The Complexity of the Minimal Polynomial *

Thanh Minh Hoang and Thomas Thierauf

Abt. Theoretische Informatik
Universitat Ulm
89069 Ulm, Germany

{hoang,thierauf}@informatik.uni-ulm.de

Abstract. We investigate the computational complexity of the minimal
polynomial of an integer matrix.

We show that the computation of the minimal polynomial is in
AC°(GapL), the AC’-closure of the logspace counting class GapL,
which is contained in NC2. Our main result is that the problem is hard
for GapL (under AC® many-one reductions). The result extends to the
verification of all invariant factors of an integer matrix.

Furthermore, we consider the complexity to check whether an integer
matrix is diagonalizable. We show that this problem lies in AC°(GapL)
and is hard for AC°(C=L) (under AC® many-one reductions).

1 Introduction

The motivation for our work is twofold: 1) we want to understand the compu-
tational complexity of some classical problems in linear algebra, 2) by locating
such problems in small space complexity classes we want to clarify the inclusion
relationship of such classes.

The minimal polynomial of a matrix plays an important role in the theory of
matrices. Algorithms to compute the minimal polynomial of a matrix have been
studied for a long time. The best known deterministic algorithm to compute the
minimal polynomial of an n x n matrix makes O(n?) field operations [Sto98]. The
Smith normal form of a polynomial matrix can be computed by a randomized
NC2-circuit, i.e., in RNC?. Therefore the rational canonical form of a matrix
and the minimal polynomial of a matrix can be computed in RNC? as well
(see [KS87,vzGGI9] for details). In the case of integer matrices there are even
NCZ-algorithms [Vil97].

We take a different approach to compute the minimal polynomial of an integer
matrix: we show that the problem can be reduced to matrix powering and solving
systems of linear equations. Therefore it is in the class ACO(GapL), a subclass
of NC?. Our main result is with respect to the hardness of the problem: we
show that the computation of the determinant of a matrix can be reduced to
the computation of the minimal polynomial of a matrix. Therefore the problem
is hard for GapL.

* This work was supported by the Deutsche Forschungsgemeinschaft

The minimal polynomial is the first polynomial of the system of all invariant
factors of a matrix. This system completely determines the structure of the
matrix. Its computation is known to be in NC? [Vil97] for integer matrices. We
extend our results and techniques to the verification of all the invariant factors
of a given integer matrix: it is in AC°(C-L) and hard for C_L.

Using the results about the minimal polynomial, we can classify some more
classical problems in linear algebra: a matrix is diagonalizable if it is similar
to a diagonal matrix. Testing similarity of two matrices is known to be in
AC°(C-L) [HT00]. We show that the problem to decide whether a given integer
matrix is diagonalizable is in AC®(GapL) and hard for AC°(C_L).

To obtain the latter result, we have to solve a problem that is interesting in
its own: decide, whether all eigenvalues of a given integer matrix are pairwise
different. This can be done in AC°(C_L).

2 Preliminaries

For a nondeterministic logspace bounded Turing machine M, we denote
the number of accepting paths on input z by accy(z), and by rejy,(z)
the number of rejecting paths. The difference of these two numbers is
gapy(x) = acey (x) — rejpr(x).

For the counting classes, we have #L, the class of functions accys(z) for
some nondeterministic logspace bounded Turing machine M, and GapL based
analogously on functions gap,;. Based on counting, we consider the language
class C_L: a set A is in C_L, if there exists a f € GapL such that for all z:
€ A= f(z)=0.

For sets A and B, A is AC -reducible to B, if there is a logspace uniform
circuit family of polynomial size and constant depth that computes A with un-
bounded fan-in and-, or-gates and oracle gates for B. In particular, we consider
the classes AC?(C-L) and AC°(GapL) of sets that are AC-reducible to a set
in C_L, respectively a function in GapL.

A is AC® many-one reducible to B, in symbols: A Séco B, if there is a
function f € AC" such that for all z we have z € A <= f(x) € B. All reductions
in this paper are AC® many-one reductions.

Let A € F™*™ be a matrix over the field F. A nonzero polynomial p(z)
over F is called an annihilating polynomial of A if p(A) = 0. The Cayley-
Hamilton Theorem states that the characteristic polynomial y4(z) of A is an
annihilating polynomial. The characteristic polynomial is a monic polynomial:
its highest coefficient is one. The minimal polynomial of A, denoted pa(z), is
the unique monic annihilating polynomial of A with minimal degree.

Let polynomial di (z) be the greatest common divisor of all sub-determinants
of (zI — A) of order k. For example d,(z) = xa(x). We see that dj, divides d11
for each index 0 < k < n. Define do(z) = 1. The invariant factors of (zI — A)
(or A, for short) are defined as the following (monic) polynomials:

dn_l(a:) _ d1 (CU)
7dn,2($) N dg (1‘) .

ia(x) = in(x)

The characteristic polynomial of A is the product of all the invariant factors:
xa(x) = i1(x) - in(z). The n x n polynomial matrix that has the invariant
factors of A as its diagonal entries (starting with i,(x)) and zero elsewhere is
the Smith normal form of I — A, denoted by diag{i,(z),...,i1(x)}.

We decompose the invariant factors into irreducible divisors over the given
number field F':

@) = @] fe@) o fea(@)],
ia(x) = [er(@)]Ufes(@)]® - [ea(@)],
in@) = ler@)]lea@)] fea(@)],

0l <...<dp<ep; k=1,2,...,59).
The irreducible divisors eq(z),ea(x),...,es(x) are distinct (with highest coef-
ficient 1) and occur in i (x),ia(x),. .., in(z). All powers [e1(2)]°,. .., [es(x)]',
which are different from 1, are called the elementary divisors of A in F

Note that the coefficients of the characteristic polynomial and the invariant
factors of an integer matrix are all integers. Furthermore, the set of eigenvalues
of A is the same as the set of all roots of y 4(z) which, in turn, is the set of all
roots of pa(x).

Next, we define some natural problems in linear algebra we are looking at.
If nothing else is said, our domain for the algebraic problems are the integers.

1. POWERELEMENT
Input: an n X n-matrix A and i, j, and m, (1 <1i,j,m < n).
Output: (A™);,;, the (i,7)-th element of A™.
2. DETERMINANT
Input: an n X n-matrix A.
Output: det(A), the determinant of A.
3. CHARPOLYNOMIAL
Input: an n X n-matrix A.
Output: (cg,c1,...,cn-1), the coefficients of the characteristic polynomial
xA(z) = 2™ + cp12™ ' + - + ¢ of the matrix A.
4. MINPOLYNOMIAL
Input: an n x n-matrix A.
Output: (cg,c1,--.,¢m—1), the coefficients of the minimal polynomial
pa(z) = 2™+ cp12™ L+ - + 17 + o of the matrix A.
5. INVSYSTEM
Input: an n X n-matrix A.
Output: the system of invariant factors of the matrix A.

The first three problems are complete for GapL [ABO099,HT00,ST98].
MINPOLYNOMIAL and INVSYSTEM are in RNC? [KS87], and in NC? for
integer matrices [Vil97].

For each of them, we define the corresponding wverification problem as
the graph of the corresponding function: for a fixed function f(z), define

v-f as the set all pairs (x,y) such that f(z) = y. This yields the verifi-
cation problems V-POWERELEMENT, V-DETERMINANT, V-CHARPOLYNOMIAL,
V-MINPOLYNOMIAL and V-INVSYSTEM. The first three problems are known to
be complete for C_L [HT00]. We note that a special case of V-DETERMINANT is
SINGULARITY where one has to decide whether the determinant of a matrix is
zero. SINGULARITY is complete for C_L as well.

Related problems are computing the rank of a matrix, RANK, or deciding
whether a system of linear equations is feasible, FSLE for short. FSLE is many-
one complete for AC"(C_L) [ABO99].

SIMILARITY is another many-one complete problem for AC®(C-L) [HT00].
Two square matrices A and B are similar, if there exists a nonsingular matrix P
such that A = P~'BP. Tt is well known that A and B are similar iff they have
the same invariant factors or, what is the same, the same elementary divisors (see
for example [Gan77]). Another characterization of similarity is based on tensor
products. This was used by Byrnes and Gauger [BG77] to get the AC°(C-L)
upper bound on SIMILARITY.

3 The Minimal Polynomial

In this section we show that MINPOLYNOMIAL is in AC®(GapL) and is hard
for GapL.

3.1 Upper Bound

We mentioned in the previous section that the minimal polynomial of an integer
matrix can be computed in NC? [Vil97]. We take a different approach and show
that MINPOLYNOMIAL is in AC?(GapL), a subclass of NC?.

Let m(z) = 2™ + ¢, 12™~ ! + - -+ + ¢y be a monic polynomial. Then m(z)
is the minimal polynomial of A iff 1) m is an annihilating polynomial of A4, i.e.,
m(A) = A™ +cpm_1 A"+~ +¢ol = 0, and 2) for every monic polynomial p(z)
of degree smaller than m(z), we have p(A) # 0.

Define vectors a; = vec(A?) fori = 0,1,2,...,n, where vec(A?) is the vector of
length n? obtained by putting the columns of A’ below each other. The equation
m(A) = 0 can be rewritten as

Ay + C1@m—1 + ...+ cgag = 0. (1)

In other words, the vectors @y, ..., aq are linearly dependent. Consequently, for
some polynomial p with degree k < m, the inequation p(A4) # 0 means that the
vectors ag, . ..,aq are linearly independent.

In summary, the coefficients of pa(z) are the solution (¢;,—1,...,co) of the
system (1), for the smallest m where this system has a solution. Hence we have

the following algorithm to compute pa (z):

MINPOLYNOMIAL(A)
1 compute vectors a; = vec(A) for i =0,...,n

2 determine m such that ag,a,...,a,—1 are linearly independent and

ag,aq,...,ay are linearly dependent
3 solve the linear system @y, + ¢p—1@m—1 + -+ coag =0
4 return (1,¢p-1,...,¢p), the coeflicients of pa(x).

Step 1 and 3 in the above algorithm can be computed in GapL (see [AB0O99]).
In Step 2, checking linear independence of given vectors is in coC-L and linear
dependence is in C=L [ABO99]. Hence we end up in the AC -closure of GaplL,
namely AC?(GapL). Recall that AC®(GapL) C NC?. We conclude:

Theorem 3.1. MINPOLYNOMIAL is in AC’(GapL).

3.2 Lower Bound

Our main result is to show the hardness of the computation of the minimal
polynomial of a matrix. Namely, we show that it is hard for GapL.

A problem known to be complete for GapL is POWERELEMENT where one
has to compute the entry (i, j) of A™, for a n x n integer matrix A. W.Lo.g. we
can focus on entry (1,n) of A, i.e. (A™) p.

In order to reduce POWERELEMENT to MINPOLYNOMIAL, we construct a
matrix C' such that the value (4™);,, occurs as one of the coefficients of the
minimal polynomial of C.

The reduction build on the techniques from Toda [Tod91], Valiant [Val92],
and Hoang and Thierauf [HT00] to reduce matrix powering to the determinant,
and the latter to the characteristic polynomial. We give the proof of this result
here because we need the matrices constructed there. We follow the presentation
from [ABO99] and [HTO00].

Theorem 3.2. [HT00] POWERELEMENT <AC” CHARPOLYNOMIAL.

Proof. Let Abeannxn matrixand 1 <m <n. W.lo.g. wefixi=1andj=n
in the definition of POWERELEMENT. In AC we construct a matrix C' such that
all the coefficients of its characteristic polynomial can be easily computed from
the value (A™); p.

Interpret A as representing a directed bipartite graph on 2n nodes and e
edges. That is, the nodes are arranged in two columns of n nodes each. In both
columns, nodes are numbered from 1 to n. If entry a;; of A is not zero, then
there is an edge labeled aj,; from node k in the first column to node [in the
second column. The number of non-zero entries in A is exactly e. Now, take m
copies of this graph, put them in a sequence and identify each second column of
nodes with the first column of the next graph in the sequence. Call the resulting
graph G'.

Graph G’ has m + 1 columns of nodes. The weight of a path in G’ is the
product of all labels on the edges of the path. The crucial observation now is
that the entry at position (1,n) in A™ is the sum of the weights of all paths
in G’ from node 1 in the first column to node n in the last column. Call these
two nodes s and t, respectively.

Graph G’ is further modified: for each edge (k,1) with label ay , introduce a
new node u and replace the edge by two edges, (k, u) with label 1 and (u,l) with
label aj,;. Now all paths from s to ¢ have even length, but still the same weight.
Add an edge labeled 1 from ¢ to s. Call the resulting graph G. Let C be the
adjacency matrix of G. Graph G has N = m(n + e) + n nodes and therefore C
is a N x N matrix.

From combinatorial matrix theory we know that the coefficient ¢; in x¢(z)
equals the sum of the disjoint weighted cycles that cover N — i nodes in G, with
appropriate sign (see [BR91] or [CDS80] for more details). In the graph G, all
edges go from a layer to the next layer. The only exception is the edge (¢, s).
So any cycle in G must use precisely this edge (¢, s), and then trace out a path
from s to t. Therefore each cycle in G have exactly the length 2m + 1, and the
weighted sum of all these cycles is precisely (A™); , with the sign —1. Hence

CN—(2m41) = —(A™)1,, and all other coefficients must be zero. That is,
xe() = — azN =),
is the characteristic polynomial of C, where a = (A™)1 . O

0
Theorem 3.3. POWERELEMENT <AC" MINPOLYNOMIAL.

Proof. We consider the N x N matrix C' from the previous proof in more detail.

Except for the edge from ¢ to s, graph G is acyclic. Thus we can put the
nodes of G in such an order, that adjacency matrix C is upper triangular for
the first N — 1 rows with zeros along the main diagonal. The last row of C' has
a one in the first position (representing edge (¢, s)), and the rest is zero.

We also consider the upper triangle in C. Each column of graph G’ was split
in our construction into two columns and we got a new node on every edge. The
first part we describe by the n x e matrix F:

1---1 0---0 -~ 0---0
0---0 1--+1 «-- 0Q---0
0---0 0---0 «-- 1---1

The number of ones in the k-th row of F' is the number of edges leaving node &
in the first column of G'.

From each of the newly introduced nodes there is one edge going out. Hence
this second part we can describe by the e x n-matrix S, which has precisely one
non-zero entry in each row. The value of the non-zero entry is the weight of the
corresponding edge in G'. With the construction of graph G it is not hard to see
that F'S = A. Now we can write C' as a block matrix as follows:

F
S

|

There is m-times matrix F, alternating with m-times matrix S. L is the n x n
matrix with a one at position (n, 1) and zero elsewhere. Hence C is a (2m +1) x
(2m + 1) block matrix. The empty places in C are all zero matrix.

Let a denote the element (A™); . We claim that the minimal polynomial
of C is pc(x) = z4m+2 — qz?m+1,

First, we observe that dy_(z) = z! for some I, because the minor of order
N —1 of the matrix zI — C at the position (1,1) is 2V ~'. Therefore the minimal
polynomial must have the form

po(x) = xe (@) /dy-i () = N7 = azN=Cm+=L
Define polynomials py(z) = z?mTD+Tk _ gk for 0 < k < N — (2m + 1).
To prove our claim, we have to show that pap+1(C) = 0 and pi(C) # 0 for
kE < 2m + 1. To do so, we explicitly construct all the powers of C'. The general
form of C* for i < 2m is as follows:
ii+1
A

* «—1

* | <2m+1—4

i _
¢t = + —2m+2—1i’

+ +~2m+1

The entry (C?);,i4; for 1 <j <2m —i+1and i < 2m lies on the sub-diagonal
(% - --*) and has the following form:

i—1

(C)50; = SG—1)med 2(G) 5= [mod 2, . for odd 1,
Jyi+j (FS)] mod 25(]’—1) mod Q(FS) = F(j—l) mod 2, otherwise.

The entry (C%)ami1—ivkr for 1 < k < i and i < 2m lies on the sub-diagonal
(+---+) and has the following form:

i—k k-1

(Ci)2m+17i+k,k — S(i+k) mod 2(FS)L 5 JL(Fs)LTJF(Jfl) mod 2_

From this we get in particular

C*™ ! = diag{A™L, SA"'LF, A™'LA, ..., LA™},
C4™+2 = digg{ AMLA™L, SA"'LA™LF, AW 'LA™LA, ..., LAMLA™}

Since LA™L = al, we have pop,41(C) = C*"+2 — qC?m+1 = 0. It remains to
prove that py(C) = C?m+1+k _ qCk £ 0 for all k < 2m. Note that it suffices to
prove this for ¥ = 2m, because pi(C) = 0 for some k implies py41(C) = 0.

For technical reasons we assume that the input matrix A is a nonsingular
upper triangular matrix. The following lemma says that we can w.l.o.g. make
this assumption.

Lemma 3.4. Suppose A is an n x n matriz. Then there is a nonsingular upper
triangular p X p matriz B such that (B™)1,, = (A™)1 5.

Proof. We define B as an (m + 1) x (m + 1) block matrix in which all the
elements of the principal diagonal are n x n identity matrices, all the elements
of the first super-diagonal are matrices A and all the the other elements are
zero-matrices. For p = (m + 1)n we have (B™);, = (A™)1,, as claimed. O

We compute C4"*! as the product C?™+1C?™. Now we have pop, (C) = 0 iff
CAmtl = %™ iff AMLA™ = aA™. However, the latter equation cannot hold:
by Lemma 3.4 we can assume that A is nonsingular. Therefore rank(A™LA™) =
rank(L) = 1, whereas rank(aA™) # 1. We conclude that ps,,(C) # 0.

In summary, we have puc(z) = 24m*2 —a2?™+! where a = (A™); . Since the
construction of graph G can be done in AC®, we have POWERELEMENT Séco
MINPOLYNOMIAL as claimed. O

3.3 The Invariant Factors

The system of all invariant factors of a matrix can be computed in NC? [Vil97].
Since the minimal polynomial is one of the invariant factors, it follows from
Theorem 3.3 that these are hard for GapL as well.

In the verification versions of the above problems we have given A and coeffi-
cients of one, respectively several polynomials and have to decide whether these
coefficients represent in fact the minimal polynomial, respectively the invariant
factors of A.

Note that in the case of the invariant factors we get potentially more infor-
mation with the input than in the case of the minimal polynomial. Therefore, it
could be that the invariant factors are easier to verify than the minimal polyno-
mial. Interestingly we locate in fact the verification of the invariant factors in a
seemingly smaller complexity class.

To verify the minimal polynomial we can simplify the above algorithm for
MINPOLYNOMIAL as follows:

V-MINPOLYNOMIAL(A, ¢p—1, - - -, Co)

1 compute vectors a; = vec(A?) for i =0,...,m

2 ifa,+cn_1a4m_1+ -+ coag =0 and
ag,ai,...,a, 1 are linearly independent

3 then accept else reject.

Hence we get the same upper bound as for MINPOLYNOMIAL, namely
AC°(GapL). Since MINPOLYNOMIAL is hard for GapL, V-MINPOLYNOMIAL
must be hard for C_L. We summarize:

Corollary 3.5. v-MINPOLYNOMIAL is in AC®(GapL) and hard for C_L.

Next we show that the verification of the invariant factors is hard for C_L as
well. However, as an upper bound we get the seemingly smaller class AC®(C_L).

Theorem 3.6. V-INVSYSTEM is in AC°(C_L) and hard for C_L.

Proof. Inclusion. Let S = {i1(z),...,i,(x)} be the system of n given monic
polynomials and let A be an n x n matrix. We construct the companion matrices
that correspond to the non-constant polynomials in S. Let B denote the diagonal
block matrix of all these companion matrices. Recall that S is the system of
invariant factors of A iff A is similar to B. Testing similarity can be done in
AC°(C_L) [HT00], therefore v-INVSYSTEM is in AC°(C_L) too.

Hardness. We continue with the setting from the proof of Theorem 3.3, in
particular with matrix C. Our goal is to determine the system of all invariant
factors of C. We have already shown that i;(z) = uc(z) = z*m+? — az?m+!,
where (A™)1,, = a. Next, we compute the invariant factors is(z),...,in(z).

It follows from the proof of Theorem 3.3 that dy_1(z) = ¥~ (4™+2)_ Since
dy_1(x) =is(x) - inx(x), each of the invariant factors must have the form z!
for some number I. Note that all non-constant invariant factors of the form !
are already elementary divisors.

Define ¢; to be the number of occurrences of the elementary divisor z'.
Clearly, if we have all numbers g;, we can deduce the invariant factors. Num-
bers g; can be determined from the ranks of matrices C7 (see [Gan77]). More
precisely, let 7; denote the rank of C7. The following formula relates the ranks
to numbers g;:

gj =Tj-1 +Tjp1 — 2rj, (2)

for j =1,...,t, where 7o = N and t is the smallest index such that r4—; > r; =
rey1. We can actually compute all the ranks r; from the expressions we already
have for matrices C7.

Let us consider the blocks of C7. By Lemma 3.4 we may assume that A is
nonsingular, that is rank(F) = rank(S) = rank(A) = n. Therefore rank(A4*) =
rank(A*F) = rank(A*S) = n for any k. Hence blocks in C7 of the form (FS)¥,
(FS)*F, (SF)*, or (SF)*S all have rank n (recall that F'S = A). In all other
blocks occurs matrix L. Recall that matrix L is all-zero except for the entry at the
lower left corner, which is 1. Therefore, for any matrix M, we have rank(M L) = 1
iff the n-th column of M is a non-zero column. Analogously, rank(LM) = 1 iff
the first row of M is a non-zero row. We conclude that all blocks that contain
matrix L have rank 1.

Since the non-zero blocks of C7 are in pairwise different lines and columns,
we can simply add up their ranks to obtain the rank of C7. That way we get

_J@Cm+1—-j)n+yj, forj=1,...,2m,
71 2m + 1, for 2m +1 < j.

The ranks don’t change any more from j = 2m+1 on. Hence ¢t = 2m+1. Plugged
into the formula (2) we get

N —-n(2m+1), for j =1,
9 =10, for j =2,...,2m, (3)
n—1, for j =2m — 1.

From equations (3) we can deduce the invariant factors:

22t fork=2,...,n,
ir(z) =< z, fork=n+1,...,N —2nm, (4)
1, fork=N-2nm+1,... N.
In summary, (A™)1, = a iff i1 (z) = ™2 + az®™*! | and is(z),...,in(z) are
as in (4). This completes the proof of Theorem 3.6. O

With the proof for the hardness result of V-INVSYSTEM we remark that
computing the system of invariant factors is hard for GapL.

4 Diagonalization

If a matrix A is similar to a diagonal matrix then we say for short that A is
diagonalizable. That is, the Jordan normal form of A is a diagonal matrix, called
J, where all the entries on the diagonal of J are the eigenvalues of A. We ask
for the complexity to check whether a given matrix is diagonalizable.

An obvious way is to compute the Jordan normal form of A and then decide
whether it is in diagonal form. However, in general, the eigenvalues of an integer
matrix are in the complex field. That is, we run into the problem of dealing with
real-arithmetic.

We use another characterization: matrix A is diagonalizable iff the minimal
polynomial of A can be factored into pairwise different linear factors.

Theorem 4.1. DIAGONALIZABLE is in AC"(GapL) and hard for AC°(C-L).

Proof. To decide whether a matrix A is diagonalizable we use the following
algorithm:

DIAGONALIZABLE(A)

1 compute the minimal polynomial m(z) of A

2 construct from m(z) the companion matrix B
3 if B has pairwise different eigenvalues

4 then accept else reject.

We have already seen that step 1 is in AC°(GapL). We argue below (see
Corollary 4.3) that the condition in Step 3 can be decided in AC°(C_L). There-
fore DIAGONALIZABLE € AC?(GapL).

For the hardness result provide a reduction from FSLE, the set of feasible
linear equations. That is FSLE is the set of pairs (A,b) such that the linear
system Az = b has a solution z € Q", where A is m X n integer matrix and b a
integer vector of length m. FSLE is complete for AC®(C_L) [ABO99].

}?T 13) and vector ¢ = (b7,0)7 of
length m 4+ n. The reduction goes as follows:

Define the symmetric matrix B = (

(A,b) € FSLE < (B,c¢) € FSLE (5)

B 0)\. .. B ¢
= O_<0---0> 1ssnnllartoD—<0___0> (6)

<= D € DIAGONALIZABLE. (7)

Equivalence (5) holds, since the system ATy = 0 is always feasible.

To show equivalence (6), let 2o be a solution of the system Bz = c¢. Define
é fo > It is easy to check that CT = TD,
therefore C is similar to D. Conversely, if the above system is not feasible, then
C and D have different ranks and can therefore not be similar.

To show equivalence (7), observe that matrix C is symmetric. Therefore C
is always diagonalizable, i.e., similar to a diagonal matrix, say C’. Now, if C is
similar to D, then D is similar to C' as well, because the similarity relation is
transitive. Hence D is diagonalizable as well.

Conversely, if D is diagonalizable then all of its elementary divisors are linear
of the form (A — A;) where \; is any of its eigenvalues. Since C' is diagonalizable,
its elementary divisors are linear too. Note furthermore that C' and D have the
same characteristic polynomial. Therefore they must have the same system of
elementary divisors. This implies that they are similar. O

the nonsingular matrix 7' =

To complete the proof of Theorem 4.1, we show how to test whether all
eigenvalues of a given matrix are pairwise different.

Lemma 4.2. All eigenvalues of the matriz A are pairwise different iff the matriz
B=A®I—-1®A has 0 as an eigenvalue of multiplicity n (here, ® denotes the
tensor product (see [Gra81])).

Proof. Just note that if A\q,..., An are the eigenvalues of the n x n matrix A,

then (A; — Aj), for all 1 <i,j < n, are the eigenvalues of matrix B. O

Corollary 4.3. Whether all eigenvalues of a matriz A are pairwise different
can be decided in AC°(C=L).

Proof. Let B = A® I — 1 ® A. The matrix B has 0 as an eigenvalue of
multiplicity n iff xp(z) = "+ cnz_lx”2_1 + -+ 4+ cpz™ such that ¢, # 0.
Recall that the coefficients of the characteristic polynomial can be computed in
GapL. Therefore the test whether ¢g = ¢; =+ = ¢;,-1 = 0 and ¢, # 0 is in
AC’(C_L). 0

Open Problems

The coefficients of the characteristic polynomial of a matrix can be computed
in GapL. We do not know whether the minimal polynomial of a matrix can be
computed in GapL as well. In other words, we want to close the gap between
the upper bound (Theorem 3.1) and the lower bound (Theorem 3.3) we have for
the minimal polynomial.

Analogously, we ask to close the gaps for the verification of the minimal
polynomial (Corollary 3.5), the invariant factors (Theorem 3.6), and the diago-
nalization problem (Theorem 4.1). Note that if one could show that the minimal
polynomial can be computed in GapL (or just in AC?(C-L)) then the minimal
polynomial can be verified in AC®(C—L) and it follows that DIAGONALIZABLE
is complete for AC°(C_L).

An important question not directly addressed here is whether C_L is closed
under complement. An affirmative answer would solve many open problems in
this area.

References

[ABO99] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and
feasible systems of linear equations. Computational Complexity, 8:99 —126,
1999.

[BG77] C. Byrnes and M. Gauger. Characteristic free, improved decidability criteria
for the similarity problem. Linear and Multilinear Algebra, 5:153-158, 1977.

[BR91] R. Brualdi and H. Ryser. Combinatorial Matriz Theory, volume 39 of Ency-
clopedia of Mathematics and its Applications. Cambridge University Press,
1991.

[CDS80] D. Cvetkovié, M. Doob, and H. Sachs. Spectra of Graphs, Theory and Ap-
plication. Academic Press, 1980.

[Gan77] F. Gantmacher. The Theory of Matrices, volume 1 and 2. AMS Chelsea
Publishing, 1977.

[Gra81] A. Graham. Kronnecker Products and Matriz Calculus With Applications.
Ellis Horwood Ltd., 1981.

[HT00] T.M. Hoang and T. Thierauf. The complexity of verifying the characteristic
polynomial and testing similarity. In 15th IEEE Conference on Computa-
tional Complezrity (CCC), pages 87-95. IEEE Computer Society Press, 2000.

[KS87] E. Kaltofen and B. Saunders. Fast parallel computation of hermite and
smith forms of polynomial matrices. SIAM Algebraic and Discrete Methods,
8:683-690, 1987.

[ST98] M. Santha and S. Tan. Verifying the determinant in parallel. Computational
Complexity, 7:128-151, 1998.

[Sto98] A. Storjohann. An O(n®) algorithm for frobenius normal form. In Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC), 1998.

[Tod91] S. Toda. Counting problems computationally equivalent to the determinant.
Technical Report CSIM 91-07, Dept. of Computer Science and Information
Mathematics, University of Electro-Communications, Chofu-shi, Tokyo 182,
Japan, 1991.

[Val92] L. Valiant. Why is boolean complexity theory difficult. In M.S. Paterson,
editor, Boolean Function Complezity, London Mathematical Society Lecture
Notes Series 169. Cambridge University Press, 1992.

[Vil97] G. Villard. Fast parallel algorithms for matrix reduction to normal forms. Ap-
plicable Algebra in Engineering Communication and Computing (AAECC),
8:511-537, 1997.

[vzGG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 1999.

