
The Complexity of the Minimal Polynomial ?Thanh Minh Hoang and Thomas ThieraufAbt. Theoretis
he InformatikUniversit�at Ulm89069 Ulm, Germanyfhoang,thieraufg�informatik.uni-ulm.deAbstra
t. We investigate the 
omputational 
omplexity of the minimalpolynomial of an integer matrix.We show that the 
omputation of the minimal polynomial is inAC0(GapL), the AC0-
losure of the logspa
e 
ounting 
lass GapL,whi
h is 
ontained in NC2. Our main result is that the problem is hardfor GapL (under AC0 many-one redu
tions). The result extends to theveri�
ation of all invariant fa
tors of an integer matrix.Furthermore, we 
onsider the 
omplexity to 
he
k whether an integermatrix is diagonalizable. We show that this problem lies in AC0(GapL)and is hard for AC0(C=L) (under AC0 many-one redu
tions).1 Introdu
tionThe motivation for our work is twofold: 1) we want to understand the 
ompu-tational 
omplexity of some 
lassi
al problems in linear algebra, 2) by lo
atingsu
h problems in small spa
e 
omplexity 
lasses we want to 
larify the in
lusionrelationship of su
h 
lasses.The minimal polynomial of a matrix plays an important role in the theory ofmatri
es. Algorithms to 
ompute the minimal polynomial of a matrix have beenstudied for a long time. The best known deterministi
 algorithm to 
ompute theminimal polynomial of an n�nmatrix makes O(n3) �eld operations [Sto98℄. TheSmith normal form of a polynomial matrix 
an be 
omputed by a randomizedNC2-
ir
uit, i.e., in RNC2. Therefore the rational 
anoni
al form of a matrixand the minimal polynomial of a matrix 
an be 
omputed in RNC2 as well(see [KS87,vzGG99℄ for details). In the 
ase of integer matri
es there are evenNC2-algorithms [Vil97℄.We take a di�erent approa
h to 
ompute the minimal polynomial of an integermatrix: we show that the problem 
an be redu
ed to matrix powering and solvingsystems of linear equations. Therefore it is in the 
lass AC0(GapL), a sub
lassof NC2. Our main result is with respe
t to the hardness of the problem: weshow that the 
omputation of the determinant of a matrix 
an be redu
ed tothe 
omputation of the minimal polynomial of a matrix. Therefore the problemis hard for GapL.? This work was supported by the Deuts
he Fors
hungsgemeins
haft



The minimal polynomial is the �rst polynomial of the system of all invariantfa
tors of a matrix. This system 
ompletely determines the stru
ture of thematrix. Its 
omputation is known to be in NC2 [Vil97℄ for integer matri
es. Weextend our results and te
hniques to the veri�
ation of all the invariant fa
torsof a given integer matrix: it is in AC0(C=L) and hard for C=L.Using the results about the minimal polynomial, we 
an 
lassify some more
lassi
al problems in linear algebra: a matrix is diagonalizable if it is similarto a diagonal matrix. Testing similarity of two matri
es is known to be inAC0(C=L) [HT00℄. We show that the problem to de
ide whether a given integermatrix is diagonalizable is in AC0(GapL) and hard for AC0(C=L).To obtain the latter result, we have to solve a problem that is interesting inits own: de
ide, whether all eigenvalues of a given integer matrix are pairwisedi�erent. This 
an be done in AC0(C=L).2 PreliminariesFor a nondeterministi
 logspa
e bounded Turing ma
hine M , we denotethe number of a

epting paths on input x by a

M (x), and by rejM (x)the number of reje
ting paths. The di�eren
e of these two numbers isgapM (x) = a

M (x)� rejM (x).For the 
ounting 
lasses, we have #L, the 
lass of fun
tions a

M (x) forsome nondeterministi
 logspa
e bounded Turing ma
hine M , and GapL basedanalogously on fun
tions gapM . Based on 
ounting, we 
onsider the language
lass C=L: a set A is in C=L, if there exists a f 2 GapL su
h that for all x:x 2 A() f(x) = 0:For sets A and B, A is AC0-redu
ible to B, if there is a logspa
e uniform
ir
uit family of polynomial size and 
onstant depth that 
omputes A with un-bounded fan-in and-, or-gates and ora
le gates for B. In parti
ular, we 
onsiderthe 
lasses AC0(C=L) and AC0(GapL) of sets that are AC0-redu
ible to a setin C=L, respe
tively a fun
tion in GapL.A is AC0 many-one redu
ible to B, in symbols: A �AC0m B, if there is afun
tion f 2 AC0 su
h that for all x we have x 2 A() f(x) 2 B. All redu
tionsin this paper are AC0 many-one redu
tions.Let A 2 Fn�n be a matrix over the �eld F. A nonzero polynomial p(x)over F is 
alled an annihilating polynomial of A if p(A) = 0. The Cayley-Hamilton Theorem states that the 
hara
teristi
 polynomial �A(x) of A is anannihilating polynomial. The 
hara
teristi
 polynomial is a moni
 polynomial :its highest 
oeÆ
ient is one. The minimal polynomial of A, denoted �A(x), isthe unique moni
 annihilating polynomial of A with minimal degree.Let polynomial dk(x) be the greatest 
ommon divisor of all sub-determinantsof (xI �A) of order k. For example dn(x) = �A(x). We see that dk divides dk+1for ea
h index 0 � k � n. De�ne d0(x) � 1. The invariant fa
tors of (xI � A)(or A, for short) are de�ned as the following (moni
) polynomials:i1(x) = dn(x)dn�1(x) ; i2(x) = dn�1(x)dn�2(x) ; : : : ; in(x) = d1(x)d0(x) :



The 
hara
teristi
 polynomial of A is the produ
t of all the invariant fa
tors:�A(x) = i1(x) � � � in(x). The n � n polynomial matrix that has the invariantfa
tors of A as its diagonal entries (starting with in(x)) and zero elsewhere isthe Smith normal form of xI �A, denoted by diagfin(x); : : : ; i1(x)g.We de
ompose the invariant fa
tors into irredu
ible divisors over the givennumber �eld F: i1(x) = [e1(x)℄
1 [e2(x)℄
2 � � � [es(x)℄
s ;i2(x) = [e1(x)℄d1 [e2(x)℄d2 � � � [es(x)℄ds ;... ...in(x) = [e1(x)℄l1 [e2(x)℄l2 � � � [es(x)℄ls ;(0 � lk � : : : � dk � 
k; k = 1; 2; : : : ; s):The irredu
ible divisors e1(x); e2(x); : : : ; es(x) are distin
t (with highest 
oef-�
ient 1) and o

ur in i1(x); i2(x); : : : ; in(x). All powers [e1(x)℄
1 ; : : : ; [es(x)℄ls ,whi
h are di�erent from 1, are 
alled the elementary divisors of A in FNote that the 
oeÆ
ients of the 
hara
teristi
 polynomial and the invariantfa
tors of an integer matrix are all integers. Furthermore, the set of eigenvaluesof A is the same as the set of all roots of �A(x) whi
h, in turn, is the set of allroots of �A(x).Next, we de�ne some natural problems in linear algebra we are looking at.If nothing else is said, our domain for the algebrai
 problems are the integers.1. PowerElementInput: an n� n-matrix A and i, j, and m, (1 � i; j;m � n).Output: (Am)i;j , the (i; j)-th element of Am.2. DeterminantInput: an n� n-matrix A.Output: det(A), the determinant of A.3. CharPolynomialInput: an n� n-matrix A.Output: (
0; 
1; : : : ; 
n�1), the 
oeÆ
ients of the 
hara
teristi
 polynomial�A(x) = xn + 
n�1xn�1 + � � �+ 
0 of the matrix A.4. MinPolynomialInput: an n� n-matrix A.Output: (
0; 
1; : : : ; 
m�1), the 
oeÆ
ients of the minimal polynomial�A(x) = xm + 
m�1xm�1 + � � �+ 
1x+ 
0 of the matrix A.5. InvSystemInput: an n� n-matrix A.Output: the system of invariant fa
tors of the matrix A.The �rst three problems are 
omplete for GapL [ABO99,HT00,ST98℄.MinPolynomial and InvSystem are in RNC2 [KS87℄, and in NC2 forinteger matri
es [Vil97℄.For ea
h of them, we de�ne the 
orresponding veri�
ation problem asthe graph of the 
orresponding fun
tion: for a �xed fun
tion f(x), de�ne



v-f as the set all pairs (x; y) su
h that f(x) = y. This yields the veri�-
ation problems v-PowerElement, v-Determinant, v-CharPolynomial,v-MinPolynomial and v-InvSystem. The �rst three problems are known tobe 
omplete for C=L [HT00℄. We note that a spe
ial 
ase of v-Determinant isSingularity where one has to de
ide whether the determinant of a matrix iszero. Singularity is 
omplete for C=L as well.Related problems are 
omputing the rank of a matrix, Rank, or de
idingwhether a system of linear equations is feasible, FSLE for short. FSLE is many-one 
omplete for AC0(C=L) [ABO99℄.Similarity is another many-one 
omplete problem for AC0(C=L) [HT00℄.Two square matri
es A and B are similar , if there exists a nonsingular matrix Psu
h that A = P�1BP . It is well known that A and B are similar i� they havethe same invariant fa
tors or, what is the same, the same elementary divisors (seefor example [Gan77℄). Another 
hara
terization of similarity is based on tensorprodu
ts. This was used by Byrnes and Gauger [BG77℄ to get the AC0(C=L)upper bound on Similarity.3 The Minimal PolynomialIn this se
tion we show that MinPolynomial is in AC0(GapL) and is hardfor GapL.3.1 Upper BoundWe mentioned in the previous se
tion that the minimal polynomial of an integermatrix 
an be 
omputed in NC2 [Vil97℄. We take a di�erent approa
h and showthat MinPolynomial is in AC0(GapL), a sub
lass of NC2.Let m(x) = xm + 
m�1xm�1 + � � � + 
0 be a moni
 polynomial. Then m(x)is the minimal polynomial of A i� 1) m is an annihilating polynomial of A, i.e.,m(A) = Am+
m�1Am�1+ � � �+
0I = 0, and 2) for every moni
 polynomial p(x)of degree smaller than m(x), we have p(A) 6= 0.De�ne ve
tors ai = ve
(Ai) for i = 0; 1; 2; : : : ; n, where ve
(Ai) is the ve
tor oflength n2 obtained by putting the 
olumns of Ai below ea
h other. The equationm(A) = 0 
an be rewritten asam + 
m�1am�1 + : : :+ 
0a0 = 0: (1)In other words, the ve
tors am; : : : ;a0 are linearly dependent. Consequently, forsome polynomial p with degree k < m, the inequation p(A) 6= 0 means that theve
tors ak; : : : ;a0 are linearly independent.In summary, the 
oeÆ
ients of �A(x) are the solution (
m�1; : : : ; 
0) of thesystem (1), for the smallest m where this system has a solution. Hen
e we havethe following algorithm to 
ompute �A(x):MinPolynomial(A)1 
ompute ve
tors ai = ve
(Ai) for i = 0; : : : ; n



2 determine m su
h that a0;a1; : : : ;am�1 are linearly independent anda0;a1; : : : ;am are linearly dependent3 solve the linear system am + 
m�1am�1 + � � �+ 
0a0 = 04 return (1; 
m�1; : : : ; 
0), the 
oeÆ
ients of �A(x).Step 1 and 3 in the above algorithm 
an be 
omputed inGapL (see [ABO99℄).In Step 2, 
he
king linear independen
e of given ve
tors is in 
oC=L and lineardependen
e is in C=L [ABO99℄. Hen
e we end up in the AC0-
losure of GapL,namely AC0(GapL). Re
all that AC0(GapL) �NC2. We 
on
lude:Theorem 3.1. MinPolynomial is in AC0(GapL).3.2 Lower BoundOur main result is to show the hardness of the 
omputation of the minimalpolynomial of a matrix. Namely, we show that it is hard for GapL.A problem known to be 
omplete for GapL is PowerElement where onehas to 
ompute the entry (i; j) of Am, for a n� n integer matrix A. W.l.o.g. we
an fo
us on entry (1; n) of A, i.e. (Am)1;n.In order to redu
e PowerElement to MinPolynomial, we 
onstru
t amatrix C su
h that the value (Am)1;n o

urs as one of the 
oeÆ
ients of theminimal polynomial of C.The redu
tion build on the te
hniques from Toda [Tod91℄, Valiant [Val92℄,and Hoang and Thierauf [HT00℄ to redu
e matrix powering to the determinant,and the latter to the 
hara
teristi
 polynomial. We give the proof of this resulthere be
ause we need the matri
es 
onstru
ted there. We follow the presentationfrom [ABO99℄ and [HT00℄.Theorem 3.2. [HT00℄ PowerElement �AC0m CharPolynomial.Proof . Let A be an n�n matrix and 1 � m � n. W.l.o.g. we �x i = 1 and j = nin the de�nition of PowerElement. In AC0 we 
onstru
t a matrix C su
h thatall the 
oeÆ
ients of its 
hara
teristi
 polynomial 
an be easily 
omputed fromthe value (Am)1;n.Interpret A as representing a dire
ted bipartite graph on 2n nodes and eedges. That is, the nodes are arranged in two 
olumns of n nodes ea
h. In both
olumns, nodes are numbered from 1 to n. If entry ak;l of A is not zero, thenthere is an edge labeled ak;l from node k in the �rst 
olumn to node l in these
ond 
olumn. The number of non-zero entries in A is exa
tly e. Now, take m
opies of this graph, put them in a sequen
e and identify ea
h se
ond 
olumn ofnodes with the �rst 
olumn of the next graph in the sequen
e. Call the resultinggraph G0.Graph G0 has m + 1 
olumns of nodes. The weight of a path in G0 is theprodu
t of all labels on the edges of the path. The 
ru
ial observation now isthat the entry at position (1; n) in Am is the sum of the weights of all pathsin G0 from node 1 in the �rst 
olumn to node n in the last 
olumn. Call thesetwo nodes s and t, respe
tively.



Graph G0 is further modi�ed: for ea
h edge (k; l) with label ak;l, introdu
e anew node u and repla
e the edge by two edges, (k; u) with label 1 and (u; l) withlabel ak;l. Now all paths from s to t have even length, but still the same weight.Add an edge labeled 1 from t to s. Call the resulting graph G. Let C be theadja
en
y matrix of G. Graph G has N = m(n+ e) + n nodes and therefore Cis a N �N matrix.From 
ombinatorial matrix theory we know that the 
oeÆ
ient 
i in �C(x)equals the sum of the disjoint weighted 
y
les that 
over N � i nodes in G, withappropriate sign (see [BR91℄ or [CDS80℄ for more details). In the graph G, alledges go from a layer to the next layer. The only ex
eption is the edge (t; s).So any 
y
le in G must use pre
isely this edge (t; s), and then tra
e out a pathfrom s to t. Therefore ea
h 
y
le in G have exa
tly the length 2m+ 1, and theweighted sum of all these 
y
les is pre
isely (Am)1;n with the sign �1. Hen
e
N�(2m+1) = �(Am)1;n and all other 
oeÆ
ients must be zero. That is,�C(x) = xN � axN�(2m+1);is the 
hara
teristi
 polynomial of C, where a = (Am)1;n. �Theorem 3.3. PowerElement �AC0m MinPolynomial.Proof . We 
onsider the N�N matrix C from the previous proof in more detail.Ex
ept for the edge from t to s, graph G is a
y
li
. Thus we 
an put thenodes of G in su
h an order, that adja
en
y matrix C is upper triangular forthe �rst N � 1 rows with zeros along the main diagonal. The last row of C hasa one in the �rst position (representing edge (t; s)), and the rest is zero.We also 
onsider the upper triangle in C. Ea
h 
olumn of graph G0 was splitin our 
onstru
tion into two 
olumns and we got a new node on every edge. The�rst part we des
ribe by the n� e matrix F :F = 0BB� 1 � � � 1 0 � � � 0 � � � 0 � � � 00 � � � 0 1 � � � 1 � � � 0 � � � 0... ... . . . ...0 � � � 0 0 � � � 0 � � � 1 � � � 11CCAThe number of ones in the k-th row of F is the number of edges leaving node kin the �rst 
olumn of G0.From ea
h of the newly introdu
ed nodes there is one edge going out. Hen
ethis se
ond part we 
an des
ribe by the e�n-matrix S, whi
h has pre
isely onenon-zero entry in ea
h row. The value of the non-zero entry is the weight of the
orresponding edge in G0. With the 
onstru
tion of graph G it is not hard to seethat FS = A. Now we 
an write C as a blo
k matrix as follows:C = 0BBBBBBB� F S . . . F SL
1CCCCCCCA



There is m-times matrix F , alternating with m-times matrix S. L is the n � nmatrix with a one at position (n; 1) and zero elsewhere. Hen
e C is a (2m+1)�(2m+ 1) blo
k matrix. The empty pla
es in C are all zero matrix.Let a denote the element (Am)1;n. We 
laim that the minimal polynomialof C is �C(x) = x4m+2 � ax2m+1:First, we observe that dN�1(x) = xl for some l, be
ause the minor of orderN �1 of the matrix xI�C at the position (1; 1) is xN�1. Therefore the minimalpolynomial must have the form�C(x) = �C(x)=dN�1(x) = xN�l � axN�(2m+1)�l:De�ne polynomials pk(x) = x(2m+1)+k � axk for 0 � k � N � (2m + 1).To prove our 
laim, we have to show that p2m+1(C) = 0 and pk(C) 6= 0 fork < 2m+ 1. To do so, we expli
itly 
onstru
t all the powers of C. The generalform of Ci for i � 2m is as follows:i i+ 1# #Ci = 0BBBBBBBB� � . . . �+ .. . +
1CCCCCCCCA  1... 2m+ 1� i 2m+ 2� i... 2m+ 1 :The entry (Ci)j;i+j for 1 � j � 2m� i+ 1 and i � 2m lies on the sub-diagonal(� � � � �) and has the following form:(Ci)j;i+j = (S(j�1) mod 2(FS) i�12 F j mod 2; for odd i;(FS)j mod 2S(j�1) mod 2(FS) i�22 F (j�1) mod 2; otherwise.The entry (Ci)2m+1�i+k;k for 1 � k � i and i � 2m lies on the sub-diagonal(+ � � �+) and has the following form:(Ci)2m+1�i+k;k = S(i+k) mod 2(FS)b i�k2 
L(FS)b k�12 
F (j�1) mod 2:From this we get in parti
ularC2m+1 = diagfAmL; SAm�1LF; Am�1LA; : : : ; LAmg;C4m+2 = diagfAmLAmL; SAm�1LAmLF; Am�1LAmLA; : : : ; LAmLAmgSin
e LAmL = aL, we have p2m+1(C) = C4m+2 � aC2m+1 = 0. It remains toprove that pk(C) = C2m+1+k � aCk 6= 0 for all k � 2m. Note that it suÆ
es toprove this for k = 2m, be
ause pk(C) = 0 for some k implies pk+1(C) = 0.For te
hni
al reasons we assume that the input matrix A is a nonsingularupper triangular matrix. The following lemma says that we 
an w.l.o.g. makethis assumption.



Lemma 3.4. Suppose A is an n�n matrix. Then there is a nonsingular uppertriangular p� p matrix B su
h that (Bm)1;p = (Am)1;n.Proof . We de�ne B as an (m + 1) � (m + 1) blo
k matrix in whi
h all theelements of the prin
ipal diagonal are n � n identity matri
es, all the elementsof the �rst super-diagonal are matri
es A and all the the other elements arezero-matri
es. For p = (m+ 1)n we have (Bm)1;p = (Am)1;n as 
laimed. �We 
ompute C4m+1 as the produ
t C2m+1C2m. Now we have p2m(C) = 0 i�C4m+1 = aC2m i� AmLAm = aAm. However, the latter equation 
annot hold:by Lemma 3.4 we 
an assume that A is nonsingular. Therefore rank(AmLAm) =rank(L) = 1, whereas rank(aAm) 6= 1. We 
on
lude that p2m(C) 6= 0.In summary, we have �C(x) = x4m+2�ax2m+1, where a = (Am)1;n. Sin
e the
onstru
tion of graph G 
an be done in AC0, we have PowerElement �AC0mMinPolynomial as 
laimed. �3.3 The Invariant Fa
torsThe system of all invariant fa
tors of a matrix 
an be 
omputed in NC2 [Vil97℄.Sin
e the minimal polynomial is one of the invariant fa
tors, it follows fromTheorem 3.3 that these are hard for GapL as well.In the veri�
ation versions of the above problems we have given A and 
oeÆ-
ients of one, respe
tively several polynomials and have to de
ide whether these
oeÆ
ients represent in fa
t the minimal polynomial, respe
tively the invariantfa
tors of A.Note that in the 
ase of the invariant fa
tors we get potentially more infor-mation with the input than in the 
ase of the minimal polynomial. Therefore, it
ould be that the invariant fa
tors are easier to verify than the minimal polyno-mial. Interestingly we lo
ate in fa
t the veri�
ation of the invariant fa
tors in aseemingly smaller 
omplexity 
lass.To verify the minimal polynomial we 
an simplify the above algorithm forMinPolynomial as follows:v-MinPolynomial(A; 
m�1; : : : ; 
0)1 
ompute ve
tors ai = ve
(Ai) for i = 0; : : : ;m2 if am + 
m�1am�1 + � � �+ 
0a0 = 0 anda0;a1; : : : ;am�1 are linearly independent3 then a

ept else reje
t.Hen
e we get the same upper bound as for MinPolynomial, namelyAC0(GapL). Sin
e MinPolynomial is hard for GapL, v-MinPolynomialmust be hard for C=L. We summarize:Corollary 3.5. v-MinPolynomial is in AC0(GapL) and hard for C=L.Next we show that the veri�
ation of the invariant fa
tors is hard for C=L aswell. However, as an upper bound we get the seemingly smaller 
lassAC0(C=L).Theorem 3.6. v-InvSystem is in AC0(C=L) and hard for C=L.



Proof . In
lusion. Let S = fi1(x); : : : ; in(x)g be the system of n given moni
polynomials and let A be an n�n matrix. We 
onstru
t the 
ompanion matri
esthat 
orrespond to the non-
onstant polynomials in S. Let B denote the diagonalblo
k matrix of all these 
ompanion matri
es. Re
all that S is the system ofinvariant fa
tors of A i� A is similar to B. Testing similarity 
an be done inAC0(C=L) [HT00℄, therefore v-InvSystem is in AC0(C=L) too.Hardness. We 
ontinue with the setting from the proof of Theorem 3.3, inparti
ular with matrix C. Our goal is to determine the system of all invariantfa
tors of C. We have already shown that i1(x) = �C(x) = x4m+2 � ax2m+1,where (Am)1;n = a. Next, we 
ompute the invariant fa
tors i2(x); : : : ; iN(x).It follows from the proof of Theorem 3.3 that dN�1(x) = xN�(4m+2). Sin
edN�1(x) = i2(x) � � � iN(x), ea
h of the invariant fa
tors must have the form xlfor some number l. Note that all non-
onstant invariant fa
tors of the form xlare already elementary divisors.De�ne gl to be the number of o

urren
es of the elementary divisor xl.Clearly, if we have all numbers gl, we 
an dedu
e the invariant fa
tors. Num-bers gl 
an be determined from the ranks of matri
es Cj (see [Gan77℄). Morepre
isely, let rj denote the rank of Cj . The following formula relates the ranksto numbers gj : gj = rj�1 + rj+1 � 2rj ; (2)for j = 1; : : : ; t, where r0 = N and t is the smallest index su
h that rt�1 > rt =rt+1. We 
an a
tually 
ompute all the ranks rj from the expressions we alreadyhave for matri
es Cj .Let us 
onsider the blo
ks of Cj . By Lemma 3.4 we may assume that A isnonsingular, that is rank(F ) = rank(S) = rank(A) = n. Therefore rank(Ak) =rank(AkF ) = rank(AkS) = n for any k. Hen
e blo
ks in Cj of the form (FS)k,(FS)kF , (SF )k, or (SF )kS all have rank n (re
all that FS = A). In all otherblo
ks o

urs matrix L. Re
all that matrix L is all-zero ex
ept for the entry at thelower left 
orner, whi
h is 1. Therefore, for any matrixM , we have rank(ML) = 1i� the n-th 
olumn of M is a non-zero 
olumn. Analogously, rank(LM) = 1 i�the �rst row of M is a non-zero row. We 
on
lude that all blo
ks that 
ontainmatrix L have rank 1.Sin
e the non-zero blo
ks of Cj are in pairwise di�erent lines and 
olumns,we 
an simply add up their ranks to obtain the rank of Cj . That way we getrj = � (2m+ 1� j)n+ j; for j = 1; : : : ; 2m;2m+ 1; for 2m+ 1 � j:The ranks don't 
hange any more from j = 2m+1 on. Hen
e t = 2m+1. Pluggedinto the formula (2) we getgj = 8<:N � n(2m+ 1); for j = 1;0; for j = 2; : : : ; 2m;n� 1; for j = 2m� 1: (3)



From equations (3) we 
an dedu
e the invariant fa
tors:ik(x) = 8<:x2m+1; for k = 2; : : : ; n;x; for k = n+ 1; : : : ; N � 2nm;1; for k = N � 2nm+ 1; : : : ; N: (4)In summary, (Am)1;n = a i� i1(x) = x4m+2 + ax2m+1, and i2(x); : : : ; iN (x) areas in (4). This 
ompletes the proof of Theorem 3.6. �With the proof for the hardness result of v-InvSystem we remark that
omputing the system of invariant fa
tors is hard for GapL.4 DiagonalizationIf a matrix A is similar to a diagonal matrix then we say for short that A isdiagonalizable. That is, the Jordan normal form of A is a diagonal matrix, 
alledJ , where all the entries on the diagonal of J are the eigenvalues of A. We askfor the 
omplexity to 
he
k whether a given matrix is diagonalizable.An obvious way is to 
ompute the Jordan normal form of A and then de
idewhether it is in diagonal form. However, in general, the eigenvalues of an integermatrix are in the 
omplex �eld. That is, we run into the problem of dealing withreal-arithmeti
.We use another 
hara
terization: matrix A is diagonalizable i� the minimalpolynomial of A 
an be fa
tored into pairwise di�erent linear fa
tors.Theorem 4.1. Diagonalizable is in AC0(GapL) and hard for AC0(C=L).Proof . To de
ide whether a matrix A is diagonalizable we use the followingalgorithm:Diagonalizable(A)1 
ompute the minimal polynomial m(x) of A2 
onstru
t from m(x) the 
ompanion matrix B3 if B has pairwise di�erent eigenvalues4 then a

ept else reje
t.We have already seen that step 1 is in AC0(GapL). We argue below (seeCorollary 4.3) that the 
ondition in Step 3 
an be de
ided in AC0(C=L). There-fore Diagonalizable 2 AC0(GapL).For the hardness result provide a redu
tion from FSLE, the set of feasiblelinear equations . That is FSLE is the set of pairs (A; b) su
h that the linearsystem Ax = b has a solution x 2 Qn, where A is m� n integer matrix and b ainteger ve
tor of length m. FSLE is 
omplete for AC0(C=L) [ABO99℄.De�ne the symmetri
 matrix B = � 0 AAT 0 � and ve
tor 
 = (bT ;0)T oflength m+ n. The redu
tion goes as follows:(A; b) 2 FSLE () (B; 
) 2 FSLE (5)



() C = �B 00 � � �0� is similar to D = �B 
0 � � �0� (6)() D 2 Diagonalizable: (7)Equivalen
e (5) holds, sin
e the system AT y = 0 is always feasible.To show equivalen
e (6), let x0 be a solution of the system Bx = 
. De�nethe nonsingular matrix T = � I x00 �1�. It is easy to 
he
k that CT = TD,therefore C is similar to D. Conversely, if the above system is not feasible, thenC and D have di�erent ranks and 
an therefore not be similar.To show equivalen
e (7), observe that matrix C is symmetri
. Therefore Cis always diagonalizable, i.e., similar to a diagonal matrix, say C 0. Now, if C issimilar to D, then D is similar to C 0 as well, be
ause the similarity relation istransitive. Hen
e D is diagonalizable as well.Conversely, if D is diagonalizable then all of its elementary divisors are linearof the form (���i) where �i is any of its eigenvalues. Sin
e C is diagonalizable,its elementary divisors are linear too. Note furthermore that C and D have thesame 
hara
teristi
 polynomial. Therefore they must have the same system ofelementary divisors. This implies that they are similar. �To 
omplete the proof of Theorem 4.1, we show how to test whether alleigenvalues of a given matrix are pairwise di�erent.Lemma 4.2. All eigenvalues of the matrix A are pairwise di�erent i� the matrixB = A
 I � I 
A has 0 as an eigenvalue of multipli
ity n (here, 
 denotes thetensor produ
t (see [Gra81℄)).Proof . Just note that if �1; : : : ; �n are the eigenvalues of the n � n matrix A,then (�i � �j), for all 1 � i; j � n, are the eigenvalues of matrix B. �Corollary 4.3. Whether all eigenvalues of a matrix A are pairwise di�erent
an be de
ided in AC0(C=L).Proof . Let B = A 
 I � I 
 A. The matrix B has 0 as an eigenvalue ofmultipli
ity n i� �B(x) = xn2 + 
n2�1xn2�1 + � � � + 
nxn su
h that 
n 6= 0.Re
all that the 
oeÆ
ients of the 
hara
teristi
 polynomial 
an be 
omputed inGapL. Therefore the test whether 
0 = 
1 = � � � = 
n�1 = 0 and 
n 6= 0 is inAC0(C=L). �Open ProblemsThe 
oeÆ
ients of the 
hara
teristi
 polynomial of a matrix 
an be 
omputedin GapL. We do not know whether the minimal polynomial of a matrix 
an be
omputed in GapL as well. In other words, we want to 
lose the gap betweenthe upper bound (Theorem 3.1) and the lower bound (Theorem 3.3) we have forthe minimal polynomial.



Analogously, we ask to 
lose the gaps for the veri�
ation of the minimalpolynomial (Corollary 3.5), the invariant fa
tors (Theorem 3.6), and the diago-nalization problem (Theorem 4.1). Note that if one 
ould show that the minimalpolynomial 
an be 
omputed in GapL (or just in AC0(C=L)) then the minimalpolynomial 
an be veri�ed in AC0(C=L) and it follows that Diagonalizableis 
omplete for AC0(C=L).An important question not dire
tly addressed here is whether C=L is 
losedunder 
omplement. An aÆrmative answer would solve many open problems inthis area.Referen
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