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ABSTRACT

We investigate the complexity of the degree and the constant term of the minimal polyno-
mial of a matrix. We show that the degree of the minimal polynomial is computationally
equivalent to the matrix rank.

We compare the constant term of the minimal polynomial with the constant term of
the characteristic polynomial. The latter is known to be computable in the logspace
counting class GapL. We show that if this holds for the minimal polynomial as well,
then the exact counting in logspace class C=L is closed under complement. Whether
C_L is closed under complement is one of the main open problems in this area.

As an application of our techniques we show that the problem of deciding whether a
matrix is diagonalizable is complete for AC%(C-L), the AC°-closure of C—L.
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1. Introduction

Computing the determinant of a matrix is an important topic in mathematics
and theoretical computer science which has been studied for many years. With
respect to parallel computation, the determinant is in NC? [4, 5, 6, 7]. Many
problems in linear algebra are closely related to the determinant, and hence, are in
NC? as well. However, NC? does not capture the exact complexity of problems in
linear algebra. In particular, the determinant is not known to be NC?-complete.
Our goal is to determine precisely the complexity of such problems.

The initial step in this direction was done by Damm [§8], Toda [21], Vinay [23],
and Valiant [22] (see [16] for more details on the history). They showed that the de-
terminant of an integer matrix characterizes the complexity class GapL, a logspace
counting classes that can handle integers. Toda [21] showed more problems to be
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GapL-complete, including matrix powering and the inverse of a matrix. There
are also graph theoretic problems related to counting the number s-t-paths in a
graph [21] (see also [19]).

The verification of GapL functions is captured by the class C_L. A complete
problem of this class is the problem of testing singularity, i.e., the problem of testing
whether the determinant of a given matrix is zero. More general, Allender, Beals,
and Ogihara [2] considered the matrix rank:

e the decision problem whether the rank of A is less than some given number r
is C_L-complete,

e the decision problem whether the rank of A equals some given r, is complete
for C_L A coC_L, the class of sets that can be written as the conjunction of
sets in C_L and in coC_L,

e the problem of computing the rank is in AC°(C_L), the AC°-closure of C_L.
The problem of verifying one bit of the rank (at a given position), and the
problem of deciding whether two matrices have the same rank are complete
for AC°(C_L).

The complexity of the minimal polynomial has been studied before [14](see
also [12, 13]). In this paper, we show that the degree of the minimal polynomial of
a matrix is computationally equivalent to the matrix rank problem, i.e. complete
for AC°(C_L). Moreover, in analogy to the results on the rank we show that the
decision problem whether

e the degree of the minimal polynomial is less than some given m is C_L-
complete,

e the degree of the minimal polynomial is equal some given m is complete for
C-L A coC_L, and

e the degrees of the minimal polynomials of two matrices are equal is complete
for AC°(C_L).

We also investigate the complexity of the constant term of the minimal poly-
nomial. The constant term of the characteristic polynomial is GapL-complete.
We ask whether the constant term of the minimal polynomial can be computed in
GapL, too. We show that this question is strongly connected with another open
problem: if the constant term of the minimal polynomial can be computed in GapL,
then C_L is closed under complement. This connection is a consequence of a hard-
ness result: the problem of deciding whether the constant terms of the minimal
polynomials of two matrices are equal is complete for ACO(C:L).

Whether C_L is closed under complement is one of the big open questions in
this area. Recall that many related classes have this property: NL [15, 20], SL [17],
PL (trivially), and nonuniform UL [18]. Thus our results on the constant term of
the minimal polynomial offers a new point of attack to the open question whether
C_L is closed under complement.



A final observation is about the diagonalizability of matrices. In [13] it was
shown that the diagonalizability problem, which is to decide whether a given ma-
trix is diagonalizable, is hard for AC°(C-L). We show that this class also is an
upper bound for the diagonalizability problem. It follows that the diagonalizability
problem is complete for AC° (C=L). We extend the result to simultaneous diagonal-
izability where one has to decide whether all of k given matrices are diagonalizable
by the same diagonalizing matrix.

2. Preliminaries

We assume familiarity with some basic notions of complexity theory and linear
algebra. We refer the readers to the papers [2, 3] for more details and properties
of the considered complexity classes, and to the textbooks [9, 11, 10] for more
background in linear algebra.

2.1. Complezity Classes

For a nondeterministic Turing machine M, we denote the number of accepting
and rejecting computation paths on input x by accar(z) and by rejy,(z), respec-
tively. The difference of these two quantities is gap,,, i.e., for all =

gapy (z) = acem (z) — rejar ().

The class GapL is defined as the set of all functions gap,,(z) such that M
is a nondeterministic logspace bounded Turing machine. GapL has many closure
properties: for example it is closed under addition, subtraction, and multiplication
(see [3]). In [1] (Corollary 3.3) it was shown that GapL is closed under composition
in a very strong sense: if each element of an n x n matrix 4 is GapL-computable,
then the determinant of A is still computable in GapL.

On the basis of the class GapL we can define C_L (exact counting in logspace)
and PL (probabilistic logspace) as follows

C_L = {S|3feGapL,Vz: z€ S < f(z) =0},
PL = {S|3fecGapL,Vz: z€S < f(z)>0}.

Since it is open whether C_L is closed under complement, it makes sense to consider
the Boolean closure of C_L, i.e., the class of sets that can be expressed as a Boolean
combination of sets in C_L. For our purposes, it suffices to consider the following
two classes:

(i) coC_L is the class of complement sets L where L € C_L,
(i) C=L A coC.L [2] is defined as the class of intersections of sets in C=L with
sets in coC_L, i.e.,

LeC_LAcoC_L < FL; € C_L, Ly € coC_L: L=1L;NLs.

For sets S; and S, we say that Sy is AC -reducible to S,, if there is a logspace
uniform circuit family of polynomial size and constant depth that computes S; with
unbounded fan-in AND- and OR-gates, NOT-gates, and oracle gates for S,.



Based on the AC’-reduction we can define the so-called AC-closures such as
AC’(C_L) or AC’(GapL). In particular, we consider the classes AC’(C_L) and
AC°(GapL): the sets that are AC -reducible to a set in C_L, and to a function
in GapL, respectively. The known relationships among these classes are as follows

C_L CC_LAcoC_L C AC°(C_L) C PL C AC°(GapL) C TC' C NC?.

Furthermore, we say that Sy is (logspace many-one) reducible to Ss, if there
is a function f € L (deterministic logspace) such that for all 2 we have
x €81 < f(z) € Ss. In an analogous way one can define AC- or NC!'-many-
one reductions. Unless otherwise stated, all reductions in this paper are logspace
many-one.

2.2. Linear Algebra

Let A € F™ " be a matrix over the field F. The characteristic polynomial of A
is the polynomial x 4(z) = det(zI — A). A nonzero polynomial p(z) over F is called
an annihilating polynomial for A if p(A) = 0. The Cayley-Hamilton Theorem states
that x4(z) is an annihilating polynomial for A. The characteristic polynomial is
a monic polynomial: its highest coefficient is one. The minimal polynomial of A,
denoted by pa(z), is the unique monic annihilating polynomial for A with minimal
degree. Note that if A is an integer matrix, then all coefficients of y4(z) and
of pa(z) are also integers. We will denote the degree of a polynomial p by deg(p)
and the constant term of p by ct(p). It is known that 1 < deg(ua(z)) < n.

Two matrices A, B € F"*" are called similar if there is a nonsingular matrix
P ¢ F™*" guch that A = PBP~'. Furthermore, A is called diagonalizable if A
is similar to a diagonal matrix. The matrices Ay, ..., Ay are called simultaneously
diagonalizable if there is a nonsingular matrix P such that PA;P~',..., PA, P!
are diagonal.

2.3. Problems

We restrict all the matrix problems in the present paper to the problems for
integer matrices. The reason for this restriction is that the integer matrix prob-
lems are equivalent to the corresponding rational matrix problems under logspace
reducibility (see [2] for more details).

By DETERMINANT we denote the problem of computing the determinant of an
n X n matrix A.

By POWERELEMENT we denote the problem of computing the element at posi-
tion (1,n) of the power A™, i.e. the element (A™) ,, for an n x n matrix A and
an integer m.

Both problems POWERELEMENT and DETERMINANT are complete for GapL
[4, 8, 21, 22, 23].

Various decision problems are based on GapL-functions. The verification of a
GapL-function is captured by the class C_L. A GapL-complete function yields a
C_L-complete verification problem. For example, the problem of verifying whether



the determinant is zero, i.e. testing singularity, is complete for C_L. Similarly,
the problem of verifying whether the element at position (1,n) of A™ is zero, is
complete for C_L. We denote the latter problem by POWERELEMENT-. Allender,
Beals and Ogihara [2] considered the rank problem of a matrix. They showed that

e RANK = {(4, k,b) | the k-th bit of rank(A) is b} is complete for AC°(C_L),
e RaNK< = {(A,r) | rank(A) < r} is complete for C_L, and
e RANK= = {(A4,r) | rank(A) = r} is complete for C_L A coC_L.

With respect to the minimal polynomial, MINPOLYNOMIAL is the problem of
computing the i-th coefficient d; of ua(z) for given A and i. MINPOLYNOMIAL is
computable in AC°(GapL) and is hard for GapL [13, 14].

The problem DEGMINPOL is defined as the set of all triples (A, k, b) such that
b is the k-th bit of deg(ua(z)), i.e,

DecMINPoOL = {(A4,k,b) | the k-th bit of deg(ua(z)) is b}.

There is a number of decision problems related to MINPOLYNOMIAL and
DeaMINPOL: Let A and B be square matrices and let m > 1

¢ EQMINPOLYNOMIAL is to decide whether pua(z) = up(z), i.e.,

EQMINPOLYNOMIAL = {(A, B) | pa(z) = pp(x)}.

EQCTMINPOL is to decide whether ct(ua(z)) = ct(ugp(z)), i-e.,

EQCTMINPoOL = {(A4, B) | ct(pa(z)) = ct(pp(z))}.

EQDEGMINPOL is to decide whether deg(ua(z)) = deg(us(z)), i.e.,

EQDEGMINPOL = {(A4, B) | deg(ua(x)) = deg(up(z))}.

DEGMINPOL= is to decide whether deg(ua(z)) = m, i.e.,

DecMINPOL= = {(A,m) | deg(ua(z)) = m}.

DEGMINPOL< is to decide whether deg(pa(z)) < m, ie.,

DeEGMINPOL< = {(A,m) | deg(pa(z)) < m}.

Furthermore, we denote the set of all diagonalizable matrices by
DIACONALIZABLE, and the set of all collections of simultaneously diagonalizable
matrices by SIMDIAGONALIZABLE.



3. The Minimal Polynomial

In this section we investigate the complexity of the degree and the constant term
of the minimal polynomial of a matrix. The upper bounds on the complexity of
these problems follow easily from the results in our preceding work [13, 14]. The
main contributions of the present paper are the lower bounds for these problems.
In particular, we want to point out that the degree of the minimal polynomial has
exactly the same complexity as the matrix rank, and the constant term of this
polynomial is not computable in GapL unless C_L is closed under complement.

3.1. Upper Bounds

In [13] it was shown that the minimal polynomial of a square matrix can be
computed in AC°(GapL). The AC°(GapL)-algorithm was based on the following
observation.

Let A be an n x n matrix. For each i, 0 < i < n, define a; to the n?-dimensional
column vector that is the concatenation of all the n column vectors of A*. Then the
minimal polynomial u(z) has degree m if and only if the following two properties
hold:

(i) pa(A) = 0. Equivalently, the vectors ag,ay,...,a, are linearly dependent.
(ii) For every monic polynomial p(z) having degree m — 1 it holds that p(A) # 0.
Equivalently, the vectors ag,aq,..., a,,_1 are linearly independent.

3 3

Note that in the case when the degree of u4(z) is m each of the vectors ap,, ..., a,

can be represented as a linear combination of the linearly independent vectors

ag, @y, ..., Qp 1.

Proposition 1 1) DEGMINPOL< is in C_L. DEGMINPOL_ is in C_LAcoC_L.
2) EQDEGMINPOL and DEGMINPOL are in AC®(C_L).

Proof. 1) Given (A, m), let the order of A be n. For each j =1,...,n, we define

the n? x j matrix C; and the symmetric j x j matrices D; as follows

Cj = (anay - aj 1),
D; = C] Cj.
Observe that all of the matrices Cy,,...,Cy and D,,,..., D, have rank m, where

m is the degree of pa(x), i.e.
rank(Dp,) = deg(ua(z)).
Let the characteristic polynomial of D,, be
XD, (2) = 2" + cporz™ 4+ a1z + co.

Since D,, is symmetric, we have rank(D,,) = n — I, where [ is the smallest index
such that ¢; # 0. Hence we have

deg(pa(z)) =n—1.



Therefore

Co=¢ = =Cphm =0,

deg(pa(z)) <

m <
deg(pa(z)) =m <=

cg=c = =¢Cp_m=0and ¢, _my1 #O0.

For a given matrix, the coefficients of its characteristic polynomial are com-
putable in GapL. Because each element of D, is computable in GapL and be-
cause GapL is closed under composition [1], each of the coefficients ¢,_1,...,cq is
computable in GapL as well. Moreover, testing whether ¢; = 0 simultaneously for
multiple values of i can be done in C_L since C-L is closed under conjunction [3].
This proves part 1 and 2 of the proposition.

2) Given (A, B), let the orders of A and B be n and p, respectively. (A, B) is in
EQDEGMINPoOL if and only if there is an number m in the set {1,..., min{n,p}}
such that deg(ua(z)) = m and deg(up(xz)) = m. Therefore EQDEGMINPOL is in
AC’(C_L).

Let (A, k,b) be an input to DEGMINPOL and let n be the order of A. A straight-
forward approach to obtain the upper bound for DEGMINPOL might be to use the
fact that

(A, k,b) € DEGMINPOL <= (D,,k,b) € RANK.

However, the elements of D,, seem to require a GapL-computation: D,, = CTC,
and the elements of C,, are computable in GapL. Therefore we end up in
AC°(GapL) that way.

Instead, we construct an ACC-circuit with oracle gates from C_L for
DEGMINPoOL: for each number m € {1,...,n} whose k-th bit is b we construct
an AC°(C_L) circuit to decide whether deg ua(z) = m. The final output is the
disjunction of these circuits.

O
Proposition 2 EQMINPOLYNOMIAL and EQCTMINPOL are in AC°(C_L).

Proof. Let A and B be given matrices. Consider the coefficients of the minimal
polynomial of A
pa(x) =™ + dpoz™ "t 4+ do.

By properties (i) and (ii) above, the coefficient vector da = (dg,d1,...,dm—1)7 is
the unique solution of the system of linear equations

Cnx = —an,,
or, equivalently,
CTCpx=—-Cla,.
Hence we get
(do,di,- - dm—1)" = =D Clam. (1)

Notice that D,, is nonsingular and each element of D! can be computed in GapL
because of the closure properties of GapL under composition [1]. We can express
the coefficient vector dp of pup(z) analogously as for A in equation (1). It follows
that in AC°(C_L) we can compare the coefficient vectors d4 and dp. O



3.2. Lower Bounds

Allender, Beals, and Ogihara [2] showed that RANK< is hard for C_-L and
RANK- is hard for C_L A coC_L. We show that the exact parallels of these
results hold for DEGMINPOL< and DEGMINPOL= by the following theorem.
Theorem 1 1) DEGMINPOL< is hard for C_L.

2) DEGMINPOL= is hard for C_L A coC_L.

Proof. 1) To show the first part of the theorem, we reduce POWERELEMENT- to
DEGMINPOL<.

Let an n x n matrix A and an integer m > 1 be given as input to
POWERELEMENT=. Our task is to decide whether (A™);, = 0. In [14] (see
also [13]) it was shown how to construct a matrix B (in logspace) such that

pp(z) = ™2 —az™t! where a = (A™)1 .

Let C be the companion matrix of the polynomial x2™*2, that is, the (2m +
2) x (2m + 2) matrix in which all the elements on the first sub-diagonal are 1
and the rest is all 0. Note that the companion matrix of a polynomial p(z) =
¥ + ap_12F " + -+ aqz + g is the following k x k matrix

00 -+ 0 —ap
10 -+ 0 -
P=|01 0 —as ,
0 0 1 —Qp—1
and that xp(z) = pup(z) = p(z) (see [10], Section 3.3). Therefore we have x¢(z) =
pc(z) = >+,
Define the diagonal block matriz D = { g g } . It is known that the minimal

polynomial of D is the least common multiple (for short: lem) of the polynomials
up(z) and pc(z) (see [10], Section 3.3, exercise 8). Therefore, we obtain

pp(@) = lemf{a™ (@ - a) 22
_ z2mt2, for a = 0,
- 2?2 (gm+ —q), for a # 0.

It follows that
a=(A")1,=0 < deg(up(z)) = 2m + 2.

2) To show the second part of the theorem, we reduce an arbitrary language L
in C_ZLAcoC_L to DEGMINPOL-. Namely, we compute (in logspace) matrices A4,
and A, of order n; and ns, respectively, and integers m and [, 1 < m, [, such that
for every w:

weéEL <— (A’in)l,nl =0 and (Aé)l,ng 75 0.

Due to Lemma 1 below we may assume w.l.o.g. that m > [.



Let a; = (A7) 5, and as = (A4)1 n,. Asexplained in the first part of the proof,
(in logspace) we can compute matrices By and Bs such that

x2m+2 +1

—arz™,

g2+2 g gttt

HUBy (‘r) =
1B, (‘r)

By C we denote again the companion matrix of 2> %2, Define the matrix

By 0 0
D = 0 B, O
0 0o C
Then we get
pp(z) = lem{pg, (), pp,(z), pc(z)}
— lcm{xm+1(xm+1 _ al); xl+1(xl+1 _ a2)’ x2m+2}
2™ 2lem{z™ —a, 2! —as}.
Since m > I, we have
2m+1+4+3, fora; =0, as #0,
B 3m + 3, for ay #0, as =0,
deg(up(z)) = 2m + 2, for a; =0, as =0,

3m+3+r, fora #0, ax #0, where r > 0.
We concluded that for every w

weL <= a =0anday#0
< deg(up(z)) =2m +1+ 3.

This completes the proof of the theorem.

By Proposition 1 and Theorem 1 we obtain the following corollary.

Corollary 1 1) DEGMINPOL< is complete for C-L.
2) DEGMINPOL= is complete for C=L A coC=L.

The following lemma completes the proof of Theorem 1.

Lemma 1 Let A be an n x n matriz and let m > 1. For any k > 1 there is a
matriz A of order p = n(mk + 1) such that (A™) n, = (A¥™); .



Proof. Define the following (mk + 1) x (mk + 1) block matrix A

0 '

0

Each block of A is a matrix of order n. In the first block super-diagonal of A the
pattern of an A followed by (k — 1) times [ is repeated m times, and the rest is all
zero-matrix (0).

An elementary calculation shows that Ak has A™ as its upper right block at
position (1, mk + 1), and all other blocks are 0

0 0 Am
Tk 0 0 0
0 0 0

Therefore, we have (A™);,, = (Akm), .
O
Next we show that several decision problems based on the minimal polyno-
mial are hard for AC°(C_L). Let FSLE denote the problem Feasible Systems
of Linear Equations [2]. An input to FSLE consists of an m x n matrix A and
an m-dimensional integer vector b. One has to decide whether the system of linear
equations Az = b has a rational solution . Allender, Beals, and Ogihara [2] proved
that FSLE is complete for AC°(C_L).
Theorem 2 EQMINPOLYNOMIAL, EqQDEGMINPOL, DecMINPoOL, and
EQCTMINPOL are hard for AC°(C_L).

Proof. Let (4,b) be an input to FSLE. Define the symmetric (m +n) x (m +n)

matrix 4
0
=4 o]

and the vector ¢ = (b”,0)7 of length m + n. Furthermore, define the following two
(m+n+1)x (m+mn+ 1) matrices

o[ B 0] man=] 2 <].
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Let A1,...,Ax be distinct eigenvalues of C. It will be useful later on to observe
that

(a) C is a symmetric matrix. Therefore, C' is diagonalizable, its elementary divi-
sors have the form (x —\;), and pc(z) = (x— A1) -+ (2= \i,) (see [10], Section
3.3, Theorem 3.3.6 and Corollary 3.3.8).

(b) C and D are singular matrices. They have the same characteristic polynomial:
xc(z) = xp(z) = xB(z), and consequently they have the same eigenvalues.
It follows that deg(uc(z)) < deg(upn(z)), and the elementary divisors of D
have the form (z — \;)%, for some t; > 1.

We prove the following equivalences

2
3
D € DIAGONALIZABLE 4

(A,b) € FSLE (2)
(3)
(4)
peo(x) = pp(z) (5)
(6)
(7)
(8)

(B,¢) € FSLE

C 1is similar to D

deg(po(x)) = deg(up(z)) 6
deg(up(z)) is odd 7

ct(pe, (7)) = ct(up, (7)), 8

I

where C, = C + al and D, = D + al for an appropriate positive integer a to be
chosen later.

Equivalences (2), (3), and (4) were shown in [13]. For completeness, we include
a proof.

Equivalence (2). The equivalence holds because the system ATx = 0 is always
feasible.

Equivalence (3). Consider the case where the system Ba = ¢ is feasible. Let ag
be a solution of the system. Define the (m +n + 1) x (m + n + 1) matrix T by

_ I o
= [ Iom } |
It is easy to see that T is nonsingular and that CT = T'D. Thus, C' is similar to D.

Conversely, if the above system is not feasible, then C' and D have different
ranks. This implies that they can not be similar.

Equivalence (4). By observation (a) from above, matrix C is similar to a di-
agonal matrix, say C'. If C is similar to D, then D is similar to C' because the
similarity relation is transitive. Hence D is diagonalizable.

Conversely, if D is diagonalizable, then D has only linear elementary divisors.
By observation (b), C and D have the same eigenvalues. It follows that C' and D
must have the same system of elementary divisors, i.e., they are similar.

11



Equivalence (5). If C is similar to D, then clearly pc(z) = pup(z).

Conversely, if pc(x) = pup(z), then pup(x) contains only linear irreducible fac-
tors, because uc(z) has this property by observation (a). Therefore D is diagonal-
izable (see [10], Section 3.3, Corollary 3.3.10).

Equivalence (6). By observation (b) we have deg(uc(z)) < deg(up(z)). These
degrees are equal if and only if every root of up(z) has multiplicity 1. The latter
holds if and only if D is diagonalizable.

Equivalence (7). Let the distinct non-zero eigenvalues of the matrix AT A be
d1,02,...,0; (they are all positive). Then the distinct eigenvalues of C are as follows

_\/E:_\/(Sl—l7--'7_\/5107\/51"'7\/‘»—1:\/&

(see [11], Chapter 3). Note that C' is a singular matrix. Thus, the number of distinct
eigenvalues of C is 2/ + 1. This implies that & = deg(uc(z)) = 21 + 1 is always odd.
To prove the claim, we show that

deg(up(z)) € {deg(uc (7)), deg(uc(w)) +1}.

Since deg(uc(x)) < deg(up(z)) by observation (b), it suffices to show that

deg(pup(z)) < deg(uc(z)) + 1.
We consider powers of C' and D

i BZO i Bl Biilc
c_[o 0}, D—[O . } (©)

Let the minimal polynomial of C' be
puo(z) = 2 +dy 2"+t dyz + do.
Since puc(C) = 0, we can write C* as
CF = —(dp—1C* 1+ + diC + do ).

By equation (9) for C? this yields

k—1
Bf = — Z d;B'.
i=0

By equation (9) for D! we get

Dk+1

BHtl  Bke
0 0

k=1 . k—1 .
— Z dl'.BhL1 — Z diBlC
i=0 i=0
0 0

k—1
= =) d;p". (10)
i=0

12



Define the polynomial
p(x) = zpc(z) = 2" +di g2* + -+ dia® + doz.

Equation (10) implies that p(D) = 0. By definition of the minimal polynomial, we
must have
deg(up(z)) < deg(p) =k + 1.

We conclude that deg(up(z)) must be either &k or &k + 1.

Equivalence (8). Observe that, for any «, equivalences (2) to (6) still hold when
we replace C, and D, for C and D, respectively. In particular we have

po(z) = pp(x) = ct(pc, (2)) = ct(pp, ().

It remains to select an appropriate value for « such that the converse implication
holds.

Fix any a. Since the distinct eigenvalues of C' are A1, ..., A, the distinct
eigenvalues of Cy are \y + a, ..., A\x + a.

Since C, is symmetric and since C,, and D,, still have the same eigenvalues, we
can write

—.

-
Il
-

e, (r) = (x — (\i + @), and

pp, (z) (= (N + )",

I
,m?

-
Il
-

where t; > 1 for i =1,2,... k.
It suffices to choose « such that \; + a > 1 for all i. If uc, (z) and up, (x) have
the same constant term for such an a, then they must be equal. Define

a=||Cl[+2,

where ||C]| is the mazimum column sum matriz norm of C' = (c¢; ;) which is defined
as follows

m+n+1
cl - > e
el Lo max 2 cij

(see [10], Section 5.6).
The spectral radius of C, denoted by p(C), is as follows

p(C) = max [Ail.

It is known that p(C) < ||C|| (see [10], Section 5.6). Therefore, A; + a > 1, for
i=1,2,...,k. Note that a can be computed in logspace. This completes the proof
of the theorem.

O

By Proposition 1 and 2, and by Theorem 2 we get the following corollary.
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Corollary 2 EQMINPOLYNOMIAL, EQDEGMINPOL, DeEcMINPoOL, and
EQCTMINPOL are complete for AC°(C_L).

In Section 3.1, it was shown that, given A, one can compute a matrix B in GapL
such that deg(ua(z)) = rank(B). On the other hand, we don’t know whether there
is a converse reduction, i.e. given A, compute B such that rank(A) = deg(up(z)).
Note that Corollary 2 provides such a reduction only for the bitwise versions of
these functions, namely DEGMINPoOL and RANK.

Recall that the constant term of the characteristic polynomial xa(z) is
(=1)"det(A). This term is computable in GapL. Now assume for a moment,
that the constant term of the minimal polynomial is in GapL as well. It follows
that EQCTMINPOL is in C_L, because this is asking whether the difference of
two constant terms (a GapL-function) is zero. By Theorem 2, it follows that
AC’(C_L) = C_L.

Corollary 3 If the constant term of the minimal polynomial of a matriz is com-
putable in GapL, then C_L is closed under complement.

We can considerably weaken the assumption in Corollary 3: it suffices to have a
certain addition property of the constant term of the minimal polynomial. Namely,
given matrices A and B, suppose there is a matrix C such that each element of C
is computable in GapL, and

ct(uo () = ct(ua(e)) - ct{up(@)).

Then we have (4, B) € EQCTMINPoL if and only if ct(uc(z)) = 0. The latter is
equivalent to det(C) = 0. Since the the determinant of C' is a GapL-function ([1],
Corollary 3.3), we conclude that AC°(C_L) collapses to C_L.

Corollary 4 If the constant term of the minimal polynomial has the above addition
property, then C_L is closed under complement.

4. Diagonalizability

In [12] it was shown that the problem of deciding whether two matrices are
similar is complete for AC?(C_L). Related to the similarity problem is the diago-
nalizability problem. DIAGONALIZABLE is hard for AC°(C_L) by Theorem 2 and
is contained in AC®(GapL) [13]. In this section we show that DIAGONALIZABLE
and SIMDIAGONALIZABLE are complete for AC°(C_L).

Theorem 3 DIAGONALIZABLE is complete for AC°(C_L).
Proof. It remains to prove that DIAGONALIZABLE is in AC°(C_L).

In Section 3.1, it was shown how to construct a matrix D, for a given n x n
matrix A, such that deg(ua(z)) = rank(D,). Matrix A is diagonalizable if and
only if its minimal polynomial contains only linear irreducible factors. The latter is
equivalent to the condition that the degree of u4(z) is equal the number of distinct
eigenvalues of the matrix A.

Let [ be the number of distinct eigenvalues of A. Another way to characterize [
is by means of the Hankel matriz H 4 associated with A. More precisely, the Hankel
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matrix Hy = (h;;) is defined as a symmetric n X n matrix whose elements are
defined as follows

hi; = trace(A™ %), fori,j=1,...,n,

where trace(X) is the sum of all elements on the diagonal of the matrix X. It is
well known that | = rank(H4) (see [9], Chapter XV, Theorem 6).
In summary, we have

A is diagonalizable <= deg(ua(z)) = # of distinct eigenvalues of A
<= rank(D,) =rank(Hj,). (11)

Since each element of D, and H4 can be computed in GapL, the condition
in equivalence (11) can be tested in AC°(C_L). Hence, DIAGONALIZABLE is in
AC’(C_L).

O
Finally, we consider the problem SIMDIAGONALIZABLE. The problem is to de-
cide, given k n xn matrices Ay, ..., Ay, whether there exists a nonsingular matrix S

such that SA4;S~! are diagonal, for all i, 1 <i < k.

In the case when all matrices A; are already diagonalizable these matrices are
simultaneously diagonalizable if and only if they are pairwise commutable, i.e.,
A; A; =A; A foralld,j, 1 <i,j <k (see [10], Section 1.3). This can be checked
in NC!. Therefore, the main part is to test whether A; € DIAGONALIZABLE, for
all i, 1 <i < k. By Theorem 3 we get the following corollary.

Corollary 5 SIMDIAGONALIZABLE is complete for AC°(C_L).

5. Summary

In the following table we summarize the complexities of the problems considered
in the paper.

Problem complete for
DEGMINPOL< C-L
DEGMINPOL- C_-L AcoC_L
DEGMINPOL AC’(C_L)
EQDEGMINPOL AC’(C_L)
EQMINPoLYNOMIAL | AC°(C_L)
EQCTMINPoOL AC’(C_L)
DIAGONALIZABLE AC’(C_L)
SIMDIAGONALIZABLE | AC’(C-L)
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