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Abstract. The perfect matching problem is known to be in ¶, in ran-
domized NC, and it is hard for NL. Whether the perfect matching prob-
lem is in NC is one of the most prominent open questions in complexity
theory regarding parallel computations.
Grigoriev and Karpinski [GK87] studied the perfect matching problem
for bipartite graphs with polynomially bounded permanent. They showed
that for such bipartite graphs the problem of deciding the existence of a
perfect matchings is in NC

2, and counting and enumerating all perfect
matchings is in NC

3. For general graphs with a polynomially bounded
number of perfect matchings, they show both problems to be in NC

3.
In this paper we extend and improve these results. We show that for any
graph that has a polynomially bounded number of perfect matchings,
we can construct all perfect matchings in NC

2. We extend the result to
weighted graphs.

1 Introduction

Whether there is an NC-algorithm for testing if a given graph contains a perfect
matching is an outstanding open question in complexity theory. The problem
of deciding the existence of a perfect matching in a graph is known to be in
¶ [Edm65], in randomized NC2 [MVV87], and in nonuniform SPL [ARZ99].
This problem is very fundamental for other computational problems (see
e.g. [KR98]). Another reason why a derandomization of the perfect matching
problem would be very interesting is, that it is a special case of the polynomial
identity testing problem.

Since no NC-algorithm is known for testing the existence of per-
fect matchings in a common graph, some special cases of the perfect
matching problem have been investigated intensively. For example, NC-
algorithms have been found the perfect matching problem for regular bipartite
graphs [LPV81], dense graphs [DHK93], strongly chordal graphs [DK86] and pla-
nar graphs [Kas67,Vaz89]. The unique perfect matching problem is considered
in [HMT06].

Grigoriev and Karpinski [GK87] considered the perfect matching problem for
bipartite graphs with polynomially bounded number of perfect matchings, i.e. a
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promise problem. They showed that the decision version of the perfect matching
problem for such graphs is solvable in NC2. and that all perfect matchings for
such graphs can be constructed in NC3. For general graphs, their techniques
bring both problems into NC3.

We extend the result of Grigoriev and Karpinski [GK87] to arbitrary weighted
graphs and improve the upper bound to NC2. That is, we show that on input
of some graph G one can construct all perfect matchings of G in NC2, if G has
a polynomially bounded number of perfect matchings. We show the result for
bipartite graphs in Section 3 and then extend it to general graphs in Section 4.
In Section 5 we generalize our techniques to graphs with polynomially bounded
weights.

When we restrict ourselves to the decision version or the counting version of
the problem, we get logspace counting classes inside NC2 as upper bounds for
these problems.

2 Preliminaries

Let G = (V, E) be an undirected graph. A matching in G is a set M ⊆ E, such
that no two edges in M have a vertex in common. A matching M is called perfect

if every vertex occurs as an endpoint of some edge in M . Define

PM (G) = {M | M is a perfect matching in G }.

Bipartite Graphs. Let G be bipartite, that is we can partition the nodes into
V = L∪ R such that there are no edges in L and in R. We assume w.l.o.g. that
|L| = |R = n, otherwise G has no perfect matching. The bipartite adjacency

matrix of G is the n × n matrix A = (ai,j), where

ai,j =

{

1 if (i, j) ∈ E, for i ∈ L and j ∈ R,

0 otherwise.

The bipartite Tutte matrix of G is the n × n matrix T = (ti,j), where

ti,j = ai,j xi,j ,

for indeterminates xi,j . The determinant of T is

det(T ) =
∑

π∈Sn

sign(π)

n
∏

i=1

ai,π(i) xi,π(i).

det(T ) is a multi-linear polynomial. Each non-vanishing term sign(π)
n
∏

i=1

xi,π(i)

corresponds to one perfect matching Mπ = { (i, π(i)) | 1 ≤ i ≤ n } ∈ PM (G). In
particular we have

Theorem 1 (Tutte 1952). Let G be a bipartite graph. G has a perfect matching

iff det(T ) 6= 0.



General Graphs. Let G be a graph with n nodes. W.l.o.g. assume that n is even,
otherwise G has no perfect matchings. Let A = (ai,j) be the n × n adjacency
matrix of G. Note that A is symmetric. The skew-symmetric Tutte matrix of G
is the n × n matrix T = (ti,j), where

ti,j =

{

ai,j xi,j , if i ≤ j,

−aj,i xj,i, otherwise,

for indeterminates xi,j . The Pfaffian of T is

pf(T ) =
∑

M∈PM (G)

sign(M) ·
∏

(i, j) ∈ M

i < j

ai,j xi,j .

The sign is defined as follows. Consider perfect matching

M = {(i1, j1), (i2, j2), . . . , (ik, jk)} ∈ PM (G)

for k = n/2. By convention, we have il < jl for all l. The sign of M is defined
as the sign of the permutation

(

1 2 3 4 · · · n − 1 n
i1 j1 i2 j2 · · · ik jk

)

∈ Sn

It is known that the sign of M does not depend on the order in which the edges
are given, i.e. the sign is well defined.

pf(T ) is a multi-linear polynomial. Each non-vanishing term sign(M) ·
∏

(i, j) ∈ M

i < j

xi,j corresponds to one perfect matching M ∈ PM (G). The Pfaffian

and the determinant of a matrix are known to be closely related.

Theorem 2. det(T ) = pf2(T ).

In particular we have

Theorem 3 (Tutte 1952). Graph G has a perfect matching iff det(T ) 6= 0.

Linear Algebra. The following matrix is called a Vandermonde matrix

V =















1 1 · · · 1
a1 a2 · · · an

a2
1 a2

2 · · · a2
n

...
...

...
an−1
1 an−1

2 · · · an−1
n















.

It is known that
det(V ) =

∏

i6=j

(ai − aj).



Hence, in the case when a1, a2, . . . , an are pairwise distinct the matrix V is non-
singular. The inverse can be written as

V −1 =
1

det(V )
adj(V ),

where adj(V ) is the adjoint of V .

Complexity Classes. The classes NCk, for fixed k, consists of families of Boolean
circuit with ∧-, ∨-gates of fan-in 2, and ¬ -gates, of depth O(logk n) and of
polynomial size. NC = ∪k≥0NCk.

Standard arithmetic operations like addition, subtraction, multiplication and
integer division are known to be in NC1. Many problems from linear algebra
like computing powers of a matrix are in NC2. A break-through result was that
the determinant of a matrix is computable in NC2 [Ber84].

For a nondeterministic Turing machine M , we denote the number of accepting
and rejecting computation paths on input x by accM (x) and by rejM (x), respec-
tively. The difference of these two quantities is gapM , i.e., for all x: gapM (x) =
accM (x)− rejM (x). The complexity class GapL is defined as the set of all func-
tions gapM (x), where M is a nondeterministic logspace bounded Turing machine.
Most notably, we have

Theorem 4. [Dam91,Tod91,Vin91,Val92] The determinant of an integer matrix

is complete for GapL.

And similarly for the Pfaffian we have

Theorem 5. [MSV99] The Pfaffian of an integer matrix is complete for GapL

GapL is closed under addition, subtraction, and multiplication. It is not
known to be closed under integer division. In particular, consider the inverse
of matrix like in the above example, V −1 = 1

det(V )
adj(V ). The entries of the

adjoint matrix are determinants and can therefore be computed in GapL. But
we don’t know whether the entries of V −1 can be computed in GapL too because
of the division by det(V ). However, with the adjoint matrix we have the entries
of det(V )V −1 in GapL.

The class C=L (Exact Counting in Logspace) is the class of sets A for which
there exists a function f ∈ GapL such that ∀x : x ∈ A ⇐⇒ f(x) = 0. A
problem complete for C=L is the singularity problem, where one has to decide
whether the determinant of an integer matrix is zero. C=L is closed under union
and intersection, but is not known to be closed under complement.

Problems that can be expressed as a (unbounded) boolean combination of
sets from C=L are captured by the class AC0(C=L) of sets being AC0-reducible
to C=L. Allender, Beals, and Ogihara [ABO99] defined and studied this class.
They show for example that the problem to decide whether a system of linear
equations has a solution is complete for AC0(C=L). We have the following
inclusions.

NL ⊆ C=L ⊆ AC0(C=L) ⊆ NC2.



Cook [Coo85] defined the class DET as the class of sets that are NC1-
reducible to the determinant. Since the determinant is complete for GapL, we
denote DET by NC1(GapL). We have NC1(GapL) ⊆ NC2.

3 Bipartite Graphs

In this section we prove the following theorem.

Theorem 6. All perfect matchings of a bipartite graph with a polynomially

bounded number of perfect matchings can be constructed in NC2.

Let G = (V, E) be a bipartite graph with |V | = 2n nodes and let A = (ai,j)
be the bipartite adjacency matrix of G. Let p be a polynomial and assume that G
has at most p(n) perfect matchings. Define

b
(m)
i,j (x) = ai,j pi,j xmni+j mod r,

where pi,j are pairwise different primes, x is an indeterminate, r is a prime such
that r > n2p2(n), and 0 ≤ m < r. We can choose max{ pi,j | 1 ≤ i, j ≤ n } =
O(n3) by the Prime Number Theorem. For 1 ≤ m < r define matrices

Bm(x) =
(

b
(m)
i,j (x)

)

.

The determinant of Bm(x) is a polynomial dm(x), where

dm(x) = det(Bm(x)) =
∑

π∈Sn

sign(π)

n
∏

i=1

ai,π(i) pi,π(i) xmni+π(i) mod r

=
∑

π∈Sn

sign(π)(

n
∏

i=1

ai,π(i) pi,π(i)) xem(π),

where em(π) =
∑n

i=1(m
ni+π(i) mod r) are the exponents of x in dm(x).

The crucial point here is, that the summands of em(π) are taken modulo r.
Therefore the degree of polynomial dm(x) is bounded by D = n(r − 1), which
is a polynomial in n. Without the mod r we would have exponential degree. On
the other hand, without the mod r, for any π ∈ Sn the exponent of x is unique.
We show in the following that this also holds modulo r, at least for some m.

Lemma 1. Let π1, . . . , πt ∈ Sn for some t ≤ p(n). Then there exists an m < r
such that em(πi) 6= em(πj), for all i 6= j.

Proof . The values em(πi) can be seen as evaluations of polynomials over the
field Zr in the following way. Define

qπ(z) =

n
∑

i=1

zni+π(i).



Then we have em(πi) ≡ qπ(m) (mod r), for any m. To prove the lemma, we
have to show that qπi

(m) 6≡ qπj
(m) (mod r), for some m < r and for all i 6= j.

Notice first that qπi
6= qπj

, for any i 6= j. Now the degree of the q-polynomials
is bounded by n2 + n ≤ 2n2. Hence any two of them can agree on at most 2n2

points. Thus in any field of size larger than
(

t

2

)

2n2 we have a point where all
polynomials qπi

pairwise differ. Note that

(

t

2

)

2n2 ≤ t2n2 ≤ p2(n)n2 < r.

Hence there is an appropriate m in Zr. �

It follows that if G has t perfect matchings for some t ≤ p(n), then there
exists an m < r such that polynomial dm(x) has precisely t terms. That is,

dm(x) =

D
∑

k=0

c
(m)
k xk,

where precisely t of the coefficients c
(m)
k are non-zero. Moreover, the non-zero

coefficients are of the form

c
(m)
k = sign(π)

n
∏

i=1

pi,π(i)

for some π ∈ Sn such that k = em(π). We want to compute these coefficients.
Define the Vandermonde matrix V = (vi,j) by vi,j = ij , for 0 ≤ i, j ≤ D.

Define vectors

dm = (dm(0) dm(1) · · · dm(D))T

cm = (c
(m)
0 c

(m)
1 · · · c

(m)
D )T

The evaluation of polynomial dm(x) at points 0, . . . , D can now be written as

dm = V cm.

Therefore we obtain the coefficient vector by the equation

cm = V −1dm.

By the latter equation, cm can be computed in NC2.

Lemma 2. cm ∈ NC2.

Proof . The matrices V and Bm(x) can be computed in NC1 for any x ≤ D.
Vector dm can be computed by computing the determinant of matrix Bm(x) for
different values of x, which is in NC2 by Theorem 4. Also, V −1 can be computed
in NC2. �



The final step is to determine the prime factors pi,j of the non-zero coefficients
in cm, because these factors define perfect matchings as explained above. Given

a non-zero c
(m)
k , we can test in NC1 whether c

(m)
k ≡ 0 (mod pi,j) since all pi,j

are O(n3). In summary, we can construct all perfect matchings of G in NC2 if
we have the right value of m.

To find the right value for m, we compute cm for all m ∈ {1, . . . , r − 1} in
parallel. We can take any m such that cm has a maximum number of non-zero
entries. The procedure remains in NC2.

In fact, we get a slightly better upper bound. Note first that the entries of
all vectors det(V )cm = adj(V )dm can be computed in GapL. Having all these
values, the remaining computation can be done in NC1. Recall in particular
that integer division is in NC1 [CDL01].

Suppose we want to know only whether there exists some perfect matching
(decision problem) or count the number of perfect matchings (counting prob-

lem). For the decision problem it suffices to determine whether cm is non-zero
for some m. Note that this is equivalent to det(V )cm being non-zero. For the
counting problem we have to count the number of non-zero entries of cm, for
an m such that cm has a maximum number of non-zero entries.

Corollary 1. For bipartite graphs with a polynomially bounded number of per-

fect matchings

1. the decision problem is in coC=L,

2. the counting problem is in AC0(C=L),

3. the construction problem is in NC1(GapL).

4 General Graphs

In this section we extend Theorem 6 to non-bipartite graphs.

Theorem 7. All perfect matchings of a graph with a polynomially bounded num-

ber of perfect matchings can be constructed in NC2.

Let G = (V, E) be an undirected graph with |V | = n nodes. We assume that
n is even, otherwise G has no perfect matchings. Let A = (ai,j) be the adjacency
matrix of G. Let p be a polynomial and assume that G has at most p(n) perfect

matchings. We define matrices Bm(x) =
(

b
(m)
i,j (x)

)

in a similar fashion as before.

The definition is now according to the Tutte matrix of G:

b
(m)
i,j (x) =

{

ai,j pi,j xmni+j mod r, if i ≤ j,

−aj,i pj,i xmnj+i mod r, otherwise,

for pairwise different primes pi,j of size O(n3), an indeterminate x, a prime r
such that r > n2p2(n), and 1 ≤ m < r.



The Pfaffian of Bm(x) is a polynomial pm(x), where

pm(x) = pf(Bm(x)) =
∑

M∈PM (G)

sign(M) ·
∏

(i, j) ∈ M

i < j

ai,j pi,j xmni+j mod r

=
∑

M∈PM (G)

sign(M) · (
∏

(i, j) ∈ M

i < j

ai,j pi,j) xem(M),

where
em(M) =

∑

(i, j) ∈ M

i < j

(mni+j mod r)

are the exponents of x in pm(x). Similar as in Lemma 1 we have that there is
some m < r where the exponents em(M) pairwise differ.

Note that em(M) ≤ (r − 1)n/2. Let D = (r − 1)n/2. Then we can write

pm(x) =

D
∑

k=0

c
(m)
k xk.

Define the Vandermonde matrix V = (vi,j) by vi,j = ij , for 0 ≤ i, j ≤ D. Define
vectors

pm = (pm(0) pm(1) · · · pm(D))T

cm = (c
(m)
0 c

(m)
1 · · · c

(m)
D )T

As in the bipartite case we have pm = V cm, from which we get cm = V −1pm.
By Theorem 5, cm can be computed in NC2.

Corollary 2. For graphs with a polynomially bounded number of perfect match-

ings,

1. the decision problem is in coC=L,

2. the counting problem is in AC0(C=L),
3. the construction problem are in NC1(GapL).

5 Weighted Graphs

In this section we extend Theorem 7 to graphs with small weights. Let G = (V, E)
be an undirected graph with |V | = n nodes. Let A = (ai,j) be the adjacency
matrix of G and W = (wi,j) be the symmetric matrix that gives weight wi,j to
edge (i, j), where all weights are polynomially bounded in n.

There are several variants of problems we might consider: the minimal perfect

matching problem asks for a perfect matching of minimum weight. In its promise
version, we assume that there are at most polynomially many perfect matching of
minimum weight. Analogously, there is the maximum perfect matching problem.



But actually, we can solve a more general problem. It suffices that for some
weight w there are at most p(n) many perfect matching of weight w, for some
polynomial p.

Theorem 8. Let G be a weighted graph with polynomially bounded weights such

that G has a polynomially bounded number of perfect matchings of some weight w.

Then all perfect matchings of G of weight w can be constructed in NC2.

Define matrices Bm(x, y) =
(

b
(m)
i,j (x, y)

)

in two variables x and y that incor-

porate the weights of G:

b
(m)
i,j (x, y) =

{

ai,j pi,j ywi,j xmni+j mod r, if i ≤ j,

−aj,i pj,i ywj,i xmnj+i mod r, otherwise,

for pairwise different primes pi,j of size O(n3), indeterminates x and y, a prime r
such that r > n2p2(n), and 1 ≤ m < r.

The Pfaffian of Bm(x, y) is a polynomial pm(x, y), where

pm(x, y) = pf(Bm(x, y)) =
∑

M∈PM (G)

sign(M) ·
∏

(i, j) ∈ M

i < j

ai,j pi,j ywi,j xmni+j mod r

=
∑

M∈PM (G)

sign(M) · (
∏

(i, j) ∈ M

i < j

ai,j pi,j) yw(M) xem(M)

where em(M) =
∑

(i, j) ∈ M

i < j

(mni+j mod r). By a similar argument as in Lemma 1

we have that there is some m < r where the exponents em(M) pairwise differ,
and this suffices for our purpose.

The degree of x in pm(x, y) is bounded by (r−1)n/2. Let d = (r−1)n/2+1,
so that the degree of x in pm(x, y) is strictly less than d. We transform pm(x, y)
into polynomial Pm(x) with just one variable by setting

Pm(x) = pm(x, xd).

Then we have

Pm(x) =
∑

M∈PM (G)

sign(M) · (
∏

(i, j) ∈ M

i < j

ai,j pi,j) xdw(M)+em(M)

By our choice of d we have d > em(M). Let w be any fixed weight and consider
a perfect matching M of weight w. Then we have

dw < dw + em(M) < d(w + 1).

That is, the degrees of x in Pm(x) for perfect matchings of different weights w
are in disjoint intervals of the form (dw, d(w+1)). Let D be the degree of Pm(x).



We have D ≤ dwmax, where wmax is the maximum weight of any matching. Note
that wmax ≤ max{wi,j | 1 ≤ i, j ≤ n }n/2. Let

Pm(x) =
D

∑

k=0

c
(m)
k xk.

We have seen in Section 4 how to determine the coefficients c
(m)
k and how to

get the perfect matchings from these coefficients in NC2. Note that the perfect

matchings of weight w are represented by the coefficients c
(m)
k for dw < k <

d(w + 1).
Now, if there are at most p(n) perfect matchings of weight w, then all of

these will be listed by our NC2-circuit. Note however that we might list perfect
matchings of other weights as well. In case that the promise is for the minimum
(or maximum) weight perfect matching, we may discard non-optimal perfect
matchings.

Open Problems

We have the polynomial bound on the number of perfect matchings given as
a promise. Clearly the ultimate goal is to get rid of the promise and to put
the perfect matching problem in NC2. We conjecture that, modulo some small
modifications, our approach works for the general case. It remains to prove this.
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