�A(x)) = deg(�B(x)), i.e.,EqDegMinPol = f(A;B) j deg(�A(x)) = deg(�B(x))g:� DegMinPol= is to de
ide whether deg(�A(x)) = m, i.e.,DegMinPol= = f(A;m) j deg(�A(x)) = mg:� DegMinPol� is to de
ide whether deg(�A(x)) � m, i.e.,DegMinPol� = f(A;m) j deg(�A(x)) � mg:Furthermore, we denote the set of all diagonalizable matri
es byDiagonalizable, and the set of all 
olle
tions of simultaneously diagonalizablematri
es by SimDiagonalizable.
5



3. The Minimal PolynomialIn this se
tion we investigate the 
omplexity of the degree and the 
onstant termof the minimal polynomial of a matrix. The upper bounds on the 
omplexity ofthese problems follow easily from the results in our pre
eding work [13, 14℄. Themain 
ontributions of the present paper are the lower bounds for these problems.In parti
ular, we want to point out that the degree of the minimal polynomial hasexa
tly the same 
omplexity as the matrix rank, and the 
onstant term of thispolynomial is not 
omputable in GapL unless C=L is 
losed under 
omplement.3.1. Upper BoundsIn [13℄ it was shown that the minimal polynomial of a square matrix 
an be
omputed in AC0(GapL). The AC0(GapL)-algorithm was based on the followingobservation.Let A be an n�n matrix. For ea
h i, 0 � i � n, de�ne ai to the n2-dimensional
olumn ve
tor that is the 
on
atenation of all the n 
olumn ve
tors of Ai. Then theminimal polynomial �A(x) has degree m if and only if the following two propertieshold:(i) �A(A) = 0. Equivalently, the ve
tors a0;a1; : : : ;am are linearly dependent.(ii) For every moni
 polynomial p(x) having degree m� 1 it holds that p(A) 6= 0.Equivalently, the ve
tors a0;a1; : : : ;am�1 are linearly independent.Note that in the 
ase when the degree of �A(x) is m ea
h of the ve
tors am; : : : ;an
an be represented as a linear 
ombination of the linearly independent ve
torsa0;a1; : : : ;am�1.Proposition 1 1) DegMinPol� is in C=L. DegMinPol= is in C=L^
oC=L.2) EqDegMinPol and DegMinPol are in AC0(C=L).Proof. 1) Given (A;m), let the order of A be n. For ea
h j = 1; : : : ; n, we de�nethe n2 � j matrix Cj and the symmetri
 j � j matri
es Dj as followsCj = (a0 a1 � � � aj�1);Dj = CTj Cj :Observe that all of the matri
es Cm; : : : ; Cn and Dm; : : : ; Dn have rank m, wherem is the degree of �A(x), i.e.rank(Dn) = deg(�A(x)):Let the 
hara
teristi
 polynomial of Dn be�Dn(x) = xn + 
n�1xn�1 + � � �+ 
1x+ 
0:Sin
e Dn is symmetri
, we have rank(Dn) = n � l, where l is the smallest indexsu
h that 
l 6= 0. Hen
e we havedeg(�A(x)) = n� l:6



Thereforedeg(�A(x)) � m () 
0 = 
1 = � � � = 
n�m = 0;deg(�A(x)) = m () 
0 = 
1 = � � � = 
n�m = 0 and 
n�m+1 6= 0:For a given matrix, the 
oeÆ
ients of its 
hara
teristi
 polynomial are 
om-putable in GapL. Be
ause ea
h element of Dn is 
omputable in GapL and be-
ause GapL is 
losed under 
omposition [1℄, ea
h of the 
oeÆ
ients 
n�1; : : : ; 
0 is
omputable in GapL as well. Moreover, testing whether 
i = 0 simultaneously formultiple values of i 
an be done in C=L sin
e C=L is 
losed under 
onjun
tion [3℄.This proves part 1 and 2 of the proposition.2) Given (A;B), let the orders of A and B be n and p, respe
tively. (A;B) is inEqDegMinPol if and only if there is an number m in the set f1; : : : ;minfn; pggsu
h that deg(�A(x)) = m and deg(�B(x)) = m. Therefore EqDegMinPol is inAC0(C=L).Let (A; k; b) be an input to DegMinPol and let n be the order of A. A straight-forward approa
h to obtain the upper bound for DegMinPol might be to use thefa
t that (A; k; b) 2 DegMinPol () (Dn; k; b) 2 Rank:However, the elements of Dn seem to require a GapL-
omputation: Dn = CTn Cnand the elements of Cn are 
omputable in GapL. Therefore we end up inAC0(GapL) that way.Instead, we 
onstru
t an AC0-
ir
uit with ora
le gates from C=L forDegMinPol: for ea
h number m 2 f1; : : : ; ng whose k-th bit is b we 
onstru
tan AC0(C=L) 
ir
uit to de
ide whether deg�A(x) = m. The �nal output is thedisjun
tion of these 
ir
uits. 2Proposition 2 EqMinPolynomial and EqCTMinPol are in AC0(C=L).Proof. Let A and B be given matri
es. Consider the 
oeÆ
ients of the minimalpolynomial of A �A(x) = xm + dm�1xm�1 + � � �+ d0:By properties (i) and (ii) above, the 
oeÆ
ient ve
tor dA = (d0; d1; : : : ; dm�1)T isthe unique solution of the system of linear equationsCmx = �am;or, equivalently, CTmCmx = �CTmam:Hen
e we get (d0; d1; : : : ; dm�1)T = �D�1m CTmam: (1)Noti
e that Dm is nonsingular and ea
h element of D�1m 
an be 
omputed in GapLbe
ause of the 
losure properties of GapL under 
omposition [1℄. We 
an expressthe 
oeÆ
ient ve
tor dB of �B(x) analogously as for A in equation (1). It followsthat in AC0(C=L) we 
an 
ompare the 
oeÆ
ient ve
tors dA and dB . 27



3.2. Lower BoundsAllender, Beals, and Ogihara [2℄ showed that Rank� is hard for C=L andRank= is hard for C=L ^ 
oC=L. We show that the exa
t parallels of theseresults hold for DegMinPol� and DegMinPol= by the following theorem.Theorem 1 1) DegMinPol� is hard for C=L.2) DegMinPol= is hard for C=L ^ 
oC=L.Proof. 1) To show the �rst part of the theorem, we redu
e PowerElement= toDegMinPol�.Let an n � n matrix A and an integer m � 1 be given as input toPowerElement=. Our task is to de
ide whether (Am)1;n = 0. In [14℄ (seealso [13℄) it was shown how to 
onstru
t a matrix B (in logspa
e) su
h that�B(x) = x2m+2 � axm+1; where a = (Am)1;n:Let C be the 
ompanion matrix of the polynomial x2m+2, that is, the (2m +2) � (2m + 2) matrix in whi
h all the elements on the �rst sub-diagonal are 1and the rest is all 0. Note that the 
ompanion matrix of a polynomial p(x) =xk + �k�1xk�1 + � � �+ �1x+ �0 is the following k � k matrixP = 266664 0 0 � � � 0 ��01 0 � � � 0 ��10 1 � � � 0 ��2. . . . . . . . . . . . . . . . . . . . .0 0 � � � 1 ��k�1 377775 ;and that �P (x) = �P (x) = p(x) (see [10℄, Se
tion 3.3). Therefore we have �C(x) =�C(x) = x2m+2.De�ne the diagonal blo
k matrix D = � B 00 C � : It is known that the minimalpolynomial of D is the least 
ommon multiple (for short: l
m) of the polynomials�B(x) and �C(x) (see [10℄, Se
tion 3.3, exer
ise 8). Therefore, we obtain�D(x) = l
mfxm+1(xm+1 � a); x2m+2g= � x2m+2; for a = 0;x2m+2(xm+1 � a); for a 6= 0:It follows that a = (Am)1;n = 0 () deg(�D(x)) = 2m+ 2:2) To show the se
ond part of the theorem, we redu
e an arbitrary language Lin C=L^
oC=L to DegMinPol=. Namely, we 
ompute (in logspa
e) matri
es A1and A2 of order n1 and n2, respe
tively, and integers m and l, 1 � m; l, su
h thatfor every w: w 2 L () (Am1 )1;n1 = 0 and (Al2)1;n2 6= 0:Due to Lemma 1 below we may assume w.l.o.g. that m > l.8



Let a1 = (Am1 )1;n1 and a2 = (Al2)1;n2 . As explained in the �rst part of the proof,(in logspa
e) we 
an 
ompute matri
es B1 and B2 su
h that�B1(x) = x2m+2 � a1xm+1;�B2(x) = x2l+2 � a2xl+1:By C we denote again the 
ompanion matrix of x2m+2. De�ne the matrixD = 24 B1 0 00 B2 00 0 C 35 :Then we get�D(x) = l
mf�B1(x); �B2(x); �C(x)g= l
mfxm+1(xm+1 � a1); xl+1(xl+1 � a2); x2m+2g= x2m+2l
mfxm+1 � a1; xl+1 � a2g:Sin
e m > l, we havedeg(�D(x)) = 8>><>>: 2m+ l + 3; for a1 = 0; a2 6= 0;3m+ 3; for a1 6= 0; a2 = 0;2m+ 2; for a1 = 0; a2 = 0;3m+ 3 + r; for a1 6= 0; a2 6= 0; where r > 0:We 
on
luded that for every ww 2 L () a1 = 0 and a2 6= 0() deg(�D(x)) = 2m+ l+ 3:This 
ompletes the proof of the theorem. 2By Proposition 1 and Theorem 1 we obtain the following 
orollary.Corollary 1 1) DegMinPol� is 
omplete for C=L.2) DegMinPol= is 
omplete for C=L ^ 
oC=L.The following lemma 
ompletes the proof of Theorem 1.Lemma 1 Let A be an n � n matrix and let m � 1. For any k � 1 there is amatrix eA of order p = n(mk + 1) su
h that (Am)1;n = ( eAkm)1;p.
9



Proof. De�ne the following (mk + 1)� (mk + 1) blo
k matrix eA
eA =

26666666666666666666664
0 A0 I. . . . . .0 I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 A0 I. . . . . .0 I0

37777777777777777777775
:

Ea
h blo
k of eA is a matrix of order n. In the �rst blo
k super-diagonal of eA thepattern of an A followed by (k � 1) times I is repeated m times, and the rest is allzero-matrix (0).An elementary 
al
ulation shows that eAmk has Am as its upper right blo
k atposition (1;mk + 1), and all other blo
ks are 0eAmk = 2664 0 � � � 0 Am0 � � � 0 0. . . . . . . . . . . . . . .0 � � � 0 0 3775Therefore, we have (Am)1;n = ( eAkm)1;p: 2Next we show that several de
ision problems based on the minimal polyno-mial are hard for AC0(C=L). Let FSLE denote the problem Feasible Systemsof Linear Equations [2℄. An input to FSLE 
onsists of an m � n matrix A andan m-dimensional integer ve
tor b. One has to de
ide whether the system of linearequations Ax = b has a rational solution x. Allender, Beals, and Ogihara [2℄ provedthat FSLE is 
omplete for AC0(C=L).Theorem 2 EqMinPolynomial, EqDegMinPol, DegMinPol, andEqCTMinPol are hard for AC0(C=L).Proof. Let (A; b) be an input to FSLE. De�ne the symmetri
 (m+n)� (m+n)matrix B = � 0 AAT 0 �and the ve
tor 
 = (bT ;0)T of length m+n. Furthermore, de�ne the following two(m+ n+ 1)� (m+ n+ 1) matri
esC = � B 00 0 � and D = � B 
0 0 � :10



Let �1; : : : ; �k be distin
t eigenvalues of C. It will be useful later on to observethat(a) C is a symmetri
 matrix. Therefore, C is diagonalizable, its elementary divi-sors have the form (x��i), and �C(x) = (x��1) � � � (x��k) (see [10℄, Se
tion3.3, Theorem 3.3.6 and Corollary 3.3.8).(b) C and D are singular matri
es. They have the same 
hara
teristi
 polynomial:�C(x) = �D(x) = x �B(x), and 
onsequently they have the same eigenvalues.It follows that deg(�C(x)) � deg(�D(x)), and the elementary divisors of Dhave the form (x� �i)ti , for some ti � 1.We prove the following equivalen
es(A; b) 2 FSLE () (B; 
) 2 FSLE (2)() C is similar to D (3)() D 2 Diagonalizable (4)() �C(x) = �D(x) (5)() deg(�C(x)) = deg(�D(x)) (6)() deg(�D(x)) is odd (7)() 
t(�C�(x)) = 
t(�D�(x)); (8)where C� = C + �I and D� = D + �I for an appropriate positive integer � to be
hosen later.Equivalen
es (2), (3), and (4) were shown in [13℄. For 
ompleteness, we in
ludea proof.Equivalen
e (2). The equivalen
e holds be
ause the system ATx = 0 is alwaysfeasible.Equivalen
e (3). Consider the 
ase where the system Bx = 
 is feasible. Let x0be a solution of the system. De�ne the (m+ n+ 1)� (m+ n+ 1) matrix T byT = � I x00 �1 � :It is easy to see that T is nonsingular and that CT = TD. Thus, C is similar to D.Conversely, if the above system is not feasible, then C and D have di�erentranks. This implies that they 
an not be similar.Equivalen
e (4). By observation (a) from above, matrix C is similar to a di-agonal matrix, say C 0. If C is similar to D, then D is similar to C 0 be
ause thesimilarity relation is transitive. Hen
e D is diagonalizable.Conversely, if D is diagonalizable, then D has only linear elementary divisors.By observation (b), C and D have the same eigenvalues. It follows that C and Dmust have the same system of elementary divisors, i.e., they are similar.11



Equivalen
e (5). If C is similar to D, then 
learly �C(x) = �D(x).Conversely, if �C(x) = �D(x), then �D(x) 
ontains only linear irredu
ible fa
-tors, be
ause �C(x) has this property by observation (a). Therefore D is diagonal-izable (see [10℄, Se
tion 3.3, Corollary 3.3.10).Equivalen
e (6). By observation (b) we have deg(�C(x)) � deg(�D(x)). Thesedegrees are equal if and only if every root of �D(x) has multipli
ity 1. The latterholds if and only if D is diagonalizable.Equivalen
e (7). Let the distin
t non-zero eigenvalues of the matrix ATA beÆ1; Æ2; : : : ; Æl (they are all positive). Then the distin
t eigenvalues of C are as follows�pÆl ;�pÆl�1 ; : : : ;�pÆ1 ; 0 ;pÆ1 ; : : : ;pÆl�1 ;pÆl(see [11℄, Chapter 3). Note that C is a singular matrix. Thus, the number of distin
teigenvalues of C is 2l+1. This implies that k = deg(�C(x)) = 2l+1 is always odd.To prove the 
laim, we show thatdeg(�D(x)) 2 fdeg(�C(x)); deg(�C(x)) + 1g:Sin
e deg(�C(x)) � deg(�D(x)) by observation (b), it suÆ
es to show thatdeg(�D(x)) � deg(�C(x)) + 1.We 
onsider powers of C and DCi = � Bi 00 0 � ; Di = � Bi Bi�1
0 0 � : (9)Let the minimal polynomial of C be�C(x) = xk + dk�1xk�1 + � � �+ d1x+ d0:Sin
e �C(C) = 0, we 
an write Ck asCk = �(dk�1Ck�1 + � � �+ d1C + d0I):By equation (9) for Ci this yieldsBk = � k�1Xi=0 diBi:By equation (9) for Di we getDk+1 = � Bk+1 Bk
0 0 �= 24 � k�1Pi=0 diBi+1 � k�1Pi=0 diBi
0 0 35= � k�1Xi=0 diDi+1: (10)12



De�ne the polynomialp(x) = x�C(x) = xk+1 + dk�1xk + � � �+ d1x2 + d0x:Equation (10) implies that p(D) = 0. By de�nition of the minimal polynomial, wemust have deg(�D(x)) � deg(p) = k + 1:We 
on
lude that deg(�D(x)) must be either k or k + 1.Equivalen
e (8). Observe that, for any �, equivalen
es (2) to (6) still hold whenwe repla
e C� and D� for C and D, respe
tively. In parti
ular we have�C(x) = �D(x) =) 
t(�C�(x)) = 
t(�D�(x)):It remains to sele
t an appropriate value for � su
h that the 
onverse impli
ationholds.Fix any �. Sin
e the distin
t eigenvalues of C are �1; : : : ; �k , the distin
teigenvalues of C� are �1 + �; : : : ; �k + �.Sin
e C� is symmetri
 and sin
e C� and D� still have the same eigenvalues, we
an write �C�(x) = kYi=1(x� (�i + �)); and�D�(x) = kYi=1(x� (�i + �))ti ;where ti � 1 for i = 1; 2; : : : ; k.It suÆ
es to 
hoose � su
h that �i +� > 1 for all i. If �C�(x) and �D�(x) havethe same 
onstant term for su
h an �, then they must be equal. De�ne� = kCk+ 2;where kCk is the maximum 
olumn sum matrix norm of C = (
i;j) whi
h is de�nedas follows kCk = max1�j�m+n+1m+n+1Xi=1 j
i;j j(see [10℄, Se
tion 5.6).The spe
tral radius of C, denoted by �(C), is as follows�(C) = max1�i�k j�ij:It is known that �(C) � kCk (see [10℄, Se
tion 5.6). Therefore, �i + � > 1, fori = 1; 2; : : : ; k. Note that � 
an be 
omputed in logspa
e. This 
ompletes the proofof the theorem. 2By Proposition 1 and 2, and by Theorem 2 we get the following 
orollary.13



Corollary 2 EqMinPolynomial, EqDegMinPol, DegMinPol, andEqCTMinPol are 
omplete for AC0(C=L).In Se
tion 3.1, it was shown that, given A, one 
an 
ompute a matrix B inGapLsu
h that deg(�A(x)) = rank(B). On the other hand, we don't know whether thereis a 
onverse redu
tion, i.e. given A, 
ompute B su
h that rank(A) = deg(�B(x)).Note that Corollary 2 provides su
h a redu
tion only for the bitwise versions ofthese fun
tions, namely DegMinPol and Rank.Re
all that the 
onstant term of the 
hara
teristi
 polynomial �A(x) is(�1)n det(A). This term is 
omputable in GapL. Now assume for a moment,that the 
onstant term of the minimal polynomial is in GapL as well. It followsthat EqCTMinPol is in C=L, be
ause this is asking whether the di�eren
e oftwo 
onstant terms (a GapL-fun
tion) is zero. By Theorem 2, it follows thatAC0(C=L) = C=L.Corollary 3 If the 
onstant term of the minimal polynomial of a matrix is 
om-putable in GapL, then C=L is 
losed under 
omplement.We 
an 
onsiderably weaken the assumption in Corollary 3: it suÆ
es to have a
ertain addition property of the 
onstant term of the minimal polynomial. Namely,given matri
es A and B, suppose there is a matrix C su
h that ea
h element of Cis 
omputable in GapL, and
t(�C(x)) = 
t(�A(x)) � 
t(�B(x)):Then we have (A;B) 2 EqCTMinPol if and only if 
t(�C(x)) = 0. The latter isequivalent to det(C) = 0. Sin
e the the determinant of C is a GapL-fun
tion ([1℄,Corollary 3.3), we 
on
lude that AC0(C=L) 
ollapses to C=L.Corollary 4 If the 
onstant term of the minimal polynomial has the above additionproperty, then C=L is 
losed under 
omplement.4. DiagonalizabilityIn [12℄ it was shown that the problem of de
iding whether two matri
es aresimilar is 
omplete for AC0(C=L). Related to the similarity problem is the diago-nalizability problem. Diagonalizable is hard for AC0(C=L) by Theorem 2 andis 
ontained in AC0(GapL) [13℄. In this se
tion we show that Diagonalizableand SimDiagonalizable are 
omplete for AC0(C=L).Theorem 3 Diagonalizable is 
omplete for AC0(C=L).Proof. It remains to prove that Diagonalizable is in AC0(C=L).In Se
tion 3.1, it was shown how to 
onstru
t a matrix Dn, for a given n � nmatrix A, su
h that deg(�A(x)) = rank(Dn). Matrix A is diagonalizable if andonly if its minimal polynomial 
ontains only linear irredu
ible fa
tors. The latter isequivalent to the 
ondition that the degree of �A(x) is equal the number of distin
teigenvalues of the matrix A.Let l be the number of distin
t eigenvalues of A. Another way to 
hara
terize lis by means of the Hankel matrix HA asso
iated with A. More pre
isely, the Hankel14



matrix HA = (hi;j) is de�ned as a symmetri
 n � n matrix whose elements arede�ned as follows hi;j = tra
e(Ai+j�2); for i; j = 1; : : : ; n;where tra
e(X) is the sum of all elements on the diagonal of the matrix X . It iswell known that l = rank(HA) (see [9℄, Chapter XV, Theorem 6).In summary, we haveA is diagonalizable () deg(�A(x)) = # of distin
t eigenvalues of A() rank(Dn) = rank(HA): (11)Sin
e ea
h element of Dn and HA 
an be 
omputed in GapL, the 
onditionin equivalen
e (11) 
an be tested in AC0(C=L). Hen
e, Diagonalizable is inAC0(C=L). 2Finally, we 
onsider the problem SimDiagonalizable. The problem is to de-
ide, given k n�nmatri
es A1; : : : ; Ak, whether there exists a nonsingular matrix Ssu
h that SAiS�1 are diagonal, for all i, 1 � i � k.In the 
ase when all matri
es Ai are already diagonalizable these matri
es aresimultaneously diagonalizable if and only if they are pairwise 
ommutable, i.e.,Ai Aj = Aj Ai for all i; j; 1 � i; j � k (see [10℄, Se
tion 1.3). This 
an be 
he
kedin NC1. Therefore, the main part is to test whether Ai 2 Diagonalizable, forall i, 1 � i � k. By Theorem 3 we get the following 
orollary.Corollary 5 SimDiagonalizable is 
omplete for AC0(C=L).5. SummaryIn the following table we summarize the 
omplexities of the problems 
onsideredin the paper. Problem 
omplete forDegMinPol� C=LDegMinPol= C=L ^ 
oC=LDegMinPol AC0(C=L)EqDegMinPol AC0(C=L)EqMinPolynomial AC0(C=L)EqCTMinPol AC0(C=L)Diagonalizable AC0(C=L)SimDiagonalizable AC0(C=L)
15
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