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On the Minimal Polynomial of a Matrix�Thanh Minh HoangyAbt. Theoretishe InformatikUniversit�at Ulm, 89069 Ulm, GermanyandThomas ThieraufzFB Elektronik und InformatikFH Aalen, 73430 Aalen, GermanyABSTRACTWe investigate the omplexity of the degree and the onstant term of the minimal polyno-mial of a matrix. We show that the degree of the minimal polynomial is omputationallyequivalent to the matrix rank.We ompare the onstant term of the minimal polynomial with the onstant term ofthe harateristi polynomial. The latter is known to be omputable in the logspaeounting lass GapL. We show that if this holds for the minimal polynomial as well,then the exat ounting in logspae lass C=L is losed under omplement. WhetherC=L is losed under omplement is one of the main open problems in this area.As an appliation of our tehniques we show that the problem of deiding whether amatrix is diagonalizable is omplete for AC0(C=L), the AC0-losure of C=L.Keywords: Linear Algebra, Minimal Polynomial, Logspae Counting Class.1. IntrodutionComputing the determinant of a matrix is an important topi in mathematisand theoretial omputer siene whih has been studied for many years. Withrespet to parallel omputation, the determinant is in NC2 [4, 5, 6, 7℄. Manyproblems in linear algebra are losely related to the determinant, and hene, are inNC2 as well. However, NC2 does not apture the exat omplexity of problems inlinear algebra. In partiular, the determinant is not known to be NC2-omplete.Our goal is to determine preisely the omplexity of suh problems.The initial step in this diretion was done by Damm [8℄, Toda [21℄, Vinay [23℄,and Valiant [22℄ (see [16℄ for more details on the history). They showed that the de-terminant of an integer matrix haraterizes the omplexity lass GapL, a logspaeounting lasses that an handle integers. Toda [21℄ showed more problems to be�This work was supported by the German Researh FoundationyEmail: hoang�informatik.uni-ulm.dezEmail: thierauf�informatik.uni-ulm.de. Part of the work done at the Universit�at Ulm1



GapL-omplete, inluding matrix powering and the inverse of a matrix. Thereare also graph theoreti problems related to ounting the number s-t-paths in agraph [21℄ (see also [19℄).The veri�ation of GapL funtions is aptured by the lass C=L. A ompleteproblem of this lass is the problem of testing singularity, i.e., the problem of testingwhether the determinant of a given matrix is zero. More general, Allender, Beals,and Ogihara [2℄ onsidered the matrix rank:� the deision problem whether the rank of A is less than some given number ris C=L-omplete,� the deision problem whether the rank of A equals some given r, is ompletefor C=L^ oC=L, the lass of sets that an be written as the onjuntion ofsets in C=L and in oC=L,� the problem of omputing the rank is inAC0(C=L), theAC0-losure ofC=L.The problem of verifying one bit of the rank (at a given position), and theproblem of deiding whether two matries have the same rank are ompletefor AC0(C=L).The omplexity of the minimal polynomial has been studied before [14℄(seealso [12, 13℄). In this paper, we show that the degree of the minimal polynomial ofa matrix is omputationally equivalent to the matrix rank problem, i.e. ompletefor AC0(C=L). Moreover, in analogy to the results on the rank we show that thedeision problem whether� the degree of the minimal polynomial is less than some given m is C=L-omplete,� the degree of the minimal polynomial is equal some given m is omplete forC=L ^ oC=L, and� the degrees of the minimal polynomials of two matries are equal is ompletefor AC0(C=L).We also investigate the omplexity of the onstant term of the minimal poly-nomial. The onstant term of the harateristi polynomial is GapL-omplete.We ask whether the onstant term of the minimal polynomial an be omputed inGapL, too. We show that this question is strongly onneted with another openproblem: if the onstant term of the minimal polynomial an be omputed in GapL,then C=L is losed under omplement . This onnetion is a onsequene of a hard-ness result: the problem of deiding whether the onstant terms of the minimalpolynomials of two matries are equal is omplete for AC0(C=L).Whether C=L is losed under omplement is one of the big open questions inthis area. Reall that many related lasses have this property: NL [15, 20℄, SL [17℄,PL (trivially), and nonuniform UL [18℄. Thus our results on the onstant term ofthe minimal polynomial o�ers a new point of attak to the open question whetherC=L is losed under omplement. 2



A �nal observation is about the diagonalizability of matries. In [13℄ it wasshown that the diagonalizability problem, whih is to deide whether a given ma-trix is diagonalizable, is hard for AC0(C=L). We show that this lass also is anupper bound for the diagonalizability problem. It follows that the diagonalizabilityproblem is omplete forAC0(C=L). We extend the result to simultaneous diagonal-izability where one has to deide whether all of k given matries are diagonalizableby the same diagonalizing matrix.2. PreliminariesWe assume familiarity with some basi notions of omplexity theory and linearalgebra. We refer the readers to the papers [2, 3℄ for more details and propertiesof the onsidered omplexity lasses, and to the textbooks [9, 11, 10℄ for morebakground in linear algebra.2.1. Complexity ClassesFor a nondeterministi Turing mahine M , we denote the number of aeptingand rejeting omputation paths on input x by aM (x) and by rejM (x), respe-tively. The di�erene of these two quantities is gapM , i.e., for all xgapM (x) = aM (x)� rejM (x):The lass GapL is de�ned as the set of all funtions gapM (x) suh that Mis a nondeterministi logspae bounded Turing mahine. GapL has many losureproperties: for example it is losed under addition, subtration, and multipliation(see [3℄). In [1℄ (Corollary 3.3) it was shown that GapL is losed under ompositionin a very strong sense: if eah element of an n� n matrix A is GapL-omputable,then the determinant of A is still omputable in GapL.On the basis of the lass GapL we an de�ne C=L (exat ounting in logspae)and PL (probabilisti logspae) as followsC=L = fS j 9f 2 GapL;8x : x 2 S () f(x) = 0g;PL = fS j 9f 2 GapL;8x : x 2 S () f(x) � 0g:Sine it is open whetherC=L is losed under omplement, it makes sense to onsiderthe Boolean losure of C=L, i.e., the lass of sets that an be expressed as a Booleanombination of sets in C=L. For our purposes, it suÆes to onsider the followingtwo lasses:(i) oC=L is the lass of omplement sets L where L 2 C=L,(ii) C=L ^ oC=L [2℄ is de�ned as the lass of intersetions of sets in C=L withsets in oC=L, i.e.,L 2 C=L ^ oC=L () 9L1 2 C=L; L2 2 oC=L : L = L1 \ L2:For sets S1 and S2, we say that S1 is AC0-reduible to S2, if there is a logspaeuniform iruit family of polynomial size and onstant depth that omputes S1 withunbounded fan-in AND- and OR-gates, NOT-gates, and orale gates for S2.3



Based on the AC0-redution we an de�ne the so-alled AC0-losures suh asAC0(C=L) or AC0(GapL). In partiular, we onsider the lasses AC0(C=L) andAC0(GapL): the sets that are AC0-reduible to a set in C=L, and to a funtionin GapL, respetively. The known relationships among these lasses are as followsC=L � C=L ^ oC=L � AC0(C=L) � PL � AC0(GapL) � TC1 � NC2:Furthermore, we say that S1 is (logspae many-one) reduible to S2, if thereis a funtion f 2 L (deterministi logspae) suh that for all x we havex 2 S1 () f(x) 2 S2. In an analogous way one an de�ne AC0- or NC1-many-one redutions. Unless otherwise stated, all redutions in this paper are logspaemany-one.2.2. Linear AlgebraLet A 2 F n�n be a matrix over the �eld F . The harateristi polynomial of Ais the polynomial �A(x) = det(xI�A). A nonzero polynomial p(x) over F is alledan annihilating polynomial for A if p(A) = 0. The Cayley-Hamilton Theorem statesthat �A(x) is an annihilating polynomial for A. The harateristi polynomial isa moni polynomial : its highest oeÆient is one. The minimal polynomial of A,denoted by �A(x), is the unique moni annihilating polynomial for A with minimaldegree. Note that if A is an integer matrix, then all oeÆients of �A(x) andof �A(x) are also integers. We will denote the degree of a polynomial p by deg(p)and the onstant term of p by t(p). It is known that 1 � deg(�A(x)) � n.Two matries A;B 2 F n�n are alled similar if there is a nonsingular matrixP 2 F n�n suh that A = PBP�1. Furthermore, A is alled diagonalizable if Ais similar to a diagonal matrix. The matries A1; : : : ; Ak are alled simultaneouslydiagonalizable if there is a nonsingular matrix P suh that PA1P�1; : : : ; PAkP�1are diagonal.2.3. ProblemsWe restrit all the matrix problems in the present paper to the problems forinteger matries. The reason for this restrition is that the integer matrix prob-lems are equivalent to the orresponding rational matrix problems under logspaereduibility (see [2℄ for more details).By Determinant we denote the problem of omputing the determinant of ann� n matrix A.By PowerElement we denote the problem of omputing the element at posi-tion (1; n) of the power Am, i.e. the element (Am)1;n, for an n � n matrix A andan integer m.Both problems PowerElement and Determinant are omplete for GapL[4, 8, 21, 22, 23℄.Various deision problems are based on GapL-funtions. The veri�ation of aGapL-funtion is aptured by the lass C=L. A GapL-omplete funtion yields aC=L-omplete veri�ation problem. For example, the problem of verifying whether4



the determinant is zero, i.e. testing singularity, is omplete for C=L. Similarly,the problem of verifying whether the element at position (1; n) of Am is zero, isomplete for C=L. We denote the latter problem by PowerElement=. Allender,Beals and Ogihara [2℄ onsidered the rank problem of a matrix. They showed that� Rank = f(A; k; b) j the k-th bit of rank(A) is bg is omplete for AC0(C=L),� Rank� = f(A; r) j rank(A) � rg is omplete for C=L, and� Rank= = f(A; r) j rank(A) = rg is omplete for C=L ^ oC=L.With respet to the minimal polynomial, MinPolynomial is the problem ofomputing the i-th oeÆient di of �A(x) for given A and i. MinPolynomial isomputable in AC0(GapL) and is hard for GapL [13, 14℄.The problem DegMinPol is de�ned as the set of all triples (A; k; b) suh thatb is the k-th bit of deg(�A(x)), i.e,DegMinPol = f(A; k; b) j the k-th bit of deg(�A(x)) is bg:There is a number of deision problems related to MinPolynomial andDegMinPol: Let A and B be square matries and let m � 1� EqMinPolynomial is to deide whether �A(x) = �B(x), i.e.,EqMinPolynomial = f(A;B) j �A(x) = �B(x)g:� EqCTMinPol is to deide whether t(�A(x)) = t(�B(x)), i.e.,EqCTMinPol = f(A;B) j t(�A(x)) = t(�B(x))g:� EqDegMinPol is to deide whether deg(�A(x)) = deg(�B(x)), i.e.,EqDegMinPol = f(A;B) j deg(�A(x)) = deg(�B(x))g:� DegMinPol= is to deide whether deg(�A(x)) = m, i.e.,DegMinPol= = f(A;m) j deg(�A(x)) = mg:� DegMinPol� is to deide whether deg(�A(x)) � m, i.e.,DegMinPol� = f(A;m) j deg(�A(x)) � mg:Furthermore, we denote the set of all diagonalizable matries byDiagonalizable, and the set of all olletions of simultaneously diagonalizablematries by SimDiagonalizable.
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3. The Minimal PolynomialIn this setion we investigate the omplexity of the degree and the onstant termof the minimal polynomial of a matrix. The upper bounds on the omplexity ofthese problems follow easily from the results in our preeding work [13, 14℄. Themain ontributions of the present paper are the lower bounds for these problems.In partiular, we want to point out that the degree of the minimal polynomial hasexatly the same omplexity as the matrix rank, and the onstant term of thispolynomial is not omputable in GapL unless C=L is losed under omplement.3.1. Upper BoundsIn [13℄ it was shown that the minimal polynomial of a square matrix an beomputed in AC0(GapL). The AC0(GapL)-algorithm was based on the followingobservation.Let A be an n�n matrix. For eah i, 0 � i � n, de�ne ai to the n2-dimensionalolumn vetor that is the onatenation of all the n olumn vetors of Ai. Then theminimal polynomial �A(x) has degree m if and only if the following two propertieshold:(i) �A(A) = 0. Equivalently, the vetors a0;a1; : : : ;am are linearly dependent.(ii) For every moni polynomial p(x) having degree m� 1 it holds that p(A) 6= 0.Equivalently, the vetors a0;a1; : : : ;am�1 are linearly independent.Note that in the ase when the degree of �A(x) is m eah of the vetors am; : : : ;anan be represented as a linear ombination of the linearly independent vetorsa0;a1; : : : ;am�1.Proposition 1 1) DegMinPol� is in C=L. DegMinPol= is in C=L^oC=L.2) EqDegMinPol and DegMinPol are in AC0(C=L).Proof. 1) Given (A;m), let the order of A be n. For eah j = 1; : : : ; n, we de�nethe n2 � j matrix Cj and the symmetri j � j matries Dj as followsCj = (a0 a1 � � � aj�1);Dj = CTj Cj :Observe that all of the matries Cm; : : : ; Cn and Dm; : : : ; Dn have rank m, wherem is the degree of �A(x), i.e.rank(Dn) = deg(�A(x)):Let the harateristi polynomial of Dn be�Dn(x) = xn + n�1xn�1 + � � �+ 1x+ 0:Sine Dn is symmetri, we have rank(Dn) = n � l, where l is the smallest indexsuh that l 6= 0. Hene we havedeg(�A(x)) = n� l:6



Thereforedeg(�A(x)) � m () 0 = 1 = � � � = n�m = 0;deg(�A(x)) = m () 0 = 1 = � � � = n�m = 0 and n�m+1 6= 0:For a given matrix, the oeÆients of its harateristi polynomial are om-putable in GapL. Beause eah element of Dn is omputable in GapL and be-ause GapL is losed under omposition [1℄, eah of the oeÆients n�1; : : : ; 0 isomputable in GapL as well. Moreover, testing whether i = 0 simultaneously formultiple values of i an be done in C=L sine C=L is losed under onjuntion [3℄.This proves part 1 and 2 of the proposition.2) Given (A;B), let the orders of A and B be n and p, respetively. (A;B) is inEqDegMinPol if and only if there is an number m in the set f1; : : : ;minfn; pggsuh that deg(�A(x)) = m and deg(�B(x)) = m. Therefore EqDegMinPol is inAC0(C=L).Let (A; k; b) be an input to DegMinPol and let n be the order of A. A straight-forward approah to obtain the upper bound for DegMinPol might be to use thefat that (A; k; b) 2 DegMinPol () (Dn; k; b) 2 Rank:However, the elements of Dn seem to require a GapL-omputation: Dn = CTn Cnand the elements of Cn are omputable in GapL. Therefore we end up inAC0(GapL) that way.Instead, we onstrut an AC0-iruit with orale gates from C=L forDegMinPol: for eah number m 2 f1; : : : ; ng whose k-th bit is b we onstrutan AC0(C=L) iruit to deide whether deg�A(x) = m. The �nal output is thedisjuntion of these iruits. 2Proposition 2 EqMinPolynomial and EqCTMinPol are in AC0(C=L).Proof. Let A and B be given matries. Consider the oeÆients of the minimalpolynomial of A �A(x) = xm + dm�1xm�1 + � � �+ d0:By properties (i) and (ii) above, the oeÆient vetor dA = (d0; d1; : : : ; dm�1)T isthe unique solution of the system of linear equationsCmx = �am;or, equivalently, CTmCmx = �CTmam:Hene we get (d0; d1; : : : ; dm�1)T = �D�1m CTmam: (1)Notie that Dm is nonsingular and eah element of D�1m an be omputed in GapLbeause of the losure properties of GapL under omposition [1℄. We an expressthe oeÆient vetor dB of �B(x) analogously as for A in equation (1). It followsthat in AC0(C=L) we an ompare the oeÆient vetors dA and dB . 27



3.2. Lower BoundsAllender, Beals, and Ogihara [2℄ showed that Rank� is hard for C=L andRank= is hard for C=L ^ oC=L. We show that the exat parallels of theseresults hold for DegMinPol� and DegMinPol= by the following theorem.Theorem 1 1) DegMinPol� is hard for C=L.2) DegMinPol= is hard for C=L ^ oC=L.Proof. 1) To show the �rst part of the theorem, we redue PowerElement= toDegMinPol�.Let an n � n matrix A and an integer m � 1 be given as input toPowerElement=. Our task is to deide whether (Am)1;n = 0. In [14℄ (seealso [13℄) it was shown how to onstrut a matrix B (in logspae) suh that�B(x) = x2m+2 � axm+1; where a = (Am)1;n:Let C be the ompanion matrix of the polynomial x2m+2, that is, the (2m +2) � (2m + 2) matrix in whih all the elements on the �rst sub-diagonal are 1and the rest is all 0. Note that the ompanion matrix of a polynomial p(x) =xk + �k�1xk�1 + � � �+ �1x+ �0 is the following k � k matrixP = 266664 0 0 � � � 0 ��01 0 � � � 0 ��10 1 � � � 0 ��2. . . . . . . . . . . . . . . . . . . . .0 0 � � � 1 ��k�1 377775 ;and that �P (x) = �P (x) = p(x) (see [10℄, Setion 3.3). Therefore we have �C(x) =�C(x) = x2m+2.De�ne the diagonal blok matrix D = � B 00 C � : It is known that the minimalpolynomial of D is the least ommon multiple (for short: lm) of the polynomials�B(x) and �C(x) (see [10℄, Setion 3.3, exerise 8). Therefore, we obtain�D(x) = lmfxm+1(xm+1 � a); x2m+2g= � x2m+2; for a = 0;x2m+2(xm+1 � a); for a 6= 0:It follows that a = (Am)1;n = 0 () deg(�D(x)) = 2m+ 2:2) To show the seond part of the theorem, we redue an arbitrary language Lin C=L^oC=L to DegMinPol=. Namely, we ompute (in logspae) matries A1and A2 of order n1 and n2, respetively, and integers m and l, 1 � m; l, suh thatfor every w: w 2 L () (Am1 )1;n1 = 0 and (Al2)1;n2 6= 0:Due to Lemma 1 below we may assume w.l.o.g. that m > l.8



Let a1 = (Am1 )1;n1 and a2 = (Al2)1;n2 . As explained in the �rst part of the proof,(in logspae) we an ompute matries B1 and B2 suh that�B1(x) = x2m+2 � a1xm+1;�B2(x) = x2l+2 � a2xl+1:By C we denote again the ompanion matrix of x2m+2. De�ne the matrixD = 24 B1 0 00 B2 00 0 C 35 :Then we get�D(x) = lmf�B1(x); �B2(x); �C(x)g= lmfxm+1(xm+1 � a1); xl+1(xl+1 � a2); x2m+2g= x2m+2lmfxm+1 � a1; xl+1 � a2g:Sine m > l, we havedeg(�D(x)) = 8>><>>: 2m+ l + 3; for a1 = 0; a2 6= 0;3m+ 3; for a1 6= 0; a2 = 0;2m+ 2; for a1 = 0; a2 = 0;3m+ 3 + r; for a1 6= 0; a2 6= 0; where r > 0:We onluded that for every ww 2 L () a1 = 0 and a2 6= 0() deg(�D(x)) = 2m+ l+ 3:This ompletes the proof of the theorem. 2By Proposition 1 and Theorem 1 we obtain the following orollary.Corollary 1 1) DegMinPol� is omplete for C=L.2) DegMinPol= is omplete for C=L ^ oC=L.The following lemma ompletes the proof of Theorem 1.Lemma 1 Let A be an n � n matrix and let m � 1. For any k � 1 there is amatrix eA of order p = n(mk + 1) suh that (Am)1;n = ( eAkm)1;p.
9



Proof. De�ne the following (mk + 1)� (mk + 1) blok matrix eA
eA =

26666666666666666666664
0 A0 I. . . . . .0 I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 A0 I. . . . . .0 I0

37777777777777777777775
:

Eah blok of eA is a matrix of order n. In the �rst blok super-diagonal of eA thepattern of an A followed by (k � 1) times I is repeated m times, and the rest is allzero-matrix (0).An elementary alulation shows that eAmk has Am as its upper right blok atposition (1;mk + 1), and all other bloks are 0eAmk = 2664 0 � � � 0 Am0 � � � 0 0. . . . . . . . . . . . . . .0 � � � 0 0 3775Therefore, we have (Am)1;n = ( eAkm)1;p: 2Next we show that several deision problems based on the minimal polyno-mial are hard for AC0(C=L). Let FSLE denote the problem Feasible Systemsof Linear Equations [2℄. An input to FSLE onsists of an m � n matrix A andan m-dimensional integer vetor b. One has to deide whether the system of linearequations Ax = b has a rational solution x. Allender, Beals, and Ogihara [2℄ provedthat FSLE is omplete for AC0(C=L).Theorem 2 EqMinPolynomial, EqDegMinPol, DegMinPol, andEqCTMinPol are hard for AC0(C=L).Proof. Let (A; b) be an input to FSLE. De�ne the symmetri (m+n)� (m+n)matrix B = � 0 AAT 0 �and the vetor  = (bT ;0)T of length m+n. Furthermore, de�ne the following two(m+ n+ 1)� (m+ n+ 1) matriesC = � B 00 0 � and D = � B 0 0 � :10



Let �1; : : : ; �k be distint eigenvalues of C. It will be useful later on to observethat(a) C is a symmetri matrix. Therefore, C is diagonalizable, its elementary divi-sors have the form (x��i), and �C(x) = (x��1) � � � (x��k) (see [10℄, Setion3.3, Theorem 3.3.6 and Corollary 3.3.8).(b) C and D are singular matries. They have the same harateristi polynomial:�C(x) = �D(x) = x �B(x), and onsequently they have the same eigenvalues.It follows that deg(�C(x)) � deg(�D(x)), and the elementary divisors of Dhave the form (x� �i)ti , for some ti � 1.We prove the following equivalenes(A; b) 2 FSLE () (B; ) 2 FSLE (2)() C is similar to D (3)() D 2 Diagonalizable (4)() �C(x) = �D(x) (5)() deg(�C(x)) = deg(�D(x)) (6)() deg(�D(x)) is odd (7)() t(�C�(x)) = t(�D�(x)); (8)where C� = C + �I and D� = D + �I for an appropriate positive integer � to behosen later.Equivalenes (2), (3), and (4) were shown in [13℄. For ompleteness, we inludea proof.Equivalene (2). The equivalene holds beause the system ATx = 0 is alwaysfeasible.Equivalene (3). Consider the ase where the system Bx =  is feasible. Let x0be a solution of the system. De�ne the (m+ n+ 1)� (m+ n+ 1) matrix T byT = � I x00 �1 � :It is easy to see that T is nonsingular and that CT = TD. Thus, C is similar to D.Conversely, if the above system is not feasible, then C and D have di�erentranks. This implies that they an not be similar.Equivalene (4). By observation (a) from above, matrix C is similar to a di-agonal matrix, say C 0. If C is similar to D, then D is similar to C 0 beause thesimilarity relation is transitive. Hene D is diagonalizable.Conversely, if D is diagonalizable, then D has only linear elementary divisors.By observation (b), C and D have the same eigenvalues. It follows that C and Dmust have the same system of elementary divisors, i.e., they are similar.11



Equivalene (5). If C is similar to D, then learly �C(x) = �D(x).Conversely, if �C(x) = �D(x), then �D(x) ontains only linear irreduible fa-tors, beause �C(x) has this property by observation (a). Therefore D is diagonal-izable (see [10℄, Setion 3.3, Corollary 3.3.10).Equivalene (6). By observation (b) we have deg(�C(x)) � deg(�D(x)). Thesedegrees are equal if and only if every root of �D(x) has multipliity 1. The latterholds if and only if D is diagonalizable.Equivalene (7). Let the distint non-zero eigenvalues of the matrix ATA beÆ1; Æ2; : : : ; Æl (they are all positive). Then the distint eigenvalues of C are as follows�pÆl ;�pÆl�1 ; : : : ;�pÆ1 ; 0 ;pÆ1 ; : : : ;pÆl�1 ;pÆl(see [11℄, Chapter 3). Note that C is a singular matrix. Thus, the number of distinteigenvalues of C is 2l+1. This implies that k = deg(�C(x)) = 2l+1 is always odd.To prove the laim, we show thatdeg(�D(x)) 2 fdeg(�C(x)); deg(�C(x)) + 1g:Sine deg(�C(x)) � deg(�D(x)) by observation (b), it suÆes to show thatdeg(�D(x)) � deg(�C(x)) + 1.We onsider powers of C and DCi = � Bi 00 0 � ; Di = � Bi Bi�10 0 � : (9)Let the minimal polynomial of C be�C(x) = xk + dk�1xk�1 + � � �+ d1x+ d0:Sine �C(C) = 0, we an write Ck asCk = �(dk�1Ck�1 + � � �+ d1C + d0I):By equation (9) for Ci this yieldsBk = � k�1Xi=0 diBi:By equation (9) for Di we getDk+1 = � Bk+1 Bk0 0 �= 24 � k�1Pi=0 diBi+1 � k�1Pi=0 diBi0 0 35= � k�1Xi=0 diDi+1: (10)12



De�ne the polynomialp(x) = x�C(x) = xk+1 + dk�1xk + � � �+ d1x2 + d0x:Equation (10) implies that p(D) = 0. By de�nition of the minimal polynomial, wemust have deg(�D(x)) � deg(p) = k + 1:We onlude that deg(�D(x)) must be either k or k + 1.Equivalene (8). Observe that, for any �, equivalenes (2) to (6) still hold whenwe replae C� and D� for C and D, respetively. In partiular we have�C(x) = �D(x) =) t(�C�(x)) = t(�D�(x)):It remains to selet an appropriate value for � suh that the onverse impliationholds.Fix any �. Sine the distint eigenvalues of C are �1; : : : ; �k , the distinteigenvalues of C� are �1 + �; : : : ; �k + �.Sine C� is symmetri and sine C� and D� still have the same eigenvalues, wean write �C�(x) = kYi=1(x� (�i + �)); and�D�(x) = kYi=1(x� (�i + �))ti ;where ti � 1 for i = 1; 2; : : : ; k.It suÆes to hoose � suh that �i +� > 1 for all i. If �C�(x) and �D�(x) havethe same onstant term for suh an �, then they must be equal. De�ne� = kCk+ 2;where kCk is the maximum olumn sum matrix norm of C = (i;j) whih is de�nedas follows kCk = max1�j�m+n+1m+n+1Xi=1 ji;j j(see [10℄, Setion 5.6).The spetral radius of C, denoted by �(C), is as follows�(C) = max1�i�k j�ij:It is known that �(C) � kCk (see [10℄, Setion 5.6). Therefore, �i + � > 1, fori = 1; 2; : : : ; k. Note that � an be omputed in logspae. This ompletes the proofof the theorem. 2By Proposition 1 and 2, and by Theorem 2 we get the following orollary.13



Corollary 2 EqMinPolynomial, EqDegMinPol, DegMinPol, andEqCTMinPol are omplete for AC0(C=L).In Setion 3.1, it was shown that, given A, one an ompute a matrix B inGapLsuh that deg(�A(x)) = rank(B). On the other hand, we don't know whether thereis a onverse redution, i.e. given A, ompute B suh that rank(A) = deg(�B(x)).Note that Corollary 2 provides suh a redution only for the bitwise versions ofthese funtions, namely DegMinPol and Rank.Reall that the onstant term of the harateristi polynomial �A(x) is(�1)n det(A). This term is omputable in GapL. Now assume for a moment,that the onstant term of the minimal polynomial is in GapL as well. It followsthat EqCTMinPol is in C=L, beause this is asking whether the di�erene oftwo onstant terms (a GapL-funtion) is zero. By Theorem 2, it follows thatAC0(C=L) = C=L.Corollary 3 If the onstant term of the minimal polynomial of a matrix is om-putable in GapL, then C=L is losed under omplement.We an onsiderably weaken the assumption in Corollary 3: it suÆes to have aertain addition property of the onstant term of the minimal polynomial. Namely,given matries A and B, suppose there is a matrix C suh that eah element of Cis omputable in GapL, andt(�C(x)) = t(�A(x)) � t(�B(x)):Then we have (A;B) 2 EqCTMinPol if and only if t(�C(x)) = 0. The latter isequivalent to det(C) = 0. Sine the the determinant of C is a GapL-funtion ([1℄,Corollary 3.3), we onlude that AC0(C=L) ollapses to C=L.Corollary 4 If the onstant term of the minimal polynomial has the above additionproperty, then C=L is losed under omplement.4. DiagonalizabilityIn [12℄ it was shown that the problem of deiding whether two matries aresimilar is omplete for AC0(C=L). Related to the similarity problem is the diago-nalizability problem. Diagonalizable is hard for AC0(C=L) by Theorem 2 andis ontained in AC0(GapL) [13℄. In this setion we show that Diagonalizableand SimDiagonalizable are omplete for AC0(C=L).Theorem 3 Diagonalizable is omplete for AC0(C=L).Proof. It remains to prove that Diagonalizable is in AC0(C=L).In Setion 3.1, it was shown how to onstrut a matrix Dn, for a given n � nmatrix A, suh that deg(�A(x)) = rank(Dn). Matrix A is diagonalizable if andonly if its minimal polynomial ontains only linear irreduible fators. The latter isequivalent to the ondition that the degree of �A(x) is equal the number of distinteigenvalues of the matrix A.Let l be the number of distint eigenvalues of A. Another way to haraterize lis by means of the Hankel matrix HA assoiated with A. More preisely, the Hankel14



matrix HA = (hi;j) is de�ned as a symmetri n � n matrix whose elements arede�ned as follows hi;j = trae(Ai+j�2); for i; j = 1; : : : ; n;where trae(X) is the sum of all elements on the diagonal of the matrix X . It iswell known that l = rank(HA) (see [9℄, Chapter XV, Theorem 6).In summary, we haveA is diagonalizable () deg(�A(x)) = # of distint eigenvalues of A() rank(Dn) = rank(HA): (11)Sine eah element of Dn and HA an be omputed in GapL, the onditionin equivalene (11) an be tested in AC0(C=L). Hene, Diagonalizable is inAC0(C=L). 2Finally, we onsider the problem SimDiagonalizable. The problem is to de-ide, given k n�nmatries A1; : : : ; Ak, whether there exists a nonsingular matrix Ssuh that SAiS�1 are diagonal, for all i, 1 � i � k.In the ase when all matries Ai are already diagonalizable these matries aresimultaneously diagonalizable if and only if they are pairwise ommutable, i.e.,Ai Aj = Aj Ai for all i; j; 1 � i; j � k (see [10℄, Setion 1.3). This an be hekedin NC1. Therefore, the main part is to test whether Ai 2 Diagonalizable, forall i, 1 � i � k. By Theorem 3 we get the following orollary.Corollary 5 SimDiagonalizable is omplete for AC0(C=L).5. SummaryIn the following table we summarize the omplexities of the problems onsideredin the paper. Problem omplete forDegMinPol� C=LDegMinPol= C=L ^ oC=LDegMinPol AC0(C=L)EqDegMinPol AC0(C=L)EqMinPolynomial AC0(C=L)EqCTMinPol AC0(C=L)Diagonalizable AC0(C=L)SimDiagonalizable AC0(C=L)
15
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